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Abstract. Locally compact Hausdorff spaces and their one-point com-
pactifications are much used in topology and analysis; in lattice and domain
theory, the notion of continuity captures the idea of local compactness. Our
work is located in the setting of pointfree topology, where lattice-theoretic
methods can be used to obtain topological results. Specifically, we examine
here the concept of continuity for partial frames, and compactifications of
regular continuous such.

Partial frames are meet-semilattices in which not all subsets need have
joins. A distinguishing feature of their study is that a small collection of
axioms of an elementary nature allows one to do much that is traditional for
frames or locales. The axioms are sufficiently general to include as examples
σ-frames, κ-frames and frames.

In this paper, we present the notion of a continuous partial frame by
means of a suitable “way-below” relation; in the regular case this relation
can be characterized using separating elements, thus avoiding any use of
pseudocomplements (which need not exist in a partial frame). Our first main
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result is an explicit construction of a one-point compactification for a regu-
lar continuous partial frame using generators and relations. We use strong
inclusions to link continuity and one-point compactifications to least com-
pactifications. As an application, we show that a one-point compactification
of a zero-dimensional continuous partial frame is again zero-dimensional.

We next consider arbitrary compactifications of regular continuous par-
tial frames. In full frames, the natural tools to use are right and left adjoints
of frame maps; in partial frames these are, in general, not available. This
necessitates significantly different techniques to obtain largest and smallest
elements of fibres (which we call balloons); these elements are then used to
investigate the structure of the compactifications. We note that strongly reg-
ular ideals play an important rôle here. The paper concludes with a proof of
the uniqueness of the one-point compactification.

1 Introduction

The use of locally compact Hausdorff spaces in topology and analysis is
ubiquitous, and the fact that all such have one-point compactifications is of
particular interest. In lattice and domain theory, the notion of continuity
captures, to some extent, the idea of local compactness. Our work is located
in the setting of pointfree topology, where lattice-theoretic methods can be
used to obtain topological results. Specifically, we examine here the concept
of continuity for partial frames, and compactifications of regular continuous
such.

Partial frames are meet-semilattices in which not all subsets need have
joins; a selection function, S, specifies, for all meet-semilattices, certain
subsets under consideration; an S-frame then must have joins of all such
subsets and binary meet must distribute over these. This approach has been
used by several authors with a variety of purposes in mind; it has led to
different authors using different sets of axioms for their selection functions
in order to produce tractable theories. See, for instance, [24, 28, 30, 31]
and [11]. We have found this avenue of enquiry both illuminating and
fruitful.

In this paper we present the notion of a continuous partial frame by
means of a suitable “way-below” relation; in the regular case this relation
can be characterized using separating elements, thus avoiding any use of
pseudocomplements (which need not exist in a partial frame). Our first
main result is an explicit construction of a one-point compactification for a
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regular continuous partial frame using generators and relations. (See Defini-
tion 4.1.) Strong inclusions have become a fundamental tool in understand-
ing compactifications (see, for instance, [3, 5, 12] and [27]); for the partial
frame case, see [18]. We use them here to link continuity and one-point
compactifications to least compactifications. As an application, we show
that a one-point compactification of a zero-dimensional continuous S-frame
is again zero-dimensional.

We next consider arbitrary compactifications of regular continuous S-
frames and use fibres (which we call balloons) to analyse these. In full
(that is, not partial) frames, the natural tools to use here are right and
left adjoints of frame maps; in S-frames these are, in general, not available,
since, for instance, S-frame maps need not preserve arbitrary joins. This
necessitates significantly different techniques to obtain largest and smallest
elements of balloons (see Proposition 8.4, where strongly regular ideals play
an important rôle); these elements are then used to investigate the structure
of the compactifications. We conclude with the uniqueness of the one-point
compactification, the proof of which requires the use of results concerning
arbitrary compactifications just mentioned. We have not found a proof of
this for full frames in the literature.

We finish this introduction with a few remarks concerning the literature
on one-point compactifications in pointfree topology. In an early paper ([25])
Paseka and S̆marda define weak local compactness for locales and show that,
in the presence of regularity, this coincides with continuity. Amongst other
things they construct and provide properties of an object which they call the
one-point compactification. In [19] the authors consider the same idea en
route to describing the unit circle using generators and relations. A different
path is pursued by Banaschewski (see [5]) who uses strong inclusions and
strongly regular ideals to construct compactifications of completely regular
frames. In the same paper he shows that a regular frame is continuous if
and only if it has a least compactification, using a construction which, in a
later paper, [9], is called a one-point extension or compactification. Baboolal
(in [2, 3]) continues in this direction to provide n-point compactifications
and further analysis of the one-point compactification. Our approach draws
on all these threads in extending such notions and results to the setting of
partial frames, while avoiding entirely the use of constructs such as right
adjoints and pseudocomplements.
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2 Background

See [26] and [20] as references for frame theory; see [8] and [6] for σ-frames;
see [23] for κ-frames; see [22] and [1] for general category theory.

A detailed discussion of our approach to partial frames can be found in [13]
and [14]; more information on the topic can be found in [15], [16], [17]
and [18]. For earlier work in this field see [24], [30], [29], and [28]. We
note that terminology is not standard: in [30] partial frames are called Z-
frames, the appropriate morphisms are termed Z-frame maps and selection
functions are referred to as “subset selections.” We refer the reader to [14]
for details on our and other authors’ terminology.

We give now the details necessary for this paper. A meet-semilattice L is a
partially ordered set in which all finite subsets have a meet. In particular,
we regard the empty set as finite, so a meet-semilattice comes equipped with
a top element, which we denote by 1. We also insist that a meet-semilattice
should have a bottom element, which we denote by 0. Technically, one might
wish to refer to these as bounded meet-semilattices, but for the purposes of
this paper, all meet-semilattices are bounded and the term “bounded” will
be omitted from now on. A function f : L→M between meet-semilattices
is a meet-semilattice map if it preserves finite meets, as well as the top and
the bottom elements.

Definition 2.1. A selection function is a rule, which we usually denote by
S, which assigns to each meet-semilattice A a collection SA of subsets of A,
such that the following conditions hold (for all meet-semilattices A and B):
(S1) For all x ∈ A, {x} ∈ SA.
(S2) If G,H ∈ SA then {x ∧ y : x ∈ G, y ∈ H} ∈ SA.
(S2′) If G,H ∈ SA then {x ∨ y : x ∈ G, y ∈ H} ∈ SA.
(S3) If G ∈ SA and, for all x ∈ G, x =

∨
Hx for some Hx ∈ SA, then

∪

x∈G
Hx ∈ SA.

(S4) For any meet-semilattice map f : A→ B,

S(f [A]) = {f [G] : G ∈ SA} ⊆ SB.
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Remark 2.2. (a) Once a selection function, S, has been fixed, we speak
informally of the members of SA as the designated subsets of A.

(b) In a meet-semilattice binary joins may not exist, in which case, in
the light of (S2′) it is possible that a designated set may be empty; this is
not a problem.

We now impose the following axioms on any selection function:

(SCount): Every (at most) countable subset is designated.

(SCov): Every subset of an S-cover is again designated, where an
S-cover is a designated subset whose join is 1.

(SRef) Let X,Y ⊆ A. If X ≤ Y with X designated in A there is a
designated subset C of A such that X ≤ C ⊆ Y . (By X ≤ Y we
mean, as usual, that for each x ∈ X there exists y ∈ Y such that
x ≤ y.)

Definition 2.3. Let S be a selection function. Then
(1) An S-frame, L, is a meet-semilattice that satisfies the following two

conditions:

(a) For all G ∈ SL, G has a join in L (that is,
∨
G exists).

(b) For all x ∈ L, for all G ∈ SL, x ∧∨
G =

∨
y∈G

(x ∧ y).

(2) Let L and M be S-frames. An S-frame map f : L → M is a
meet-semilattice map such that, for all G ∈ SL, f(

∨
G) =

∨
y∈G

f(y).

(3) SFrm is the category of S-frames as objects and S-frame maps as
morphisms.

Note 2.4. Here are some examples of different selection functions and their
corresponding S-frames.

1. In the case that all joins are specified, we are of course considering
the notion of a frame.

2. In the case that (at most) countable joins are specified, we have the
notion of a σ-frame.

3. In the case that joins of subsets with cardinality less than some
(regular) cardinal κ are specified, we have the notion of a κ-frame.
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Definition 2.5. Let S be a selection function and L an S-frame. We shall
call a subset M of L a sub S-frame of L if M is an S-frame and the identical
embedding i : M → L is an S-frame map.

We impose the following further axiom on all selection functions:

(S5): For any S-frame L, if M is a sub S-frame of L, G ⊆ M and G is a
designated subset of L, then G is a designated subset of M .

Definition 2.6. Let A be a meet-semilattice. A non-empty subset D ⊆ A
is a downset if for any x, y ∈ A, x ≤ y ∈ D implies x ∈ D. A downset D of
A is called S-generated if there exists a designated subset S of A such that
D = {x ∈ A : x ≤ s for some s ∈ S}.

We impose one further axiom on our selection functions:

(SDown) The union of a designated collection of S-generated downsets is
S-generated.

The reader wanting more detail on the rôle played by the various axioms
is referred to our earlier work, for instance: [13] for (S5), [14] for (SCov), [15]
for (SRef) and (SCount), [17] for (SDown).

Definition 2.7. (1) For a, b elements of a lattice A, we write a ≺ b if there
exists s ∈ A such that a ∧ s = 0 and s ∨ b = 1. We call such an s a
“separating element.”

(2) An S-frame L is regular if for each a ∈ L there is a designated subset
T of L such that a =

∨
T and t ≺ a for each t ∈ T .

(3) An S-frame L is compact if every S-cover has a finite subcover.
(4) An S-frame map g : M → L is dense if g(a) = 0 ⇒ a = 0, codense

if g(a) = 1⇒ a = 1.
(5) An S-frame map g : M → L is a compactification of L if M is a

compact, regular S-frame and g is a dense, onto S-frame map.
(6) An S-frame map g : M → L is a one-point compactification of L if

it is a compactification of L and there exists a maximal element m in M
such that g : ↓m→ L is an isomorphism, where ↓m = {a ∈M : a ≤ m}.
Remark 2.8. The definition given above of a one-point compactification
appears for full frames in [9]. The term is used in a different, though ulti-
mately equivalent, sense in [19] and [25].
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3 Introducing continuity for S-frames

Here we provide the basics that establish a natural extension of the usual
notion of continuity to partial frames. Of particular importance in the next
section is Theorem 3.8 whose frame precursor can be found in [3] and [19].

Definition 3.1. (1) For a, b elements of an S-frame L, we write a << b and
say that a is way below b if this condition holds: whenever b ≤ ∨

S for some
designated subset S of L, then a ≤ ∨

F for some finite subset F of S.

(2) item An S-frame L is continuous if for each a ∈ L there is a desig-
nated subset T of L such that a =

∨
T and t << a for each t ∈ T .

Remark 3.2. (a) It is possible to rewrite the definition of the way below
relation slightly as follows, using Lemma 3.2 of [18]: a << b if and only
if whenever b ≤ ∨

T for some designated, updirected subset T of L, then
a ≤ t for some t ∈ T .

(b) It is immediate to see that, in any S-frame, << is closed under finite
join; that is, 0 << 0 and if a << c, b << c then a ∨ b << c.

(c) In the case where S selects countable subsets, the corresponding
way below relation has been denoted in various ways: [21] uses the notation
<<c, [10] uses <<σ whereas [4] uses the plain <<; we follow the latter usage
for all selection functions.

Lemma 3.3. (a) The way below relation << interpolates in a continuous
S-frame.

(b) Suppose M is a continuous S-frame and a ∈ M . Let h : M →↓a
be given by h(x) = x ∧ a. Then ↓a is a continuous S-frame and h is an
S-frame map.

Proof. (a) Suppose a << b in a continuous S-frame L. Write b =
∨
S for

some designated subset S of L such that s << b for each s ∈ S. For each
s ∈ S, write s =

∨
Hs for some designated subset Hs of L such that h << s

for all h ∈ Hs. By Axiom (S3), K =
∪
s∈S Hs is a designated subset of L;

and
∨
K = b. Then there exists a finite subset {s1, . . . , sn} of S such that

a ≤ hs1 ∨ · · · ∨ hsn << s1 ∨ · · · ∨ sn where hsi ∈ Hsi . Also s1 ∨ · · · ∨ sn << b,
so s1 ∨ · · · ∨ sn is an appropriate interpolating element.

(b) It is clear that ↓ a is a meet-semilattice and h a meet-semilattice
map. If S is a designated subset of ↓a, Axiom (S4) ensures the existence
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of a designated subset T of L with {t ∧ a : t ∈ T} = S. By Axioms (S1)
and (S2), {t ∧ a : t ∈ T} (and hence S) is a designated subset of L; so we
see that designated subsets of ↓a are also designated subsets of L. Then∨
S =

∨{t ∧ a : t ∈ T} = a ∧ ∨
T. So the designated subsets of ↓a have

joins, with join in ↓a the same as join in L, and it follows then that binary
meet distributes over designated join in ↓a. So ↓a is an S-frame. That h is
an S-frame map then follows, from binary meet distributing over designated
join in L.

Next we show that the way below relation in ↓a coincides with that in L.
Suppose x << b in ↓a, and b ≤ ∨

T for some designated subset T of L. Then
b = b∧a =

∨{t∧a : t ∈ T} and {t∧a : t ∈ T} is a designated subset of ↓a, by
Axiom (S4). So x ≤ (t1∧a)∨· · ·∨(tn∧a) ≤ t1∨· · ·∨tn for some t1, . . . , tn ∈ T .
Conversely, suppose x << b in L, b ≤ a, and b ≤ ∨

S for some designated
subset S of ↓a. By Axiom (S4), there exists a designated subset T of L with
{t∧a : t ∈ T} = S. Then b ≤ ∨{t∧a : t ∈ T} ≤ ∨

T , so x ≤ t1∨· · ·∨tn for
some t1, . . . , tn ∈ T . Thus x = x∧ a ≤ (a∧ t1)∨ · · · ∨ (a∧ tn) = s1 ∨ · · · ∨ sn
for some s1, . . . , sn ∈ S.

Finally, to show ↓ a is continuous, we begin with b ∈↓ a. Then b =∨
L{t ∈ L : t << b in L} =

∨
↓a{t ∈↓a : t << b in ↓a}, by the above.

Remark 3.4. A similar proof to that of Lemma 3.3 shows that, if M is
an S-frame and a ∈ M , the map h : M →↑a given by h(x) = x ∨ a, is an
S-frame map, and ↑a is an S-frame. If M is continuous, so is ↑a.

In the presence of regularity, the way below relation has a simple char-
acterization (see Lemma 3.6) using elements s for which ↑ s is compact.
(In [19] these elements are called “cocompact.”) The next lemma collects
some straightforward facts about such.

Lemma 3.5. Let L be an S-frame and a, b ∈ L. Then

(a) If ↑a and ↑b are compact, then ↑(a ∧ b) is compact.

(b) If L is not compact and a << 1, then ↑a is not compact.

(c) If ↑a is compact and a ≤ b, then ↑b is compact.

Proof. (a) Suppose
∨
W = 1 for some designated subset of ↑(a ∧ b). Then∨{a∨w : w ∈W} = 1, so (a∨w1)∨· · ·∨(a∨wn) = 1 for some w1, . . . , wn ∈

W . Also
∨{b∨w : w ∈W} = 1, so (b∨wn+1)∨ · · · ∨ (b∨wm) = 1 for some
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wn+1, . . . , wm ∈W . Then (a∧ b)∨w1 ∨ · · · ∨wm = 1, so w1 ∨ · · · ∨wm = 1,
as required.

(b) Suppose a << 1 and ↑a is compact. Suppose S is a designated subset
of L with

∨
S = 1. Then

∨{s ∨ a : s ∈ S} = 1 and {s ∨ a : s ∈ S} is a
designated subset of ↑a, so (s1∨a)∨· · ·∨(sn∨a) = 1 for some s1, . . . , sn ∈ S.
Since a << 1, we have a ≤ sn+1 ∨ · · · ∨ sm for some sn+1, . . . , sm ∈ S. Then
s1 ∨ · · · ∨ sn ∨ sn+1 ∨ · · · ∨ sm ≥ s1 ∨ · · · ∨ sn ∨ a = 1. So L is compact.

(c) Suppose S is a designated subset of ↑ b and
∨
S = 1. The map

h :↑a →↑b given by h(x) = x ∨ b is an onto S-frame map. (See Remark
3.4.) By Axiom (S4), there exists a designated subset T of ↑a such that
{t ∨ b : t ∈ T} = S. Now {t ∨ b : t ∈ T} is a designated subset of ↑a and∨{t ∨ b : t ∈ T} = 1. By compactness of ↑a, we obtain (t1 ∨ b) ∨ · · · ∨
(tn ∨ b) = 1 for some t1, . . . , tn ∈ T, and thus s1 ∨ · · · ∨ sn = 1 for some
s1, . . . , sn ∈ S.

We turn our attention to regular continuous S-frames. The characteriza-
tion of the way below relation in regular continuous frames (see [5]) involves
the use of pseudocomplements, which are unavailable in this context; instead
we use separating elements.

Lemma 3.6. Let L be a regular, continuous S-frame. Then
(a) For a, b ∈ L, a << b if and only if there exists s ∈ L with s ∧ a = 0,

s ∨ b = 1 and ↑s is compact.
(b) The way below relation is closed under binary meet; that is, if a << b,

a << c then a << b ∧ c.

Proof. (a) (=⇒) Suppose a << b. Since L is a regular S-frame, there is a
designated subset T of L such that b =

∨
T and t ≺ b for each t ∈ T . Then

a ≤ t1 ∨ · · · ∨ tn ≺ b for some t1, . . . , tn ∈ T . So a ≺ b.
Since L is a continuous S-frame, the way below relation interpolates, so
there exists c ∈ L with a << c << b. So a ≺ c and there exists s ∈ L with
a∧ s = 0 and s∨ c = 1. We show ↑s is compact. Suppose U is a designated
subset of ↑s with

∨
U = 1. Since the map h : L→↑s given by h(x) = x ∨ s

is an onto S-frame map, there exists a designated subset W of L such that
{w ∨ s : w ∈ W} = U. By Axiom (S2′), {w ∨ s : w ∈ W} is a designated
subset of L, and since c << b, also c << 1. So c ≤ (w1 ∨ s) ∨ · · · ∨ (wn ∨ s)
for some w1, . . . , wn ∈W . Then s∨ c = 1 gives (w1 ∨ s)∨ · · · ∨ (wn ∨ s) = 1,
so u1 ∨ · · · ∨ un = 1 for some u1, . . . , un ∈ U .
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(⇐=) Suppose there exists s ∈ L with s ∧ a = 0, s ∨ b = 1 and ↑s is
compact. Let b ≤ ∨

T for some designated subset T of L. Then s∨∨
T = 1,

so
∨{s ∨ t : t ∈ T} = 1. Since {s ∨ t : t ∈ T} is a designated subset of ↑s

by Axiom (S4), (s ∨ t1) ∨ · · · ∨ (s ∨ tn) = 1 for some t1, . . . , tn ∈ T . Then
a ∧ (s ∨ t1 ∨ · · · ∨ tn) = a, so a ≤ t1 ∨ · · · ∨ tn.

(b) Suppose a << b and a << c, with elements s, t ∈ L such that a∧s = 0,
b ∨ s = 1, a ∧ t = 0, c ∨ t = 1 and ↑s, ↑t are compact. Then a ∧ (s ∨ t) = 0,
(b ∧ c) ∨ (s ∨ t) = 1 and ↑(s ∨ t) is compact, so a << b ∧ c.

Example 3.1. This example shows that the condition characterizing a << b
in Lemma 3.6 cannot be replaced by a condition requiring that all separating
elements s (that is, s such that a∧s = 0 and s∨ b = 1) satisfy the condition
that ↑s be compact. (Of course this cannot be done for full frames either.)

Let L be the power set of the natural numbers. Then L is a regular,
continuous σ-frame. Let A = {1} and B = N \ {2}. Then A << B. Further,
N\{1} and {2} are both separating elements showing A ≺ B; but ↑(N\{1})
is compact, whereas ↑({2}) is not.

Lemma 3.7. Any compact, regular S-frame is continuous.

Proof. Suppose that L is a compact, regular S-frame. Continuity will follow
from the fact that, for a, b ∈ L, a << b if and only if a ≺ b:

(=⇒) This only requires regularity of L, and follows as in the proof of
Lemma 3.6(a).

(⇐=) Suppose b ≤ ∨
S for some designated subset S of L. There exists

t ∈ L with a∧ t = 0 and t∨b = 1. Then t∨∨
S = 1, so

∨{t∨s : s ∈ S} = 1
and {t ∨ s : s ∈ S} is a designated subset of L. By compactness of L,
(t ∨ s1) ∨ · · · ∨ (t ∨ sn) = 1 for some s1, . . . , sn ∈ S. Meeting with a gives
a ≤ s1 ∨ · · · ∨ sn.

We provide an explicit and concrete example of a regular, continuous
σ-frame that is not a frame, and that is not a compact σ-frame.

Example 3.2. Let L consist of all countable and cocountable subsets of the
real line. Then L is a Boolean algebra, and a completely regular σ-frame.
The rather below relation here amounts to set inclusion. So the Stone-Čech
compactification of L is JσL, the collection of countably generated ideals
of L, with the join map j : JσL → L as the compactification map. (See [7]
and [18].)
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The collection {↓{i} : i an irrational, i ≥ 0} has no join in JσL, so JσL
is a σ-frame that is not a frame.

Let I = ↓(R\Q). Clearly I is a member of JσL. Then the open quotient
↓I is a regular, continuous σ-frame, by Lemma 3.3(b); further, ↓I is not a
compact σ-frame, and is not a frame.

We conclude this section with a result that proves surprisingly useful.

Theorem 3.8. Let L be a regular, continuous S-frame. Suppose b ∈ L and
↑b is compact. If a ∈ L is such that a ≺ b, then there exists c ∈ L such that
a ≤ c ≺ b and ↑c is compact.

Proof. Since a ≺ b, there exists s ∈ L with a ∧ s = 0 and s ∨ b = 1. Since
L is continuous, s =

∨
T for some designated subset T of L with t << s for

all t ∈ T . Then b ∨∨
T = 1, so

∨{b ∨ t : t ∈ T} = 1. Since {b ∨ t : t ∈ T}
is designated and ↑ b is compact, (b ∨ t1) ∨ · · · ∨ (b ∨ tn) = 1 for some
t1, . . . , tn ∈ T . Then b∨ (t1 ∨ · · · ∨ tn) = 1 and t1 ∨ · · · ∨ tn << s. By Lemma
3.6, there exists u ∈ L such that u∧ (t1 ∨ · · · ∨ tn) = 0, u∨ s = 1, and ↑u is
compact.

Let c = u ∧ b. Then ↑c is compact, by Lemma 3.5(a). Also, c ≺ b since
c ∧ (t1 ∨ · · · ∨ tn) = u ∧ b ∧ (t1 ∨ · · · ∨ tn) = 0 and b ∨ (t1 ∨ · · · ∨ tn) = 1.
Finally, a = a ∧ (u ∨ s) = a ∧ u, so a ≤ u, and since a ≤ b by assumption,
a ≤ b ∧ u = c. Thus a ≤ c ≺ b, and ↑c is compact, as required.

4 Constructing the one-point compactification using gener-
ators and relations

Here we present a construction of the one-point compactification of a non-
compact, regular continuous S-frame, in which all the elements are given
absolutely explicitly. The section concludes with the result that an S-frame
is non-compact, regular, and continuous if and only if it has a one-point
compactification.

Definition 4.1. (Construction of the one-point compactification of
an S-frame)

Let L be a regular, continuous S-frame which is not compact.

1. Then L• = {ox : x ∈ L} ∪ {px : x ∈ L with ↑x compact}, with



68 J. Frith and A. Schauerte

• Bottom o0

• Top p1

• Binary meet given, for x, y ∈ L, by

ox ∧ oy = ox∧y
px ∧ py = px∧y for ↑x, ↑y compact

ox ∧ py = ox∧y for ↑y compact

• Joins calculated as follows:

If S = {ox : x ∈ X} is a designated subset of L•, then
∨
S = oa for

a =
∨
X.

If S = {ox : x ∈ X} ∪ {py : y ∈ Y } is a designated subset of L• with
Y ̸= ∅, then

∨
S = pb for b =

∨
(X ∪ Y ).

2. The map h : L• → L given by h(ox) = x and h(px) = x, is a
compactification of L.

Remark 4.2. (a) As usual in a presentation by generators and relations, the
symbols ox and px are intended to satisfy the conditions: x ̸= y =⇒ ox ̸= oy
and x ̸= y =⇒ px ̸= py; and ox ̸= py regardless of x and y.

(b) It is clear that, for any x ∈ L with ↑ x compact, ox ≤ px since
ox ∧ px = ox.

(c) An example at the end of this section (see Example 4.1) will illustrate
the intuition behind this construction in the spatial case.

(d) The proof that the construction above does indeed give a one-point
compactification is provided below. The structure is defined by the three
rules for binary meets given above; the description of the partial order, top,
bottom, and joins follows as a consequence.

Theorem 4.3. Let L be a regular, continuous S-frame which is not com-
pact, and L•, h : L• → L be defined as in Definition 4.1. Then

(a) L• is a compact, regular S-frame.

(b) h : L• → L is a dense, onto S-frame map, and so a compactification
of L.

(c) h : L• → L is a one-point compactification of L.
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Proof. (a) We note that in the rule px∧py = px∧y, the right-hand expression
is defined, since compactness of ↑x, ↑y implies ↑(x∧y) is compact, by Lemma
3.5(a). From the definition of binary meet, these follow, for x, y ∈ L:

x ≤ y ⇐⇒ ox ≤ oy
x ≤ y ⇐⇒ px ≤ py for ↑x, ↑y compact

px ̸≤ oy for ↑x compact

ox ≤ px for ↑x compact

A straightforward use of the definition of join then shows, for x, y ∈ L:

ox ∨ oy = ox∨y
px ∨ py = px∨y for ↑x, ↑y compact

ox ∨ py = px∨y for ↑y compact

Next we establish the existence of designated joins in L•.
Suppose S = {ox : x ∈ X} ∪ {py : y ∈ Y } is a designated subset of L•

with Y ̸= ∅. Since L• is a meet-semilattice and h a meet-semilattice map,
h[S] = X ∪Y is a designated subset of L, by Axiom (S4). So b =

∨
(X ∪Y )

exists. Certainly pb is an upper bound of S. Since Y ̸= ∅, no element of
the form ot can be an upper bound for S. Suppose then that pt ≥ ox and
pt ≥ py for all x ∈ X, y ∈ Y . Then t ≥ x, t ≥ y for x ∈ X, y ∈ Y , and hence
t ≥ ∨

(X ∪ Y ) = b, so pt ≥ pb. Thus pb =
∨
S. A similar argument shows

that if S = {ox : x ∈ X} is a designated subset of L, then
∨
S = oa for

a =
∨
X.

Next we show that binary meet distributes over designated join in L•.
Suppose S = {ox : x ∈ X} ∪ {py : y ∈ Y } is a designated subset of L•

with Y ̸= ∅. Direct calculation shows that:

ot ∧
∨
S = oa for a = t ∧

∨
(X ∪ Y )

=
∨
{ot ∧ s : s ∈ S}

pt ∧
∨
S = pa for a = t ∧

∨
(X ∪ Y )

=
∨
{pt ∧ s : s ∈ S}
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This uses the fact that, if X ∪ Y is a designated subset of L, then {t ∧
c : c ∈ X ∪ Y } is also a designated subset of L. A similar argument
shows that binary meet distributes over designated joins of sets of the form
{ox : x ∈ X}.

So far, we have established that L• is an S-frame.
Next we show that L• is compact.
Suppose S = {ox : x ∈ X} ∪ {py : y ∈ Y } is a designated subset of

L• with
∨
S = p1. Then Y ̸= ∅; for t ∈ Y , ↑t is compact. Now the map

g : L→↑t given by g(a) = a∨ t, preserves designated sets (see Remark 3.4),
so {t ∨ c : c ∈ X ∪ Y } is a designated subset of ↑t. Now

∨
S = p1 = pb for

b =
∨

(X ∪Y ); so
∨

(X ∪Y ) = 1. Then
∨{t∨ c : c ∈ X ∪Y } = 1. Applying

compactness of ↑t gives (t∨x1)∨· · ·∨ (t∨xn)∨ (t∨yn+1)∨· · ·∨ (t∨ym) = 1
for some x1, . . . , xn ∈ X, yn+1, . . . , ym ∈ Y . Then ox1 ∨ · · · ∨ oxn ∨ pyn+1 ∨
· · · ∨ pym ∨ pt = p1, as required.

Next we show that L• is regular.
Claim:

oa ≺ ob in L• ⇐⇒ a << b in L

pa ≺ pb in L• ⇐⇒ a ≺ b in L, for ↑a, ↑b compact

oa ≺ pb in L• ⇐⇒ a ≺ b in L, for ↑b compact

Proof: We have

oa ≺ ob ⇐⇒ there exists t ∈ L with oa ∧ pt = o0 and ob ∨ pt = p1

⇐⇒ there exists t ∈ L with a ∧ t = 0, b ∨ t = 1,

and ↑t compact

⇐⇒ a << b

The last step uses Lemma 3.6(a).

pa ≺ pb ⇐⇒ there exists t ∈ L with pa ∧ ot = o0 and pb ∨ ot = p1

⇐⇒ there exists t ∈ L with a ∧ t = 0 and b ∨ t = 1

⇐⇒ a ≺ b

The argument for oa ≺ pb is similar to that for pa ≺ pb.
To establish regularity of L•, we begin with a ∈ L; first show that oa

can be written in the appropriate form; then do the same for pa.
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Write a =
∨
U for some designated subset U of L with u << a for all

u ∈ U . By Axiom (S4), there exists a designated subset V of L• such that
h[V ] = U . Since, for any u ∈ U , u << 1, Lemma 3.5(b) shows that ↑u is
not compact, so h−1({u}) = {ou}, and hence V = {ou : u ∈ U}. Then
oa = o∨

U =
∨{ou : u ∈ U} and ou ≺ oa for all u ∈ U .

Now consider a ∈ L with ↑a compact. Write a =
∨
T for some des-

ignated subset T of L with t ≺ a for all t ∈ T . Apply Theorem 3.8:
for each such t, obtain rt ∈ L with t ≤ rt ≺ a and ↑ rt compact. Since
T ≤ {rt : t ∈ T}, by Axiom (SRef), there exists a designated subset R of
{rt : t ∈ T} such that T ≤ R. Note that

∨
R = a.

By Axiom (S4), there exists a designated subset S of L• such that h[S] =
R. Suppose S = {ox : x ∈ X} ∪ {py : y ∈ Y } for some X,Y ⊆ L with
X∪Y = R. Let Z = {px : x ∈ X}∪{py : y ∈ Y }. We note that, for x ∈ R,
↑x is compact, so the elements px in this set do exist. Then S ≤ Z, so by
Axiom (SRef) there exists a designated subset W of Z such that S ≤ W .
Now pa =

∨
W and w ≺ pa for all w ∈W .

So we have established that L• is a compact, regular S-frame.

(b) The description of joins and meets given in Definition 4.1 now makes
it clear that the map h : L• → L given by h(ox) = x and h(px) = x, is an
onto S-frame map. It is dense because h(px) = 0 cannot occur, since this
would imply that x = 0 and ↑0 is compact, contrary to assumption.

(c) We note that o1 is a maximal element of L•: o1 ≥ ox for all x ∈ L
and if px ≥ o1 for some x ∈ L, then px ∧ o1 = o1, so ox∧1 = o1, and hence
x = 1.

Further, h : ↓o1 → L is an S-frame isomorphism. So h : L• → L is a
one-point compactification of L.

Remark 4.4. Arguments similar to those used in the proof of Theorem 4.3
show that h : L• → L preserves all existing joins (whether designated or
not) and all existing meets.

Corollary 4.5. A regular, non-compact S-frame is continuous if and only
if it has a one-point compactification.

Proof. (=⇒) Follows by Theorem 4.3.

(⇐=) Follows by Lemma 3.7 and Lemma 3.3(b).
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Example 4.1. Here we provide a very simple example illustrating our
construction above.
Let L be the open subsets of [0, 1) with the usual topology, and with one-
point compactification [0, 1]. For x = (1

2 , 1) think of ox as being (1
2 , 1) and

px as (1
2 , 1]. Note that ↑x is isomorphic to the open sets of [0, 1

2 ], which
is compact. By contrast, for y = [0, 1

2), oy can be thought of as [0, 1
2) and

since [12 , 1) is not compact, py does not exist.
As we hope this example makes clear, the intention is that ox represents the
original open set, now as a subset of its compactification, and px represents
the open set with the “point at infinity” added when this is indeed an open
set of the compactification. We chose the letter “o” to stand for “original”
and “p” for “partner.”

Remark 4.6. In Definition 2.7 the notion of a one-point compactification
was given; in this section we have constructed such a compactification. One-
point compactifications are in fact unique, as will be shown in Theorem 8.9.

5 Compactifications and strong inclusions

In this section, we briefly summarize some definitions and results from [18]
(Sections 5, 6, and 7) concerning strong inclusions and compactifications. A
compactification of an S-frame L can be associated with a strong inclusion
on L, and conversely, in such a way that these associations are mutual
inverses, making the collection of strong inclusions on L isomorphic, as
partially ordered set, to the collection of compactifications of L.

Definition 5.1. A strong inclusion on an S-frame L is a binary relation �

on L such that, for all a, b, c, d ∈ L:
(SI1) a ≤ b� c ≤ d⇒ a� d.
(SI2) � is a sublattice of L× L.
(SI3) a� b⇒ a ≺ b
(SI4) � interpolates on L; that is, if a� b there exists c ∈ L with a� c� b.
(SI5) If a� b, there exist c, d ∈ L with c� d, a ∧ d = 0 and b ∨ c = 1.
(SI6) For a ∈ L, a =

∨
S for some designated set S in L with s ∈ S ⇒ s�a.

Definition 5.2. Let L be an S-frame, � a strong inclusion on L. An ideal
I of L is called S-generated if there exists a designated subset S of L with
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I = {x ∈ L : x ≤ s for some s ∈ S}. An S-generated ideal I of L is called
�-strongly regular if, for each x ∈ I there exists y ∈ I with x � y. The
collection of all �-strongly regular S-generated ideals of L will be denoted
by R�JSL. The join map

∨
: R�JSL→ L is a compactification of L. We

denote it by g�.

Definition 5.3. If g : M → L is a compactification of L, then �g =
(g × g)[≺] is a strong inclusion on L.

Definition 5.4. Let L be an S-frame with g : M → L and g′ : M ′ → L
compactifications of L. A preorder≤ on the compactifications of L is defined
as follows: g ≤ g′ if there exists an S-frame map e : M →M ′ such that the
following diagram commutes:

M

M ′ L

e

g′

g

In the above diagram, such an e, if it exists, is unique and one-one. For
g : M → L and g′ : M ′ → L compactifications of L, if g ≤ g′ and g′ ≤ g
then the S-frame map e satisfying g′e = g is an isomorphism; we then say
that g : M → L and g′ : M ′ → L are isomorphic.

Definition 5.5. Let L be an S-frame. Then

1. Cpns(L) denotes the partially ordered set obtained from the preorder
on the compactifications of L, given above.

2. StrIncl(L) denotes the partially ordered set of all strong inclusions
on L ordered by inclusion.

Proposition 5.6. Let L be an S-frame. Then

(a) If � is a strong inclusion on L, then �g� = �.

(b) If g : M → L is a compactification of L, then g�g = g.

(c) StrIncl(L) and Cpns(L) are isomorphic partially ordered sets.
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6 Least strong inclusions, least compactifications and one-
point compactifications

In Section 4, it was established in Corollary 4.5 that a regular S-frame is
continuous if and only if it is compact or has a one-point compactification.
It is not a priori clear that a one-point compactification is necessarily also
the smallest such. In this section we provide a proof of this, using strong
inclusions as a basic tool.

Definition 6.1. Let L be a regular, continuous S-frame which is not com-
pact and h : L• → L the one-point compactification of Definition 4.1. Define
the strong inclusion ◀ on L by ◀= (h×h)[≺], where ≺ is the rather below
relation on L•.

Lemma 6.2. Let L be a regular, continuous S-frame which is not compact.
For a, b ∈ L, a ◀ b if and only if

(i) a ≺ b, and

(ii) ↑b is compact, or there exists s ∈ L with a ∧ s = 0, s ∨ b = 1 and ↑s
is compact.
This is equivalent to saying that a ◀ b if and only if

(iii) a << b or

(iv) a ≺ b and ↑b is compact.

Proof. Apply Lemma 3.6(a) and the explicit description of the rather below
relation on L• given in the proof of Theorem 4.3.

Remark 6.3. We note that, in the case that the S-frame is regular and
compact, the relation ◀ described in Lemma 6.2 is still a strong inclusion on
L; it obviously reduces to ≺. It would also have been possible to define ◀
on any regular, continuous S-frame, by the description of Lemma 6.2, and
then prove explicitly that the six conditions required for a strong inclusion
hold. This is the approach taken in [5], where the case for full frames is
discussed.

We now examine the link between one-point and least compactifications.

Proposition 6.4. Let L be a regular, continuous S-frame. The strong
inclusion ◀ is the least strong inclusion on L.
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Proof. Suppose � is another strong inclusion on L. Begin with a ◀ b in L.

Case 1: a << b. Write b =
∨
T for some designated subset T of L

with t � b for all t ∈ T , using condition (SI6) for strong inclusions. Then
a ≤ t1 ∨ · · · ∨ tn � b for some t1, . . . , tn ∈ T ; so a� b.

Case 2: a ≺ b and ↑b is compact. There exists s ∈ L with a∧ s = 0 and
s∨b = 1. Write s =

∨
U for some designated subset U of L with u�s for all

u ∈ U . Then b∨∨
U = 1, so

∨{b∨u : u ∈ U} = 1, and since {b∨u : u ∈ U}
is a designated subset of ↑b, we obtain (b∨ u1)∨ · · · ∨ (b∨ um) = 1 for some
u1, . . . , um ∈ U . Also w = u1∨· · ·∨um�s. Using condition (SI5) for strong
inclusions gives elements c, d ∈ L with c� d, w ∧ d = 0 and c∨ s = 1. Then
a ≺ c� d ≺ b, so a� b.

The following lemma is needed in the proof of Proposition 6.7.

Lemma 6.5. Let M be a compact, regular S-frame and a ∈ M . Define
Ma = {x ∈ M : x ≤ a or x ∨ a = 1}. Then Ma is a compact, regular sub
S-frame of M .

Proof. That Ma is a sub meet-semilattice of M is straightforward to check.
Let S be a designated subset of Ma. Since the inclusion map Ma → M is
a meet-semilattice map, Axiom (S4) makes S a designated subset of M ; so∨
M S exists. We check that

∨
S ∈Ma: If s ≤ a for all s ∈ S, then

∨
S ≤ a.

If there exists s ∈ S with s ∨ a = 1, then a ∨∨
S = 1.

So Ma is a sub S-frame of M , and Ma inherits compactness from M auto-
matically.

We note that a subset of Ma is a designated subset of Ma if and only if
it is a designated subset of M , by the Axioms (S4) and (S5).

To show regularity of Ma, we begin with y ∈Ma and consider two cases.

Case 1: y ≤ a. Since M is regular, y =
∨
T for some designated subset

T of M with t ≺ y in M , for all t ∈ T . For such t, t ∈Ma and there exists
c ∈M with t ∧ c = 0 and c ∨ y = 1. Then c ∨ a = 1, so c ∈Ma. So t ≺ y in
Ma.

Case 2: a ∨ y = 1. Again, y =
∨
T for some designated subset T of M

with t ≺ y in M , for all t ∈ T . Since a ∨∨
T = 1 and {a ∨ t : t ∈ T} is a

designated subset of M , a ∨ (t1 ∨ · · · ∨ tn) = 1 for some t1, . . . , tn ∈ T ; so
u = t1∨· · ·∨ tn ∈Ma and u ≺ y in M . So there exists d ∈M with u∧d = 0
and d ∨ y = 1. Then d = d ∧ (a ∨ u) = d ∧ a, so d ≤ a, making d ∈ Ma.



76 J. Frith and A. Schauerte

Thus u ≺ y in Ma. Now {t ∨ u : t ∈ T} is a designated subset of M , and
hence Ma, t ∨ u ≺ y in Ma, for all t ∈ T and y =

∨{t ∨ u : t ∈ T}.

Remark 6.6. If M is a regular, normal S-frame, then Ma = {x ∈M : x ≤
a or x ∨ a = 1} is a regular sub S-frame of M . See [9] for such a statement
in the context of full frames. A similar proof to that of Lemma 6.5 shows
this; we do not pursue it here because normality is not needed anywhere
else in this paper. We refer the reader to Section 9 of [14] for a discussion
of normality for S-frames.

Proposition 6.7. Any least compactification of a non-compact S-frame is
a one-point compactification.

Proof. Let h : M → L be the least compactification of a non-compact S-
frame L. Then h is obviously not an isomorphism, and so it is not one-one,
and hence not codense. (See Proposition 8.10 of [14].)

Take a ∈M with h(a) = 1 but a < 1, and form the compact, regular sub
S-frame Ma of M described in Lemma 6.5. Then the restriction h : Ma → L
is a dense S-frame map. We show that it is also onto. For x < 1 in L, there
exists b ∈M with h(b) = x. Then h(b∧a) = h(b)∧h(a) = x and b∧a ∈Ma

(in fact, b ∧ a ∈↓ a). So h : Ma → L is a compactification of L; since
h : M → L was the least compactification of L, it follows that M = Ma.
Then a is a maximal element of M , since it is clearly a maximal element of
Ma.

The restriction h :↓a → L is an S-frame map which is onto, as noted
above. To show that it is an isomorphism, it suffices to show it is codense,
by Proposition 8.10 of [14]. This result applies because ↓a, being a quotient
of a regular S-frame, is again regular. So suppose c ≤ a and h(c) = 1.
Then, by the same argument as above, M = Mc. So a ∈ Mc. If a ∨ c = 1,
then a = 1; which is a contradiction. So a ≤ c, making a = c as desired.

In total, we have shown that M has a maximal element a such that
the map h : ↓a → L is an isomorphism, making h : M → L a one-point
compactification of L.

To summarize, here is the main result so far:

Theorem 6.8. For a regular S-frame L, the following are equivalent.

(a) L is continuous.
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(b) L has a least strong inclusion.
(c) L has a least compactification.
(d) L is compact or has a one-point compactification.

Proof. (a) =⇒ (b): By Proposition 6.4.
(b) ⇐⇒ (c): From Corollary 7.8 in [18].
(c) =⇒ (d): By Proposition 6.7.
(d) =⇒ (a): By Lemma 3.7 and Lemma 3.3(b).

Corollary 6.9. If the Stone-Čech compactification and the one-point com-
pactification of an S-frame L coincide, then L has a unique compactification.

7 A zero-dimensional interlude

A compactification of a zero-dimensional partial frame need not be zero-
dimensional; here we show that the one-point compactification of a zero-
dimensional continuous S-frame is zero-dimensional. The corresponding
result for full frames may be folklore; we have not been able to find a
reference in the literature for this.

Definition 7.1. An S-frame L is called zero-dimensional if for each a ∈ L
there is a designated subset T of L such that a =

∨
T and t ≺ t for each

t ∈ T .

We note that the condition t ≺ t is equivalent to saying that t is com-
plemented; that is, there exists an element c in the S-frame with t ∧ c = 0
and c ∨ t = 1.

Lemma 7.2. (a) In any S-frame L, a ≺ b << 1 implies that a << b.
(b) In any S-frame L, if c is a complemented element of L and c << 1,

then c << c.

Proof. (a) Suppose there exists s ∈ L with a ∧ s = 0 and s ∨ b = 1.
Suppose b ≤ ∨

T for some designated subset T of L. Then s ∨ ∨
T = 1,

so
∨{s ∨ t : t ∈ T} = 1 and {s ∨ t : t ∈ T} is a designated subset of L.

Since b << 1, b ≤ (s ∨ t1) ∨ · · · ∨ (s ∨ tn) for some t1, . . . , tn ∈ T . Then
a = a ∧ b ≤ a ∧ (s ∨ t1 ∨ · · · ∨ tn) = a ∧ (t1 ∨ · · · ∨ tn), so a ≤ t1 ∨ · · · ∨ tn.

(b) Direct from (a).
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Lemma 7.3. Let L be a zero-dimensional S-frame and a, b ∈ L.

(a) If a ≺ b and ↑b is compact, there exists a complemented element c
of L with a ≤ c ≤ b.

(b) If a << b, there exists a complemented element c of L with a ≤ c ≤ b.

Proof. (a) Suppose s ∈ L satisfies a∧s = 0 and s∨b = 1. Write s =
∨
T for

some designated subset T of L with t ≺ t for all t ∈ T . Then b∨∨
T = 1, so∨{b∨ t : t ∈ T} = 1, and since ↑b is compact, (b∨ t1)∨ · · · ∨ (b∨ tn) = 1 for

some t1, . . . , tn ∈ T . Let c = t∗1 ∧ · · · ∧ t∗n where t∗i is here the complement,
not merely the pseudocomplement of ti. Then c is complemented. Since
a∧∨

T = 0, a ≤ t∗i for i = 1, . . . , n and so a ≤ c. Also c = c∧ (b∨ t1 ∨ · · · ∨
tn) = c ∧ b, so c ≤ b.

(b) Write b =
∨
T for some designated subset T of L with t ≺ t for all

t ∈ T . Then a ≤ t1 ∨ · · · ∨ tn for some t1, . . . , tn ∈ T ; also t1 ∨ · · · ∨ tn ≤ b
and t1 ∨ · · · ∨ tn is complemented.

Proposition 7.4. The one-point compactification of a zero-dimensional,
continuous S-frame is zero-dimensional.

Proof. Let L be a zero-dimensional, continuous S-frame that is not com-
pact. This argument proceeds along similar lines to that of the proof of
the regularity of L• in Theorem 4.3; we refer the reader to that proof for
a description of the rather below relation on L•. From there, we have, for
a ∈ L,

oa ≺ oa in L• ⇐⇒ a << a in L

pa ≺ pa in L• ⇐⇒ a ≺ a in L, for ↑a compact

Let a ∈ L. We first show that we can express oa in the appropriate form;
then do the same for pa.

Write a =
∨
U for some designated subset U of L with u << a for all

u ∈ U . Since L is continuous, << interpolates (by Lemma 3.3(a)), so for
each such u ∈ U , there exists wu ∈ L with u << wu << a. By Lemma
7.3(b), there exists a complemented element cu ∈ L with u ≤ cu ≤ wu << a.
Then cu << 1, so by Lemma 7.2(b), cu << cu. Now U ≤ {cu : u ∈ U}, so
by Axiom (SRef), there exists a designated subset B of {cu : u ∈ U} such
that U ≤ B. Then

∨
B = a.
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By Axiom (S4) there exists a designated subset V of L• such that h[V ] =
B, where h : L• → L is the one-point compactification of L (described in
Definition 4.1). By Lemma 3.5(b), ↑ b is non-compact, for all b ∈ B, so
h−1({b}) = {ob}. Thus V = {ob : b ∈ B}. Then oa = o∨

B =
∨{ob : b ∈

B}, and ob ≺ ob for all b ∈ B.

Now consider a ∈ L with ↑a compact. Write a =
∨
T for some desig-

nated subset T of L with t ≺ a for all t ∈ T . Apply Theorem 3.8: For each
such t, obtain rt ∈ L with t ≤ rt ≺ a and ↑rt compact. By Lemma 7.3(a),
there exists a complemented element ct of L with t ≤ rt ≤ ct ≤ a. Since
↑rt is compact, ↑ct is compact, also. Then T ≤ {ct : t ∈ T}, so by Axiom
(SRef), there exists a designated subset B of {ct : t ∈ T} such that T ≤ B.
Then

∨
B = a.

By Axiom (S4), there exists a designated subset S of L• such that h[S] =
B. Suppose S = {ox : x ∈ X} ∪ {py : y ∈ Y } for some X,Y ⊆ L with
X∪Y = B. Let Z = {px : x ∈ X}∪{py : y ∈ Y }. We note that, since ↑b is
compact for all b ∈ B, the elements px in this set do exist. Then S ≤ Z, so
by Axiom (SRef) there exists a designated subset W of Z such that S ≤W .
Now pa =

∨
W and w ≺ w for all w ∈W .

8 Arbitrary compactifications

We return to the setting of regular continuous S-frames to investigate com-
pactifications other than the smallest such.

We begin by defining two functions associated with any compactification
which ultimately will allow us to obtain results for partial frames which for
full frames are obtained using right adjoints.

Definition 8.1. Let L be a regular, continuous S-frame which is not com-
pact. Let h : L• → L be its one-point compactification, as given in Defini-
tion 4.1. Let g : M → L be an arbitrary compactification of L. By Theorem
6.8, h : L• → L is the least compactification of L, so there exists a (unique)
one-one S-frame map e : L• →M such that g ◦ e = h; that is, such that the
following diagram commutes:
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L•

M L

e

g

h

Define g̃ : L→M and ĝ : L→M as follows:

For x ∈ L, g̃(x) = e(ox).

For x ∈ L, ĝ(x) =

{
e(px) if ↑x is compact
e(ox) if ↑x is not compact

We note that the functions g̃ and ĝ are not claimed to be S-frame maps;
their properties are given in Lemma 8.2 below.

Lemma 8.2. (a) The function g̃ : L → M preserves binary meets, desig-
nated joins, including the bottom element, but not the top element.

(b) The function ĝ : L → M is a meet-semilattice map; that is, it
preserves binary meets, the bottom element and the top element.

(c) The functions g̃ and ĝ are one-one.

Proof. We refer the reader to Definition 4.1 for the lattice-theoretic prop-
erties of L•.

(a) For x, y ∈ L,

g̃(x ∧ y) = e(ox∧y) = e(ox ∧ oy) = e(ox) ∧ e(oy) = g̃(x) ∧ g̃(y),
for S a designated subset of L,

g̃(
∨
S) = e(o∨

S) = e(
∨

s∈S
os) =

∨

s∈S
e(os) =

∨

s∈S
g̃(s),

and g̃(0) = e(o0) = 0. In L•, o1 ̸= p1 and e(p1) = 1, since e is an S-frame
map. Since e is one-one, this shows that e(o1) ̸= 1.

(b) ĝ(0) = e(o0) = 0, since ↑0 is not compact. Also, ĝ(1) = e(p1) = 1,
since ↑1 is compact. Let x, y ∈ L.
If ↑x and ↑y are compact, so is ↑(x ∧ y), by Lemma 3.5(a). Then

ĝ(x ∧ y) = e(px∧y) = e(px ∧ py) = e(px) ∧ e(py) = ĝ(x) ∧ ĝ(y).
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If ↑x is compact, but ↑y is not compact, then ↑(x ∧ y) is not compact, so

ĝ(x ∧ y) = e(ox∧y) = e(px ∧ oy) = e(px) ∧ e(oy) = ĝ(x) ∧ ĝ(y).

If neither ↑x nor ↑y are compact, then neither is ↑(x ∧ y), and so

ĝ(x ∧ y) = e(ox∧y) = e(ox ∧ oy) = e(ox) ∧ e(oy) = ĝ(x) ∧ ĝ(y).

(c) This follows from the construction of L• and the fact that e is one-
one.

Definition 8.3. For a compactification g : M → L of a regular and contin-
uous S-frame L, we define for x ∈ L,

Balloonx = {a ∈M : g(a) = x} .

The next result shows that the elements g̃(x) and ĝ(x) play a special
rôle in our understanding of the balloons in a compactification: g̃(x) is the
smallest element in Balloonx, and, if ↑x is compact, then ĝ(x) is the largest
element of Balloonx.

Proposition 8.4. Let g : M → L be a compactification of a regular, con-
tinuous S-frame L, and x ∈ L.

(a) If a ∈ Balloonx, then g̃(x) ≤ a.
(b) If ↑x is compact and a ∈ Balloonx, then a ≤ ĝ(x).

Proof. We use the description of compactifications using ideals (see Section
5). To be specific: Let � be the strong inclusion (previously denoted �g)
of the compactification g : M → L. The map i in the commuting diagram
below is an isomorphism:

M

R�JSL L

i

∨

g
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So we replace M by R�JSL, the �-strongly regular S-generated ideals of
L, and g : M → L by the join map R�JSL→ L.

Further, let j : R≺JSL• → L• be the join map from the ≺-strongly
regular S-generated ideals of L•; this is an isomorphism, since L• is compact,
regular.

Let JSh : R≺JSL• → R�JSL be the S-frame map given by JSh(J) =
↓h[J ]. (See Lemma 4.3 of [18].)

Consider the diagram:

R≺JSL•

R�JSL L

L•

JSh

∨

j

h

≃

Here the S-frame map e : L• → M of Definition 8.1 is explicitly given by
JSh ◦ j−1.

(a) Suppose I ∈ R�JSL and
∨
I = x. (This is the “ideal version” of

saying g(a) = x.) We show that (JSh ◦ j−1)(ox) ⊆ I. (This is the “ideal
version” of saying g̃(x) ≤ a.)

Suppose y ∈ JSh(j−1(ox)). Then y ≤ h(t) for some t ∈ j−1(ox). Since
j−1(ox) is ≺-strongly regular, there exists u ∈ j−1(ox) with t ≺ u. Since j
is the map taking joins, u ≤ ox. From the structure of L•, t = oz for some
z ∈ L; so y ≤ h(oz) for some oz ≺ ox. Then y ≤ z and z << x and x =

∨
I.

Now z ≤ i1 ∨ . . . ∨ in for some {i1, . . . , in} ⊆ I. Then y ∈ I, as required.

(b) Suppose ↑ x is compact, I ∈ R�JSL, and
∨
I = x. We show

that I ⊆ (JSh ◦ j−1)(px). (This is the “ideal version” of saying a ≤ ĝ(x).)
Suppose y ∈ I. Since I is �-strongly regular, there exists z ∈ I with
y � z ≤ x. Then y ≺ x and ↑x is compact, so by Theorem 3.8, there exists
w ∈ I with y ≤ w ≺ x and ↑w compact. Then pw exists, y ≤ h(pw),
and pw ≺ px. From this, we can conclude that pw ∈ j−1(px). Since L• is
compact, regular, the rather below relation and the way below relation on
it coincide, so if J ∈ R≺JSL• and

∨
J = b and a ≺ b, then a ∈ J . This

shows that y ∈ (JSh ◦ j−1)(px), as required.

Remark 8.5. (a) In the full frame case, tops and bottoms of balloons can
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be easily identified by using the right adjoint g∗ and the left adjoint g∗ of
the compactification map g. The fact that g∗(x) ∈ Balloonx depends on the
compactification map being open. (See [2] and [26].)

(b) Right and left adjoints are emphatically unavailable in the setting
of partial frames; their use here is bypassed by the introduction of ĝ and
g̃. The fact that ĝ and g̃ suffice for this purpose is by no means obvious
and is the content of Proposition 8.4. We note that an understanding of the
internal structure of the one-point compactification is essential here.

We are now in the position to prove that regular continuous S-frames
are open quotients of any of their compactifications.

Proposition 8.6. Let g : M → L be a compactification of a regular, con-
tinuous S-frame L. The restriction of the compactification map g : M → L
to ↓g̃(1) is an isomorphism; so ↓g̃(1) ∼= L.

Proof. We first show that if t ∈ M and t ≤ g̃(1), then t = g̃(x) for some
x ∈ L; in fact t = g̃(g(t)). Since g̃(g(t)) is the smallest element of Balloong(t)
and t ∈ Balloong(t), we have g̃(g(t)) ≤ t, by Proposition 8.4(a). For the
reverse inequality, write t =

∨
S for some designated subset S of M with

s ≺ t for all s ∈ S. For such s, there exists c ∈ M with s ∧ c = 0 and
c ∨ t = 1. Then g(c) ∨ g(t) = 1 and so g̃(g(c)) ∨ g̃(g(t)) = g̃(1), by Lemma
8.2(a). Then s = s ∧ (g̃(g(c)) ∨ g̃(g(t))) = s ∧ g̃(g(t)), using g̃(g(c)) ≤ c. So
s ≤ g̃(g(t)), which gives t =

∨
S ≤ g̃(g(t)).

The fact that g̃ : L→ ↓g̃(1) is an isomorphism then follows from Lemma
8.2.

We now investigate an arbitrary compactification of a regular continuous
S-frame by comparing its balloons.

Lemma 8.7. Let g : M → L be a compactification of a regular, continuous
S-frame L. If x ≤ y in L, then there is a one-one function k : Balloonx →
Balloony.

Proof. Define k : Balloonx → Balloony by k(a) = a ∨ g̃(y). If a ∈ Balloonx,
then g(a) = x, so g(k(a)) = g(a) ∨ g(g̃(y)) = x ∨ y = y. Thus k(a) ∈
Balloony. Suppose k(a) = k(b) for some a, b ∈ Balloonx. Then a ∨ g̃(y) =
b ∨ g̃(y). However, a ∧ g̃(y) = g̃(t), for some t ∈ L, by Proposition 8.6. So
g(a ∧ g̃(y)) = g(g̃(t)), giving x ∧ y = t, and hence t = x. Thus a ∧ g̃(y) =
b ∧ g̃(y). Distributivity then guarantees that a = b.
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Lemma 8.8. Let g : M → L be a compactification of a regular, continuous
S-frame L. If ↑x is compact, then Balloonx and Balloon1 are isomorphic
S-frames.

Proof. The function k : Balloonx → Balloon1 given by k(a) = a ∨ g̃(1)
(see Lemma 8.7) clearly preserves binary meets and designated joins, and
sends g̃(x), the bottom of Balloonx, to g̃(1), the bottom of Balloon1. Also
k(ĝ(x)) = ĝ(x) ∨ g̃(1) = e(px) ∨ e(o1) = e(px ∨ o1) = e(p1) = ĝ(1); so k
sends the top of Balloonx to the top of Balloon1. The function k is one-one
(see Lemma 8.7). To show that here k is onto, suppose c ∈ Balloon1. Then
g(c ∧ ĝ(x)) = g(c) ∧ g(ĝ(x)) = 1 ∧ x = x, so c ∧ ĝ(x) ∈ Balloonx. Further,
k(c∧ ĝ(x)) = (c∧ ĝ(x))∨ g̃(1) = (c∨ g̃(1))∧ (ĝ(x)∨ g̃(1)) = c∧ 1 = c, using
c ∈ Balloon1, so c ≥ g̃(1).

It is clear that Balloon0 is always a singleton because compactification
maps are dense. Lemma 8.8 provides balloons of largest size. The example
below shows that balloons of intermediate size may exist as well.

Example 8.1. Let L consist of the open sets of (0, 1) with the usual topol-
ogy of the real line, and M the open sets of [0, 1]. Let x = (0, 1

2).
Then Balloonx = {(0, 1

2), [0, 1
2)}, but Balloon1 = {(0, 1), (0, 1], [0, 1), [0, 1]}.

In our final result, we use the techniques of this section to prove that one-
point compactifications of regular continuous S-frames are indeed unique.

Theorem 8.9. The one-point compactification of a regular, continuous S-
frame is unique.

Proof. Suppose that L is a regular, continuous S-frame and g : M → L
a one-point compactification of L; meaning that there exists a maximal
elementm ∈M such that g : ↓m→ L is an isomorphism. Let g̃ be defined as
in Definition 8.1. We first establish some properties of the compactification
g : M → L before showing that it is isomorphic to the compactification
h : L• → L of Definition 4.1.

First, we check that m = g̃(1): Since g : ↓m → L sends top elements
to top elements, g(m) = 1. If a ∈ M and g(a) = 1, then g(a ∧ m) =
g(a)∧g(m) = 1. Since g : ↓m→ L is an isomorphism, a∧m = m, so m ≤ a.
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This shows that m is the bottom element of Balloon1, namely g̃(1). (See
Proposition 8.4.)

Next, we show that, for any x ∈ L, there is at most one element a ∈M
such that g(a) = x and a ̸= g̃(x). So suppose g(a) = g(b) = x, a ̸= g̃(x),
b ̸= g̃(x). By Proposition 8.6, a ∧ g̃(1) = g̃(t) for some t ∈ L; applying
g gives t = x, so a ∧ g̃(1) = g̃(x). Then a ∧ g̃(1) = b ∧ g̃(1). But also
a∨ g̃(1) = b∨ g̃(1), because g̃(1) is a maximal element of M . Distributivity
then shows that a = b.

Finally, we show that if x ∈ L is such that there exists a ∈ M with
g(a) = x and a ̸= g̃(x), then ↑x is compact. Suppose S is a designated
subset of ↑x and

∨
S = 1. Then S is a designated subset of L (as in the

proof of Lemma 3.3(b)). Since g : ↓m → L is an isomorphism, there exists
a designated subset T of ↓m with g[T ] = S. Then g(

∨
T ) =

∨
g[T ] = 1,

so
∨
T = m. Since m is a maximal element of M , a ∨ ∨

T = 1. Since
{a ∨ t : t ∈ T} is a designated subset of M , compactness of M gives
(a ∨ t1) ∨ · · · ∨ (a ∨ tn) = 1 for some t1, . . . , tn ∈ T . Applying g gives
g(a)∨g(t1)∨· · ·∨g(tn) = 1, so x∨s1∨· · ·∨sn = 1, and hence s1∨· · ·∨sn = 1,
for some s1, . . . , sn ∈ S.

Consider the commuting diagram (as in Definition 8.1):

L•

M L

e

g

h

The map e is a one-one S-frame map; to show it is an isomorphism, it
suffices to show it is onto. For any x ∈ L, g̃(x) = e(ox), so obviously g̃(x)
is in the range of e. If there exists a ∈M with g(a) = x and a ̸= g̃(x), then
the arguments above showed this a to be unique. Since a ∈ Balloonx and
the arguments above showed ↑x to be compact, px exists and a = e(px), so
a is also in the range of e.



86 J. Frith and A. Schauerte

Acknowledgement

The authors would like to thank the referee for an efficient and careful
reading of the manuscript.

References
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