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A characterization of a pomonoid S all
of its cyclic S-posets are regular

injective

Xia Zhang, Wenling Zhang, Ulrich Knauer

Abstract. This work is devoted to give a charcaterization of a pomonoid

S such that all cyclic S-posets are regular injective.

1 Introduction and Preliminaries

In this paper, S will be a pomonoid, that is, a monoid equipped with a
partial order relation ≤ which is compatible with the semigroup multi-
plication in the sense that s ≤ t implies su ≤ tu and us ≤ ut for every
s, t, u ∈ S. A poset (A, ≤) together with a mapping A× S → A (under
which a pair (a, s) maps to an element of A denoted by as) is called a
right S-poset, denoted by AS (or simply A), if for any a, b ∈ A, s, t ∈ S,

(1) a(st) = (as)t,

(2) a1 = a,
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(3) a ≤ b, s ≤ t⇒ as ≤ bt.

A left S-poset can be defined similarly. We only consider right S-posets
in the paper, and the word “right” will be omitted. Homomorphisms
of S-posets are order-preserving mappings which also preserve the S-
action. An S-subposet of an S-poset A is an action-closed subset of A
whose partial order is the restriction of the order of A.

A preorder on a set A is a reflexive, transitive binary relation on A
(see [1]). A preorder ≤ on an S-poset A is compatible if x ≤ y in A then
xs ≤ ys for any s ∈ S. Similar to [2], we give the notions of an α-chain
in a pomonoid S and of a right order congruence on S. Let α be a right
compatible preorder on S. For elements a, a′ ∈ S, an α-chain from a to
a′ is a sequence of the form

a ≤ a1 α a
′
1 ≤ a2 α a

′
2 ≤ · · · ≤ an α a′n ≤ a′,

where each ai, a
′
i ∈ S. We write a ≤

α
a′ if such a sequence exists.

The following lemma is obvious for an α-chain.

Lemma 1.1. Let (S, ≤) be a pomonoid, α a right compatible preorder

on S, and a, a′, a′′ ∈ S. Then the following statements hold.

(1) a ≤ a′ ⇒ a ≤
α
a′,

(2) a α a′ ⇒ a ≤
α
a′,

(3) a ≤
α
a′, a′ ≤

α
a′′ ⇒ a ≤

α
a′′.

For a monoid S, a right congruence on S is an equivalence relation
on S which is right compatible with the multiplication of S.

Definition 1.2. (cf. [2]) Let S be a pomonoid. A right order congruence

σ on S is a congruence on the S-poset SS , that is, σ is a right congruence

on S, with the property that S/σ can be equipped with a partial order

such that S/σ is an S-poset and the canonical mapping S → S/σ is an

S-poset homomorphism.
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The following corollaries follow immediately.

Corollary 1.3. (cf. [2]) Let S be a pomonoid and σ a right compatible

preorder on S. Then the relation θσ defined on S by

sθσt⇔ s ≤
σ
t ≤
σ
s

is a right order congruence on S, a suitable order relation on S/θσ being

[s]θσ ≤ [t]θσ ⇔ s ≤
σ
t.

Furthermore, if η is any right order congruence on S such that σ ⊆ η,

then θσ ⊆ η as well. θσ is called the right order congruence generated by

σ.

Corollary 1.4. Let S be a pomonoid. Then an S-poset A is cyclic if

and only if there exists a right compatible preorder σ on S such that

A ∼= S/θσ, where θσ is the right order congruence generated by σ.

Proof. Clearly S/θσ is a cyclic S-poset. For the converse, if A is a cyclic

S-poset, then there exists a ∈ A such that A = aS. Define a binary

relation on S by

σ = {(s, t) ∈ S × S | as ≤ at}.

Obviously σ is a right compatible preorder on S. Moreover, define a map

f : aS → S/θσ by

f(as) = [s]θσ .

It is routine to check that f is an S-poset isomorphism.
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We are going to study the regular injectivity of cyclic S-posets by
using similar techniques as in [5]. First recall some basic definitions and
lemmas from [4].

An S-poset Q is regular injective if and only if for any S-subposet B
of an S-poset A, any S-poset homomorphism f : B → Q, there exists an
S-poset homomorphism g : A → Q extending f , i.e., g |B= f (compare
for example [3]).

For an S-poset A, an element θ ∈ A is said to be a zero element if
θs = θ for all s ∈ S.

An S-subposet B of an S-poset A is called strongly convex if for any
a ∈ A, b ∈ B, a ≤ b implies that a ∈ B. If for any S-poset A, all of
its S-subposets are strongly convex, then we call S completely strongly
convex.

In the following, S will be a completely strongly convex pomonoid.
If K is a non-empty subset of S such that KS ⊆ K then K is called a
right ideal of S.

Lemma 1.5. ( [4]) Let S be a completely strongly convex pomonoid and

Q an S-poset with a zero. Then Q is regular injective if and only if Q is

regular injective relative to all embeddings into cyclic S-posets.

Lemma 1.6. ( [4]) Every regular injective S-poset contains a zero.

2 Characterization

In this section, we will characterize a pomonoid S all of its cyclic S-posets
are regular injective by using right order congruences on S.

Similar to [5], we give the following notations on a pomonoid S. Let
K be a right ideal of S, s an element of S, µ a right compatible preorder
on S, and θµ the right order congruence generated by µ.

Set
Kθµ = {[k]θµ ∈ S/θµ|k ∈ K}

and
K(s, θµ) = {a ∈ S | [sa]θµ ∈ Kθµ}.
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Obviously Kθµ is an S-subposet of the cyclic S-poset S/θµ.

By a routine check, we get the following lemma.

Lemma 2.1. Let µ, λ be right compatible preorders on S, θµ, θλ the right

order congruences generated by µ, λ, respectively, K a right ideal of S,

and q ∈ S. Define a relation R(K, θµ, θλ, q) on S by

s R(K, θµ, θλ, q) t⇔ K(t, θµ) ⊆ K(s, θµ) and (qsa) ≤
λ

(qta) for all

a ∈ K(t, θµ).

Then R(K, θµ, θλ, q) is a right compatible preorder on S.

Lemma 2.2. Let µ, λ be right compatible preorders on S, θµ, θλ the right

order congruences generated by µ, λ, respectively, K a right ideal of S,

and p, q ∈ S. If (pm)θλ(qm) for every [m]θµ ∈ Kθµ, then R(K, θµ, θλ,

p) = R(K, θµ, θλ, q).

Proof. Suppose that the given condition holds and sR(K, θµ, θλ, p)t. For

every a ∈ K(t, θµ), since [sa]θµ , [ta]θµ ∈ Kθµ , it follows that p(sa)θλq(sa)

and p(ta)θλq(ta) by hypothesis, and so

qsa = q(sa)θλp(sa) ≤
λ
p(ta)θλq(ta) = qta.

This implies that R(K, θµ, θλ, p) ⊆ R(K, θµ, θλ, q). Similarly we obtain

that R(K, θµ, θλ, q) ⊆ R(K, θµ, θλ, p).

Lemma 2.3. Let µ, λ be right compatible preorders on S, θµ, θλ the right

order congruences generated by µ, λ, respectively, K a right ideal of S,

and p ∈ S. Set ρ = R(K, θµ, θλ, p). If [m]θρ ∈ Kθρ then [m]θµ ∈ Kθµ for

all [m]θρ ∈ Kθρ .
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Proof. Let [m]θρ ∈ Kθρ . Then there exists k ∈ K such that [m]θρ = [k]θρ .

So m ≤
ρ
k and there exist c1, · · · , cs ∈ S such that

m ≤ c1ρc2 ≤ · · · cs−1ρcs ≤ k.

Now K being strongly convex follows that cs ∈ K, and so [cs]θµ ∈ Kθµ ,

that is 1 ∈ K(cs, θµ). Furthermore, since cs−1ρcs, 1 ∈ K(cs−1, θµ), we

get that [cs−1]θµ ∈ Kθµ . Consequently, the ρ-chain indicates that [m]θµ ∈

Kθµ .

Now we are ready to give the main result of the paper. We charac-
terize a completely strongly convex pomonoid S all of its cyclic S-posets
are regular injective.

Theorem 2.4. Let S be a completely strongly convex pomonoid. Then

all cyclic S-posets are regular injective if and only if S has a left zero, and

for any right ideal K of S, the right order congruences θµ, θλ generated

by right compatible preorders µ and λ on S, respectively, and every S-

poset homomorphism f : Kθµ → S/θλ, there exists an element q ∈ S

such that

f([m]θµ) = [q]θ
λ
m,

for each [m]θµ ∈ Kθµ, and for s, t ∈ S,

s R(K, θµ, θλ, q) t⇒ (qs) ≤
λ

(qt).

Proof. Necessity. Suppose that all cyclic S-posets are regular injective.

Then SS is regular injective and so SS has a zero by Lemma 1.6, which

is a left zero of S.
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Let K, θµ, θλ, f be as in the given conditions. Since S/θλ is regular

injective, there exists an S-poset homomorphism g : S/θµ → S/θλ such

that the following diagram commutes.

?

�
�

�
�
�

��+

S/θµKθµ

S/θλ

f

⊆

∃ g

Then g([1]θµ) = [p]θλ for some p ∈ S and

g([m]θµ) = g([1]θµ)m = [p]θλm = f([m]θµ)

for all [m]θµ ∈ Kθµ . Set ρ = R(K, θµ, θλ, p). Then ρ is a right compatible

preorder on S by Lemma 2.1. Define α : Kθρ → S/θλ by

α([m]θρ) = [p]θλm

for any [m]θρ ∈ Kθρ . We claim that α is an S-poset homomorphism.

Firstly we show that α is well-defined. Suppose that [m]θρ = [n]θρ ∈
Kθρ . Then mθρn, and hence m ≤

ρ
n ≤

ρ
m. That is, there is a ρ-chain

m ≤ a1ρa2 ≤ · · · ≤ al−1ρal ≤ n ≤ b1ρb2 ≤ · · · ≤ bh−1ρbh ≤ m

from m to m, where ai, bj ∈ S. Therefore, by Lemma 1.1, we have

m ≤
ρ
a1 ≤

ρ
· · · ≤

ρ
al ≤

ρ
n ≤

ρ
b1 ≤

ρ
· · · ≤

ρ
bh ≤

ρ
m.

This implies that

[m]θρ ≤ [a1]θρ ≤ · · · ≤ [al]θρ ≤ [n]θρ ≤ [b1]θρ ≤ · · · ≤ [bh]θρ ≤ [m]θρ ,
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and then
[m]θρ = [ai]θρ = [bj ]θρ = [n]θρ .

So [ai]θρ , [bj ]θρ ∈ Kθρ . By Lemma 2.3, we have [ai]θµ ∈ Kθµ and then
1 ∈ K(ai, θµ). Since a1ρa2, it follows that

(pa11) = (pa1) ≤
λ

(pa2) = (pa21),

by the definition of ρ. Similarly, we have

(pa3) ≤
λ

(pa4), · · · , (pal−1) ≤
λ

(pal), (pb1) ≤
λ

(pb2), · · · , (pbh−1) ≤
λ

(pbh).

In addition,

m ≤ a1 ⇒ (pm) ≤ (pa1)⇒ (pm) ≤
λ

(pa1).

Thus we obtain that

(pm) ≤
λ

(pa1) ≤
λ
· · · ≤

λ
(pn) ≤

λ
(pb1) ≤

λ
· · · ≤

λ
(pm).

It turns out that (pm) ≤
λ

(pn) ≤
λ

(pm), that is,

[p]θλm = [pm]θλ = [pn]θλ = [p]θλn.

Consequently, α is well-defined.

Obviously, α preserves the S-action.

Now suppose that [m]θρ ≤ [n]θρ . Similar to the proof of α being
well-defined, there exist a1, a2, · · · , al ∈ S such that

[m]θρ ≤ [a1]θρ ≤ · · · ≤ [al]θρ ≤ [n]θρ ,
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and finally (pm) ≤
λ

(pn), which results in

[p]θλm = [pm]θλ ≤ [pn]θλ = [p]θλn.

So α is order-preserving, and hence α is an S-poset homomorphism.

Since S/θλ is regular injective, there exists an S-poset homomorphism
β : S/θρ → S/θλ such that the following diagram commutes.

?

�
�

�
�
�

��+

S/θρKθρ

S/θλ

α

⊆

∃ β

Then there exists an element q ∈ S such that β([1]θρ) = [q]θλ . We will

show that f([m]θµ) = [q]θλm for every [m]θµ ∈ Kθµ .

Assume that [m]θµ = [n]θµ ∈ Kθµ . By the proof of Theorem 14 in [5],
we obtain that m ρ n and n ρ m. This implies that m ≤

ρ
n ≤

ρ
m by Lemma

1.1. Hence, [m]θρ = [n]θρ . So for [m]θµ ∈ Kθµ , there exists k ∈ K such

that [m]θµ = [k]θµ . It follows that [m]θρ = [k]θρ , and then [m]θρ ∈ Kθρ

since [k]θρ ∈ Kθρ . Now for every [m]θµ ∈ Kθµ , we have
f([m]θµ) = [p]θλm = α([m]θρ) = β([m]θρ) = β([1]θρm) = β([1]θρ)m =
[q]θλm.

Now assume that s R(K, θµ, θλ, q) t. Since [pm]θλ = [qm]θλ , it
follows that R(K, θµ, θλ, q) = R(K, θµ, θλ, p) = ρ by Lemma 2.2. So

sR(K, θµ, θλ, q) t⇒ s ≤
R(K, θµ, θλ, q)

t⇒ [s]θR(K, θµ, θλ, q)
≤ [t]θR(K, θµ, θλ, q)

.
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Therefore,

[q]θλs = β([1]θρ)s

= β([1]θR(K, θµ, θλ, q)
)s

= β([s]θR(K, θµ, θλ, q)
)

≤ β([t]θR(K, θµ, θλ, q)
)

= β([1]θR(K, θµ, θλ, q)
)t

= β([1]θρ)t

= [q]θλt,

and hence qs ≤
λ
qt as desired.

Sufficiency. Assume that S has a left zero. Then every S-poset
contains a zero element. Let S/θλ, S/θµ be cyclic S-posets, where θλ, θµ
are right order congruences generated by right compatible preorders µ
and λ on S, respectively. Note that for any S-subposet A of S/θµ, there
exists a right ideal

K = {a ∈ S | [a]θµ ∈ A}

of S such that A = Kθµ . Let f : Kθµ → S/θλ be an S-poset homomor-
phism. Then by hypothesis, there exists q ∈ S such that

f([m]θµ) = [q]θλm,

for every [m]θµ ∈ Kθµ , and

s η t⇒ (qs) ≤
λ

(qt),

where η = R(K, θµ, θλ, q).

For each [s]θµ ∈ S/θµ, define g : S/θµ → S/θλ by

g([s]θµ) = [q]θλs.

Suppose that [s]θµ = [t]θµ . Again by the proof of Theorem 14 in [5],
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we have sηt and tηs. So qs ≤
λ
qt ≤

λ
qs by the hypothesis. Thus

g([s]θµ) = [q]θλs = [q]θλt = g([t]θµ),

which indicate that g is well-defined.

Next we show that g is order-preserving. Assume that [s]θµ ≤ [t]θµ .
Then s ≤

µ
t, and there exist a1, · · · , an ∈ S such that

s ≤ a1µa2 ≤ · · · ≤ an−1µan ≤ t.

Now a1µa2 implies that a1 ≤
µ
a2, i.e., [a1]θµ ≤ [a2]θµ .

This results in a1ηa2 by the following reason. For any x ∈ K(a2, θµ),
[a2x]θµ ∈ Kθµ implies that [a1x]θµ ∈ Kθµ since Kθµ is strongly convex.
So K(a2, θµ) ⊆ K(a1, θµ). Furthermore, for any x ∈ K(a2, θµ),

[q]θλa1x = f([a1x]θµ) ≤ f([a2x]θµ) = [q]θλa2x

gives that (qa1x) ≤
λ

(qa2x). Therefore, a1ηa2 as required.

By the hypothesis, we have (qa1) ≤
λ

(qa2). Similarly, we obtain that

(qa3) ≤
λ

(qa4), · · · , (qan−1) ≤
λ

(qan).

If s ≤ a1, then (qs) ≤ (qa1), and so (qs) ≤
λ

(qa1). By similar steps, we

finally achieve that

(qs) ≤
λ

(qa1) ≤
λ

(qa2) ≤
λ

(qa3) ≤
λ
· · · ≤

λ
(qt).

Therefore,
g([s]θµ) = [qs]θλ ≤ [qt]θλ = g[t]θµ

result.

Consequently, S/θλ is regular injective.
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Remark 2.5. Note that different from Theorem 14 in [5], where µ and λ

are supposed to be right congruences on the monoid S, in this paper, we

start from right compatible preorders, and result in that R(K, θµ, θλ, q)

is also a right compatible preorder, not necessarily a right congruence (see

Lemma 2.1 and compare with Lemma 12 in [5]). This leads to conditions

in Theorem which are different from those in the unordered case. Even

if we specialize such that every S-poset is equipped with the discrete

order as a partial order, µ, λ, R(K, θµ, θλ, q) in Theorem are still

not necessarily symmetric. In this sense, Theorem is a generalization of

Theorem 14 in [5].

As an application, we present an example of a completely strongly
convex pomonoid S all of its cyclic S-posets are regular injective.

Example 2.6. Let S = {0, 1, e, b} be a semilattice with zero element 0,

identity 1, and multiplication eb = be = 0. Let (S,≤) be the posemilattice

equipped with the natural order. Consider the category C , whose objects

are S-posets equipped with the natural partial order, i.e., for an S-poset

A, a, b ∈ A, a ≤ b ⇔ a = bs for some s ∈ S, and homomorphisms are

S-poset homomorphisms. Then all S-posets in C are strongly convex.

For any S-poset homomorphism α : Kθµ → S/θλ, where K is an ideal

of S, θµ, θλ are right order congruences generated by right compatible

preorders µ and λ on S, respectively. Similar to [5] Example 15, we

choose a suitable element q corresponding to α by discussing all non-

trivial cases for the element e, and similarly for b.

Firstly, we have α([e]θµ) = [0]θλ or [e]θλ .

Assume first that [1]θµ /∈ Kθµ . If [0]θµ = [e]θµ ∈ Kθµ then q = b. If

[0]θµ 6= [e]θµ ∈ Kθµ then q = b if [e]θλ = [0]θλ , otherwise q = 1.
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If [1]θµ ∈ Kθµ then q = 1 if α([1]θµ) = [1]θλ , or q = e if α([1]θµ) =

[e]θλ .

Suppose s R(K, θµ, θλ, q) t, s, t ∈ S. It is easy to see that

K(0, θµ) = S,

K(e, θµ) =

{0, b} if e /∈ K,

S if e ∈ K,

K(b, θµ) =

{0, e} if b /∈ K,

S if b ∈ K,

K(1, θµ) =



S if 1 ∈ K,

{0, e, b} if e, b ∈ K,

{0, e} if e ∈ K,

{0, b} if b ∈ K,

{0} otherwise.

For example, if e 6∈ K then K = {0} or {0, b}. Thus either Kθµ = {[0]θµ}

or Kθµ = {[0]θµ , [b]θµ}. In both cases we have K(e, θµ) = {0, b}.

Next we give the proof how the conditions of Theorem are satisfied for

q = b. What we need to show is that if s, t ∈ S fulfilling sR(K, θµ, θλ, q) t

then one has (qs) = (bs) ≤
λ

(bt) = (qt). Let’s prove under the following

cases.

Case 1. If s = 0 or s = e then we always have bs = 0 ≤
λ

(bt).

Case 2. Assume that s = b.
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If t = b or t = 1 then bs = b ≤
λ
b = (bt).

If t = 0 or t = e then b ∈ K(t, θµ). One has b = (qsb) ≤
λ

(qtb) = 0.

But this means bs = b ≤
λ

0 = bt.

Case 3. Assume that s = 1.

If t = 1 or t = b then bs = b ≤
λ
b = (bt).

If t = 0 or t = e ∈ K then 1 ∈ K(t, θµ). One has b = (qs1) ≤
λ

(qt1) =

0, which implies that bs = b ≤
λ

0 = bt.

If t = e 6∈ K then b ∈ K(t, θµ), and so b = (qsb) ≤
λ

(qtb) = 0. Again

we get that bs = b ≤
λ

0 = bt.

Hence for q = b we obtain that s R(K, θµ, θλ, q) t ⇒ (qs) ≤
λ

(qt) for

all s, t ∈ S.

Similarly, by analyzing all the other possible cases of s and t in S,

together with choosing suitable elements from K(t, θµ), we obtain that

qs ≤
λ
qt for q = 1, e. Therefore, we achieve that all cyclic S-posets are

regular injective in the category C by the theorem in this work.
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