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Abstract. We prove that many important weak double categories can be
‘represented’ by spans, using the basic higher limit of the theory: the tabu-
lator. Dually, representations by cospans via cotabulators are also frequent.

1 Introduction

Strict double categories were introduced and studied by C. Ehresmann [2, 3],
the weak notion in our series [GP1 - GP4]. The strict case extends the more
usual (if historically subsequent) notion of 2-category, while the weak one
extends bicategories, priorly established by Bénabou [1]. The extension is
made clear in Section 4.

This note is about weak double categories and the (horizontal) tabulator
of a vertical arrow. The latter is the ‘basic’ higher limit of the theory; in fact
the main result of [4] says that a weak double category has all (horizontal)
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double limits if and only if it has: double products, double equalisers and
tabulators.

We prove here that the existence of tabulators in a weak double category
A produces, under suitable hypotheses, a lax functor S : A→ Span(C) with
values in the weak double category of spans over the category C of horizontal
arrows of A (Theorem 7). We say that A is span representable when this
functor S is horizontally faithful.

Many important weak double categories can be represented in this sense,
by spans or - dually - by cospans, via cotabulators.

Outline. We begin by a brief review of basic notions on weak double cat-
egories, from [4, 5], including the weak double categories of spans and
cospans, and the (co)tabulator of a vertical arrow.

Sections 7 and 8 give the main definitions and results recalled above,
about (co)span representability. Various weak (or strict) double categories
are examined in Sections 9 - 13, proving that many of them are both span
and cospan representable. Yet the weak double category SpanSet, which
is trivially span representable, is not cospan representable (Section 9), and
CospSet behaves in a dual way.

Finally, some common patterns in the previous proofs of representability
are analysed in Section 14.

2 Definition

A (strict) double category A consists of the following structure.

(a) A set ObA of objects of A.

(b) Horizontal morphisms f : X → X ′ between the previous objects; they
form the category Hor0A of the objects and horizontal maps of A, with
composition written as gf and identities 1X : X → X.

(c) Vertical morphisms u : X •−→ Y (often denoted by a dot-marked arrow)
between the same objects; they form the category Ver0A of the objects and
vertical maps of A, with composition written as v•u (or u⊗ v, in diagram-
matic order) and identities written as eX : X •−→ X or 1•X .

(d) Double cells a : (u f
g v) with a boundary formed of two vertical arrows
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u, v and two horizontal arrows f, g

X
f //

•u

��

X ′

•v

��
a

Y g
// Y ′

(2.1.1)

Writing a : (X X
g v) or a : (e 1

g v) we mean that f = 1X and u = eX . The
cell a is also written as a : u→ v (with respect to its horizontal domain and
codomain, which are vertical arrows) or as a : f •−→ g (with respect to its
vertical domain and codomain, which are horizontal arrows).

We refer now to the following diagrams of cells, where the first is called
a consistent matrix (ac

b
d) of cells

X
f //

•u

��

X ′
f ′ //

•v

��

X ′′

•w

��
a b X

1 //

•u

��

X

•u

��

X
f //

•e

��

X ′

•e

��
Y g //

•u′

��

Y ′ g′ //

•v′

��

Y ′′

•w′

��

1u ef

c d Y
1
// Y X

f
// X ′

Z
h
// Z ′

h′
// Z ′′

(2.1.2)

(e) Cells have a horizontal composition, consistent with the horizontal com-

position of arrows and written as (a | b) : (u f ′f
g′g w), or a|b; this composition

gives the category Hor1A of vertical arrows and cells a : u → v of A, with
identities 1u : (u 1

1 u).

(f) Cells have also a vertical composition, consistent with the vertical com-

position of arrows and written as
(
a
c

)
: (u′•u f

h v
′•v), or a

c , or a⊗c; this com-
position gives the category Ver1A of horizontal arrows and cells a : f •−→ g
of A, with identities ef = 1•f : (e ff e).

(g) The two compositions satisfy the interchange laws (for binary and ze-
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roary compositions), which means that we have, in diagram (2.1.2):

(
a | b
c | d

)
=
(
a
c

∣∣∣ bd
)
,

(
1u
1u′

)
= 1u′•u,

(ef | ef ′) = ef ′f , 1eX = e1X .
(2.1.3)

The first condition says that a consistent matrix (ac
b
d) has a precise

pasting; the last says that an object X has an identity cell 2X = 1eX = e1X .
The expressions (a | f ′) and (f | b) will stand for (a | ef ′) and (ef | b), when
this makes sense.

A is said to be flat if every double cell a : (u f
g v) is determined by its

boundary - namely the arrows f, g, u, v. A standard example is the double
category RelSet of sets, mappings and relations, recalled below in Section
9(c).

3 Hints at weak double categories

More generally, in a weak double category A the horizontal composition be-
haves categorically (and we still have ordinary categories Hor0A and Hor1A),
while the composition of vertical arrows is categorical up to comparison cells:

- for a vertical arrow u : X •−→ Y we have a left unitor and a right unitor

λu : eX ⊗ u→ u, ρu : u⊗ eY → u,

- for three consecutive vertical arrows u : X •−→ Y , v : Y •−→ Z and
w : Z •−→ T we have an associator

κ(u, v, w) : u⊗ (v ⊗ w)→ (u⊗ v)⊗ w.

Interchange holds strictly, as above. The comparison cells are special
(which means that their horizontal arrows are identities) and horizontally
invertible. Moreover they are assumed to be natural and coherent, in a sense
made precise in [4], Section 7; after stating naturality with respect to double
cells, the coherence axioms are similar to those of bicategories.

A is said to be unitary if the unitors are identities, so that the vertical
identities behave as strict units - a constraint which in concrete cases can
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often be easily met. The terminology of the strict case is extended to the
present one, as far as possible.

A lax (double) functor F : X→ A between weak double categories amounts
to assigning:

(a) two functors Hor0F and Hor1F , consistent with domain and codomain

Hor1X
Hor1F //

Dom
��

Hor1A

Dom
��

Hor1X
Hor1F //

Cod
��

Hor1A

Cod
��

Hor0X
Hor0F

// Hor0A Hor0X
Hor0F

// Hor0A

(3.1.1)

(b) for any object X in X, a special cell, the identity comparison of F

F (X) : eFX → FeX : FX •−→ FX,

(c) for any vertical composite u ⊗ v : X •−→ Y •−→ Z in X, a special cell,
the composition comparison of F

F (u, v) : Fu⊗ Fv → F (u⊗ v) : FX •−→ FZ.

Again, these comparisons must satisfy axioms of naturality and coher-
ence with the comparisons of X and A [5].

4 Dualities

A weak double category has a horizontal opposite Ah (reversing the horizon-
tal direction) and a vertical opposite Av (reversing the vertical direction);
a strict structure also has a transpose At (interchanging the horizontal and
vertical issues).

The prefix ‘co’, as in colimit, coequaliser or colax double functor, refers
to horizontal duality, the main one. Let us note that a weak double category
whose horizontal arrows are identities is the same as a bicategory written in
vertical, that is, with arrows and weak composition in the vertical direction
and strict composition in the horizontal one. This is why the oplax functors
of bicategories correspond here to colax double functors. (Transposing the



90 M. Grandis and R. Paré

theory of double categories, as is done in some papers, would avoid this
conflict of terminology, but would produce other conflicts at a more basic
level: for instance, colimits in Set would become ‘op-limits’ in RelSet and
SpanSet.)

5 Spans and cospans

For a category C with (a fixed choice of) pullbacks there is a weak double
category Span(C) of spans over C, which will play here an important role.

Objects, horizontal arrows and their composition come from C, so that
Hor0(SpanC) = C.

A vertical arrow u : X •−→ Y is a span u = (u′, u′′), that is, a diagram
X ← U → Y in C, or equivalently a functor u : ∨ → C defined on the
formal-span category • ← •→ •. A vertical identity is a pair eX = (1X , 1X).

A cell σ : (u f
g v) is a natural transformation u → v of such functors and

amounts to the left commutative diagram below

X
f // X ′ X // X ′ // X ′′

U
mσ //

u′
OO

u′′
��

V

v′
OO

v′′
��

U
mσ //

u′
OO

u′′
��

V
mτ //

v′
OO

v′′
��

W

w′
OO

w′′
��

Y g
// Y ′ Y // Y ′ // Y ′′

(5.1.1)

We say that the cell σ is represented by its middle arrow mσ : U → V ,
which determines it together with the boundary (the present structure is
not flat).

The horizontal composition σ|τ of σ with a second cell τ : v → w is a
composition of natural transformations, as in the right diagram above; it
gives the category Hor1(SpanC) = Cat(∨,C).

The vertical composition u ⊗ v of spans is computed by (chosen) pull-
backs in C

X Y Z

U

ff 88

V

ff 88

W = U×Y V.
W

ff 88 (5.1.2)
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This is extended to double cells, in the obvious way. For the sake of
simplicity we make Span(C) unitary, by adopting the ‘unit constraint’ for
pullbacks: the chosen pullback of an identity along any morphism is an
identity. The associator κ is determined by the universal property of pull-
backs.

Dually, for a category C with (a fixed choice of) pushouts there is a uni-
tary weak double category Cosp(C) of cospans over C, that is horizontally
dual to Span(Cop). We have now

Hor0(CospC) = C, Hor1(CospC) = Cat(∧,C), (5.1.3)

where ∧ = ∨op is the formal-cospan category •→ • ← •.
A vertical arrow u = (u′, u′′) : ∧→ C is now a cospan, that is, a diagram

X → U ← Y in C, and a cell σ : u→ v is a natural transformation of such
functors. Their vertical composition is computed with pushouts in C; again,
we generally follow the ‘unit constraint’ for pushouts.

6 Tabulators

The (horizontal) tabulator of a vertical arrow u : X •−→ Y in the weak double
category A is an object T = >u equipped with a double cell tu : eT → u

T
p //

•eT

��

X

•u
��

H
f //

•e
��

T
p //

•e
��

X

•u
��

tu ef tu = h,

T q
// Y H

f
// T q

// Y

(6.1.1)

such that the pair (T, tu : eT → u) is a universal arrow from the functor
e : Hor0A → Hor1A to the object u of Hor1A. Explicitly, this means that
for every object H and every cell h : eH → u there is a unique horizontal
map f : H → T such that (ef | tu) = h, as in the right diagram above.

(In [5] we also considered a higher dimensional universal property, which
was dropped in later papers and is not used here.) We say that A has
tabulators if all of them exist, or equivalently if the degeneracy functor
e : Hor0A→ Hor1A has a right adjoint

> : Hor1A→ Hor0A, e a >. (6.1.2)
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In this situation one can try to represent A as a weak double category of
spans, as we shall see below.

Dually A has cotabulators if the degeneracy functor has a left adjoint

⊥ : Hor1A→ Hor0A, ⊥ a e, (6.1.3)

so that every vertical arrow u : X •−→ Y has a cotabulator-object ⊥u,
equipped with two horizontal morphisms i : X → ⊥u, j : Y → ⊥u and a
universal cell ι : (u i

j e). This may allow representing A as a weak double
category of cospans.

For a category C with pullbacks, the tabulator in Span(C) of a span
u = (u′, u′′) = (X ← U → Y ) is its central object U , with projections
u′, u′′ and the obvious cell tu : eU → u. The cotabulator is the pushout
of the span in C, provided it exists. All this cannot be formulated within
the bicategory Span(C) (vertically embedded in Span(C) as specified in
Section 4).

7 Theorem and Definition (Span representation)

We suppose that: (a) the weak double category A has tabulators,

(b) the ordinary category C = Hor0(A) of objects and horizontal arrows has
pullbacks.

There is then a canonical lax functor, which is trivial in degree zero

S : A→ Span(C), Hor0(S) = idC, (7.1.1)

and takes a vertical arrow u : X •−→ Y of A to the span Su = (p, q) : X •−→ Y
determined by the tabulator >u and its projections p : >u→ X, q : >u→ Y .

The lax functor S will be called the span representation of A.

Note. Related results can be found in Niefield [8], for weak double categories
with vertical companions and adjoints.

Proof. As in Section 6 we write tu : (e pq u) the universal cell of the tabulator
>u.
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The action of S on a cell a of A is described by the following diagram

X
f // X ′

•v

��

X
f //

•u
��

X ′
•v
��a >u >a //

p
99

q %%

>v

p′
77

q′ ''

tv

Y g
// Y ′

Y g
// Y ′

(7.1.2)

where the cell Sa : Su→ Sv (a morphism of spans) is represented by the co-
herent morphism >a : >u→ >v. The latter is determined by the universal
property of the universal cell tv of the tabulator >v

(>a | tv) = (tu | a) (p′.>a = fp, q′.>a = gq), (7.1.3)

>u >a //

•e

��

>v p′ //

•e

��

X ′

•v

��

>u p //

•e

��

X
f //

•e

��

X ′

•v

��
e tv = tu a

>u >a
// >v

q′
// Y ′ >u q

// Y g
// Y ′

(In the composition (>a | tv) we write >a for e>a, as already warned at
the end of Section 2.)

To define the laxity comparisons, an object X of A gives a special cell
S(X) : eX → S(eX) represented by the morphism

kX : X → >eX , (kX | teX) = 2X . (7.1.4)

For a vertical composite w = u ⊗ v : X •−→ Y •−→ Z, the comparison
S(u, v) : Su⊗ Sv → Sw is represented by the morphism kuv defined below,
where P = >u×Y>v is a pullback and σ = λ(eP )−1 = ρ(eP )−1

kuv : P → >w, (kuv | tw) =

(
σ | r | tu

s | tv

)
, (7.1.5)
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P

•e

��

P
r //

•e

��

>u p //
•e
��

X

•u

��

er tu

P
kuv //

•e
��

>w //

•e
��

X
•w
��

>u q
**

e tw = σ P
r 44

s **
•e

��

= Y

•v

��

P
kuv
// >w // Z >v p′

44

•e
��es tv

P P s
// >v

q′
// Z

(Note that one can not apply interchange to (r | tu) ⊗ (s | tv).) Finally
we have to verify the coherence conditions of the comparisons of S (see [5],
Section 2.1), and we only check axiom (iii) for the right unitor.

For a vertical map u : X •−→ Y and w = u ⊗ eY we have to verify that
the following diagram of morphisms of C commutes

>u×Y Y
(1,kY )

��

>u

>u×Y>eY
kue
// >w

>(ρu)

OO

(7.1.6)

where the pullback >u×Y Y is realised as >u, by the unit constraint, and
the morphism >(ρu) is defined by: (>(ρu) | tu) = (tw | ρu).

Equivalently, by applying the (cancellable) universal cell tu and the
isocell ρ = ρ(e>u), we show that

(ρ | (1, kY ) | kue | >(ρu) | tu) = (ρ | tu).

In fact we have

(ρ | (1, kY ) | kue | >(ρu) | tu) = (ρ | (1, kY ) | kue | tw | ρu)

=

(
ρ | (1, kY ) |σ | r | tu

s | te
| ρu
)

=

(
ρ | ρ−1 | (1, kY ) | r | tu

(1, kY ) | s | te
| ρu
)

=

(
2>u | tu
eq | ek | te

| ρu
)

=

(
2>u | tu
eq |2Y

| ρu
)

=

(
tu
eq
| ρu
)

= (ρ(e>u) | tu).

(7.1.7)
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The fourth, fifth and seventh terms of these computations are represented
below, with P = >u×Y>eY and k = kY .

>u (1,k) //

•e

��

P
r //

•e

��

>u p //
•e
��

X

•u

��

X

•u

��

e er tu

>u q
++>u (1,k) //

•e

��

P
r 33

s **
•e

��

= Y

•eY

��

ρu

>eY p′
44

•
e
��

e es te

>u
(1,k)

// P s
// >eY

q′
// Y Y

>u
•e

��

>u p //

•e
��

X

•u

��

X

•u

��

2>u tu >u p //

•e
��

X
•u
��

X

•u

��

>u q
**

tu

>u
q &&

•e

��

= Y

•eY

��

ρu >u q //

•e
��

Y
•e
��

ρu

Y
k //

•e
��

>eY p′
55

•
e
��

eq

te >u q
// Y Y

>u q
//

eq

Y
k
//

ek

>eY
q′
// Y Y

8 Span and cospan representability

Let A be a weak double category. (a) We say that A is (horizontally) span

representable if:

- it has tabulators,

- the ordinary category C = Hor0(A) has pullbacks,

- the span-representation lax functor S : A→ Span(C) of (7.1.1) is hor-
izontally faithful.

The last condition means that the ordinary functors Hor0S and Hor1S
are faithful. This is trivially true for Hor0(S) = idC, and also for Hor1S
when A is flat.
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(b) By horizontal duality, if A has cotabulators and C = Hor0(A) has
pushouts we form a colax functor of cospan representation

C : A→ Cosp(C), Hor0(C) = idC, (8.1.1)

that takes a vertical arrow u : X •−→ Y of A to the cospan Cu = (i, j) : X •−→
Y formed by the cotabulator ⊥u and its ‘injections’ i : A→ ⊥u, j : Y → ⊥u.

In this situation we say that A is cospan representable if this colax functor
is horizontally faithful.

9 Some basic cases

(a) For a category C with pullbacks, the weak double category Span(C) is
span representable, in a strict sense: the functor S : Span(C)→ Span(C) is
an isomorphism, and even the identity for the natural choice of the tabulator
of a span, namely its central object. Dually, for every category C with
pushouts, Cosp(C) is ‘strictly’ cospan representable.

(b) On the other hand it is easy to see that SpanSet is not cospan rep-
resentable, while CospSet is not span representable. For the first fact we
consider a morphism of spans σ : u → u represented in the left diagram
below, where the objects are cardinal sets (0 = ∅, 1 = {0}, 2 = {0, 1}).

1 // 1 0 //

��

0

��
2

mσ //

OO

��

2

OO

��

2
mσ // 2

1 // 1 0 //

OO

0

OO (9.1.1)

All the arrows to 1 are determined but the mapping mσ : 2→ 2 is arbitrary;
the cotabulator pushout is ⊥u = 1 and ⊥σ does not determine σ.

The second counterexample is shown in the right diagram above, where
again mσ : 2 → 2 is arbitrary, the tabulator pullback is >u = 0 and >σ
does not detect σ.

Similar counterexamples can be given for any category C with finite
limits (or colimits) and some object with at least two endomorphisms.
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(c) The (strict) double category A = RelSet of sets, mappings and relations
[4] has Hor0(A) = Set, relations for vertical arrows and (flat) double cells
given by an inequality in the ordered category of relations

X
f //

•u

��

X ′

•v

��
6 gu 6 vf.

Y g
// Y ′

(9.1.2)

Tabulators and cotabulators exist: >u ⊂ X×Y is the relation itself, as a
subset of X×Y , while ⊥u is the pushout of the span Su = (X ← >u→ Y ),
or of any span representing the relation.

Since RelSet is flat it is automatically span and cospan representable.
The same holds replacing Set with any regular category with pushouts.

In the examples below we examine other strict or weak double categories,
referring to their definition in [4, 5], briefly reviewed here.

10 Representing profunctors

The weak double category Cat of categories, functors and profunctors was
introduced in [4], Section 3.1. Objects are small categories, a horizontal
arrow is a functor and a vertical arrow is a profunctor u : X •−→ Y , defined
as a functor u : Xop×Y → Set. A cell a : (u f

g v) is a natural transformation
a : u → v(fop×g) : Xop×Y → Set. Compositions and comparisons are
known or easily defined.

The cotabulator ⊥u = X+uY of a profunctor u : X •−→ Y is the gluing,
or collage, of X and Y along u, with new maps given by (⊥u)(x, y) = u(x, y)
and no maps ‘backwards’; the composition of the new maps with the old
ones is defined by the action of u. The inclusions i : X → ⊥u and j : Y → ⊥u
are obvious, as well as the structural cell ι : (u i

j e)

ι : u→ e⊥u(iop×j) : Xop×Y → Set, ι(x, y) : u(x, y) = ⊥u(x, y).
(10.1.1)

The tabulator >u is the category of elements of u, or Grothendieck
construction. It has objects (x, y, λ) with x ∈ ObX, y ∈ ObY , λ ∈ u(x, y)
and maps (f, g) of X×Y which form a commutative square in the collage
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X +u Y

(f, g) : (x, y, λ)→ (x′, y′, λ′) (f : x→ x′, g : y → y′),

gλ = λ′f (u(1x, g)(λ) = u(f, 1y)(λ
′) ∈ u(x, y′)).

(10.1.2)
The functors p, q are obvious, and the structural cell τ = tu : e>u → u is

the natural transformation

τ : e>u → u(pop×q) : (>u)op×>u→ Set,

τ(x, y, λ;x′, y′, λ′) : >u(x, y, λ;x′, y′, λ′)→ u(x, y′), (f, g) 7→ gλ = λ′f.
(10.1.3)

Cat is easily seen to be span and cospan representable. Indeed, for a
cell a : (u f

g v), both the functors >a and ⊥a determine every component
axy : u(x, y) → v(fx, gy) of the natural transformation a : u → v(fop×
g) : Xop×Y → Set

>a : >u→ >v, >a(x, y, λ) = (fx, gy, axy(λ)),

⊥a : ⊥u→ ⊥v, ⊥a(λ : x→ y) = axy(λ) : fx→ gy (λ ∈ u(x, y)).
(10.1.4)

11 Representing adjoints

We prove now that the double category AdjCat of (small) categories, func-
tors and adjunctions, introduced in [4], Section 3.5, is also span and cospan
representable.

Again Hor0(AdjCat) = Cat. A vertical arrow is now an ordinary ad-
junction, conventionally directed as the left adjoint

u = (u•, u
•, η, ε) : X •−→ Y, (u• : X → Y ) a (u• : Y → X),

η : 1X → u•u•, ε : u•u
• → 1Y .

(11.1.1)

A double cell a = (a•, a
•) : u → v is a pair of mate natural transforma-

tions, each of them determining the other via the units and counits of the
two adjunctions

a• : v•f → gu•, a• : fu• → v•g,

a• = (fu• → v•v•fu
• → v•gu•u

• → v•g),

a• = (v•f → v•fu
•u• → v•v

•gu• → gu•).

(11.1.2)
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(a) In AdjCat the tabulator >u of an adjunction u = (u•, u
•) : X •−→

Y is the ‘graph’ of the adjunction, namely the following comma category,
equipped with the comma-projections p, q and an obvious cell τ = tu : (e pq u)

>u = (u• ↓Y ) ∼= (X ↓u•), (x, y; c : u•x→ y)↔ (x, y; c′ : x→ u•y),

p : >u→ X, q : >u→ Y,

τ• : u•p→ q : >u→ Y, τ•(x, y; c) = c : u•x→ y.
(11.1.3)

The tabulator of a cell a : (u f
g v), with components a•x : v•fx → gu•x,

is the following functor

>a : >u→ >v, >a(x, y; c : u•x→ y) = (fx, gy; g(c).a•x : v•fx→ gy).
(11.1.4)

This proves that AdjCat is span representable: in fact the compo-
nent a•x : v•fx → gu•x is determined by >a(x, u•x; 1 : u•x → u•x) =
(fx, gu•x; a•x : v•fx→ gu•x).

(b) In AdjCat the cotabulator C = ⊥u = X+u Y is the category consisting
of the disjoint union X + Y , together with new maps ĉx = (x, y; c : u•x →
y)̂ ∈ C(x, y) from objects of X to objects of Y that are ‘represented’ by
objects (x, y; c : u•x → y) of >u = (u• ↓ Y ); the composition of the new
maps with old maps ϕ ∈ X(x′, x), ψ ∈ Y (y, y′) is defined in the obvious
way

ψ.ĉx.ϕ = (x′, y′;ψ.c.u•(ϕ) : u•x
′ → u•x→ y → y′)̂ . (11.1.5)

The universal cell ι• : i → ju• : X → ⊥u is given by ι•x = (1u•x)̂ ∈
C(x, u•x).

The cotabulator of a cell a : (u f
g v), with components a•x : v•fx→ gu•x,

works as f and g on the old objects and arrows, as >a on the new arrows

⊥a : ⊥u→ ⊥v, ⊥a(x, y;h : u•x→ y)̂ = (fx, gy; g(h).a•x : v•fx→ gy)̂ .
(11.1.6)

This determines a•x as above.

12 Representing Dbl

The strict double category Dbl of weak double categories, lax functors and
colax functors is a crucial structure, on which the theory of double adjoints
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is based. We refer the reader to its introduction in [5], Section 2, where the
non-obvious point of double cells is dealt with.

We prove now that Dbl is span representable, horizontally and vertically.

(a) First, every colax functor U : A •−→ B has a horizontal tabulator
(T, P,Q, τ).

The weak double category T = U ↓ B is a ‘one-sided’ double comma
(see [5], Section 2.5), with strict projections P and Q, which can be used
as horizontal or vertical arrows. Below the cell η is simply represented by
the horizontal transformation 1Q : Q → Q and the tabulator cell τ = tU is
linked to the comma-cell π by the unit η and counit ε of the companionship
of Q with ‘itself’ (see [5])

T 1 //

•e

��

U ↓B P //

•Q

��

A
•U

��
η π τ = (η |π), π = ( τε ).

T
Q

// B
1
// B

(12.1.1)

To be more explicit, the tabulator T has objects

(A,B, b : UA→ B), (12.1.2)

with A in A and b horizontal in B. A horizontal arrow of T

(a, b) : (A1, B1, b1)→ (A2, B2, b2), (12.1.3)

‘is’ a commutative square in Hor0B, as in the upper square of diagram
(12.1.5), below (where the slanting direction must be viewed as horizontal).
A vertical arrow of T

(u, v, w) : (A1, B1, b1)→ (A3, B3, b3), (12.1.4)

‘is’ a double cell in B, as in the left square of diagram (12.1.5). A double
cell (β, β′) of T forms a commutative diagram of double cells of B

(β, β′) : ((u, v, ω)
(a,b)

(a′,b′) (u′, v′, ω′)), (ω |β′) = (β |ω), (12.1.5)



Span and cospan representations of weak double categories 101

•
Ua //

•
Uu

��

b1
��

•
b2

��

•
Ua //

•
Uu

��

•

•
Uu′

��

b2

��
• b //

•v

��

=

•

•
v′

��

•

•
v′

��

•

b3 ��

ω

• Ua′ //

b3 ��

β

=

•

b4
��

ω′

•
b′

//

β′

• •
b′

// •

The composition laws of T are obvious, as well as the (strict) double
functors P,Q. The double cell τ has components

τ(A,B, b) = b : UA→ B, τ(u, v, ω) = ω : Uu→ v. (12.1.6)

Its universal property follows trivially from that of the double comma,
in [5], Theorem 2.6(a).

(b) We have thus a span representation

S : Dbl→ Span(LxDbl), (12.1.7)

where LxDbl = Hor0Dbl is the category of weak double categories and lax
functors. (Note that, even though the projections P,Q of the double comma
T are strict double functors, a cell ϕ : (U F

G V ) in Dbl gives a lax functor
>ϕ : >U → >V .)

To prove that Dbl is horizontally span representable, we use the vertical
universal property of the double comma T = U ↓B, in [5], Theorem 2.6(b),
and deduce the existence of a colax functor W : A → T and a cell ξ such
that:

A
•

W

��

A
•

1

��
ξ

>U P //

•Q
��

A
•
U
��

= 1U (QW = U).

π

B B

(12.1.8)

Now a cell ϕ : (U F
G V ) in Dbl can be recovered from the lax functor

>ϕ : >U → >V as follows

ϕ = (1U |ϕ) = (ξ ⊗ π | eF ⊗ ϕ) = (ξ ⊗ tU ⊗ ε | eF ⊗ ϕ⊗ eG)

= (ξ | eF )⊗ (tU |ϕ)⊗ (ε | eG) = (ξ | eF )⊗ (>ϕ | tV )⊗ (ε | eG).
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(c) Transpose duality leaves Dbl invariant up to isomorphism: sending an
object A to the horizontal opposite Ah and transposing double cells we
have an isomorphism Dbl → Dblt. Therefore Dbl is also vertically span
representable, which means that Dblt is span representable by a lax functor

S′ : Dblt → Span(CxDbl) (CxDbl = Hor0Dblt = Ver0Dbl). (12.1.9)

The latter sends a lax functor F : A→ B to the span S′(F ) = (A ← T′ →
B) associated to its vertical tabulator (T, P,Q, τ), where the weak double
category T = B ↓ F has objects (A,B, b : B → FA), and the cell τ is
vertically universal

T 1 //

•
P
��

T
•Q
��

τ

A
F
// B

(12.1.10)

13 Theorem (Representing quintets)

The 2-category C is 2-complete if and only if the associated double category
QC of quintets has all double limits. In this case the double category QC is
span representable.

Proof. Let us recall that the double category QC of quintets (introduced
by C. Ehresmann) has for horizontal and vertical maps the morphisms of
C, while its double cells are defined by 2-cells of C

X
f //

u
��

ϕpp

X ′

v
��

ϕ : vf → gu : X → Y ′.

Y g
// Y ′

(13.1.1)

It is known that C is 2-complete if and only if it has 2-products, 2-equalisers
and cotensors by the arrow-category 2 [9]. First, it is easy to see that 2-
products (respectively, 2-equalisers) in C are ‘the same’ as double products
(respectively, double equalisers) in QC. Second, the cotensor 2 ∗X can be
obtained as the tabulator of the vertical identity of X: they are defined by
the same universal property.
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Conversely, if the C-morphism u : X → Y is viewed as vertical in QC, its
tabulator (>u; p, q; τ) can be constructed as the following inserter (>u; i, τ)

>u i // X×Y
up′ //
p′′
// Y, τ : up′i→ p′′i : >u→ Y, (13.1.2)

letting p = p′i : >u → X, q = p′′i : >u → Y and viewing τ as a double cell
with boundary (1 p

q u).
If C is 2-complete, QC is span representable because the lax span rep-

resentation S : QC → Span(C) operates on a double cell a : vf → gu of
QC producing a morphism of spans Sa : Su → Sv whose central map
>a : >u→ >v is defined as follows

tu : up′i→ p′′i : >u→ Y, tv : vq′j → q′′j : >v → Y ′,

j.>a = (f×g)i, tv.>a = gtu.ap
′i : vfp′i→ gp′′i.

(13.1.3)

>u i //

>a
��

X×Y
up′ //
p′′
//

f×g
��

Y

g
��

>v
j
// X ′×Y ′

vq′ //
q′′
// Y ′

Now f and g are determined as the vertical faces of the morphism Sa.
To recover the 2-cell a : vf → gu of C from the morphism >a, one uses the
map h : X → >u determined by the conditions ih = (1, u) : X → X×Y and
tu.h = 1u, so that

tv.>a.h = (gtu.ap
′i)h = gtuh.ap

′ih = ap′(1, u) = a.

14 Splitting tabulators

In order to ‘explain’ how so many double categories are span representable,
we observe that the proof for the non-obvious cases above follows a pattern
of the following type (as in Section 13), or a vertical version of the same (as
in Section 12). However the argument is rather complicated, and - in the
examples above - we preferred to give a direct proof, following this guideline.

We are in a weak double category A with tabulators, and the category
C = Hor0(A) has pullbacks. In order that A be span representable it is
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sufficient that, for every vertical arrow u, there exist two cells su and ε
satisfying the following condition:

X
h //

•u

��

>u p //

•e

��

X

•u
��

X

•u

��

tu

su >u q //

•q∗
��

Y
•e
��

ρu = 1u.

ε

Y Y Y Y

(14.1.1)

(Typically, q∗ is the vertical companion of q and ε = εq its counit, but
this is not needed in the proof. In the strict case ρu is trivial.)

In fact one can recover a cell a : (u f
g v) from >a (and Sa), as follows

a = (su |
tu
ε
| ρu | a) = (su |

tu
ε
| a
eg
| ρv) = (su |

tu | a
ε | eg

| ρv) = (su |
>a | tv
ε | eg

| ρv).
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