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Abstract. Assembling a localic map f : L→M from localic maps fi : Si →
M , i ∈ J , defined on closed respectively open sublocales (J finite in the
closed case) follows the same rules as in the classical case. The corresponding
classical facts immediately follow from the behavior of preimages but for
obvious reasons such a proof cannot be imitated in the point-free context.
Instead, we present simple proofs based on categorical reasoning. There are
some related aspects of localic preimages that are of interest, though. They
are investigated in the second half of the paper.

1 Introduction

In classical topology one has the useful two facts that

if A1, . . . , An are closed subspaces (respectively, if Ai, i ∈ J , are
open subspaces, J arbitrary) of a space X such that

⋃
iAi = X
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and if fi : Ai → Y are continuous maps such that for all i, j,

fi|(Ai ∩Aj) = fj |(Ai ∩Aj),

then the map f : X → Y defined by f(x) = fi(x) for x ∈ Ai is
continuous.

The proof is extremely simple:

f−1[B] =
⋃
i
f−1
i [B]

and hence if B is closed (respectively, open) in Y then f−1[B] is closed
(respectively, open) in X. Since continuous maps are characterized among
the general ones by sending the open (respectively, closed) subsets to open
(respectively, closed) ones by preimages, this is all we need.

This reasoning cannot be imitated in the point-free setting, but the
statement has an exact point-free counterpart nevertheless. Indeed, if localic
maps fi : Si →M are defined on a system (Si)i∈J of open respectively closed
sublocales (J is finite in the closed case), if they agree on the intersections
Si∩Sj , and if

∨
i∈J Si = L then there is precisely one localic map f : L→M

restricting to fi on Si. Proofs are presented in Sections 3 and 4.

The classical and point-free facts have a common categorical background;
namely, they can be viewed as pushing out. But while in the classical case
we have the simple fact that can be categorically interpreted, in the point-
free modification we have the categorical facts first, afterwards translated
into the desired statements (a genuine application of categorical reasoning,
hopefully pleasing the category minded reader). In particular in the state-
ment on the closed sublocales we have a fairly simple categorical proof but
no reasonably simple direct one, not to speak of something resembling the
classical pointy one (the proof in the open case is slightly more direct, but
even there the categorical view is essential).

We work with sublocales of a locale (frame) L as with subobjects natu-
rally carried by (some of the) subsets, that is, locales that are subsets S of L
embedded by inclusion maps j : S ⊆ L that are localic (thus, in particular,
in the statement above we have the fi actual restrictions f |Si). Therefore
we can speak of preimages of sublocales (in particular, of the closed and
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open ones) under general maps f : L → M . If f is a localic one we have
closed preimages of closed sublocales, and after a certain modification (see
2.4 below) also open preimages of open sublocales. As it is to be expected,
this does not characterize the localic maps among the general f : L → M
but such information on f is of interest. The associated questions are dis-
cussed in Section 5 which we then conclude comparing the set-theoretical
preimage with the localic one (the modification mentioned above) in some
cases.

2 Preliminaries

2.1 The category of frames. Recall that a frame is a complete lattice
L satisfying the distributivity rule

(
∨
A) ∧ b =

∨{a ∧ b | a ∈ A} (2.1.1)

for all A ⊆ L and b ∈ L, and that a frame homomorphism h : L → M
preserves all joins and all finite meets. The resulting category is denoted by
Frm.

A co-frame satisfies (2.1.1) with the roles of joins and meets reversed.

The equality (2.1.1) states, in other words, that for every b ∈ L the
mapping − ∧ b = (x 7→ x ∧ b) : L→ L preserves all joins (suprema). Hence
every − ∧ b has a right Galois adjoint resulting in a Heyting operation→
with

a ∧ b ≤ c if and only if a ≤ b→c.

Thus, each frame is a Heyting algebra (note that, however, the frame homo-
morphisms do not coincide with the Heyting ones so that Frm differs from
the category of complete Heyting algebras). The operation→ and some of
its basic properties (for example, a→ a = 1, a→ b = 1 if and only if a ≤ b,
1→ a = a, and a→ (b→ c) = (a∧ b)→ c) will be often used in the sequel.

2.2 The concrete category Loc. The functor Ω: Top→ Frm from
the category of topological spaces into that of frames (Ω(f) sending an
open set U ⊆ Y to f−1[U ] for a continuous map f : X → Y in Top) is a full
embedding on an important and substantial part of Top, the subcategory
of sober spaces. This justifies to regard frames as a natural generalization
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of spaces. Since Ω is contravariant, one introduces the category of locales
Loc as the dual of the category of frames. Often one just considers the
formal Frmop but it is of advantage to represent it as a concrete category
with specific maps as morphisms. For this purpose one defines a localic
map f : L → M as the right Galois adjoint of a frame homomorphism
h = f∗ : M → L. This can be done since frame homomorphisms preserve
suprema; but of course not every mapping preserving infima is a localic one.
Here is a characterization (see [5] or [6]):

Lemma 2.2.1. Let f : L → M have a left adjoint f∗ : M → L. Then it is
a localic map if and only if

(a) f [Lr {1}] ⊆M r {1}, and

(b) f(f∗(a)→ b) = a→ f(b).

2.3 The co-frame of sublocales. A sublocale of a frame L is a subset
S ⊆ L such that

(1) M ⊆ S implies
∧
M ∈ S, and

(2) if a ∈ L and s ∈ S then a→ s ∈ S.

If we require only (1) we speak of a meet-subset.
The set of all sublocales ordered by inclusion, denoted by

S(L),

is a co-frame, with the lattice operations
∧
i∈J

Si =
⋂
i∈J

Si and
∨
i∈J

Si = {∧A | A ⊆ ⋃
i∈J

Si}.

The top of S(L) is L and the bottom is the set O = {1} (the empty sublocale).
We have the closed respectively open sublocales

c(a) = ↑a respectively o(a) = {x | a→ x = x} = {a→ x | x ∈ L}
modelling closed respectively open subspaces (and corresponding precisely
to the closed respectively open parts in [1]). They are complements of each
other, and the o(a) are in a natural one-to-one correspondence with the
elements of L, preserving joins and finite meets. We have (see for example,
[6]):



Localic maps constructed from open and closed parts 25

• o(0) = O, o(1) = L, o(a ∧ b) = o(a) ∩ o(b), o(
∨
ai) =

∨
o(ai),

• c(0) = L, c(1) = O, c(a ∧ b) = c(a) ∨ c(b), c(
∨
ai) =

⋂
c(ai).

2.4 Images and preimages. For a localic map f : L → M and for
any sublocale S ⊆ L we have the image f [S] which is a sublocale again. On
the other hand, the set-theoretic preimage (briefly, set-preimage) f−1[S] of
a sublocale S is not necessarily a sublocale. It is a meet-subset, though, and
hence (see the formula for the join of sublocales above) there is the largest
sublocale

f−1[S] =
∨{T | T∈ S(L), T ⊆ f−1[S]}

contained in f−1[S]. It will be referred to as the localic preimage. We have
the Galois adjunction

f [S] ⊆ T if and only if S ⊆ f−1[S].

For closed sublocales we have f−1[c(a)] = f−1[c(a)] = c(f∗(a)). For open
sublocales the localic and set-preimages do not necessarily coincide (see
Section 5 below), but we do have f−1[o(a)] = o(f∗(a)).

For more about frames see for example, [2, 6]. For basic facts from
category theory see [4] (or the Appendix in [6]), and for the basics of classical
topology see for example, [3].

3 Assembling a localic map from open parts

3.1 Setting. We have a cover (ai)i∈J of a frame L, in the sublocale
language, a cover (o(ai))i∈J of L by open sublocales. Further, we have
localic maps fi : o(ai)→M and assume that

∀i, j ∈ J, fi|(o(ai) ∩ o(aj)) = fj |(o(ai) ∩ o(aj)).

Since o(ai) ∩ o(aj) = o(ai ∧ aj) this amounts to the system of equalities

∀i, j ∈ J ∀x ∈ L, fi((ai ∧ aj)→x) = fj((ai ∧ aj)→x).
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3.2 Let hi : M → o(ai) be the frame homomorphisms adjoint to fi.

Lemma. For all i, j we have hi(x) ∧ ai ∧ aj = hj(x) ∧ ai ∧ aj.

Proof. For all y, hi(x) ∧ ai ∧ aj ≤ y if and only if hi(x) ≤ (ai ∧ aj)→ y
if and only if x ≤ fi((ai ∧ aj) → y) = fj((ai ∧ aj) → y) if and only if
hj(x) ≤ (ai ∧ aj)→y if and only if hj(x) ∧ ai ∧ aj ≤ y.

3.3 Define a mapping f : L→M by setting

f(x) =
∧
i∈J

fi(ai→x)

and a mapping h : M → L by

h(x) =
∨
i∈J

(hi(x) ∧ ai).

Lemma 3.4. If x ∈ o(ak) then f(x) = fk(x).

Proof. If x ∈ o(ak) then for every i,

fi(ai→x) = fi(ai→(ak→x)) = fi((ai ∧ ak)→x) =

= fk((ai ∧ ak)→x) ≥ fk(ak→x)

and fk(x) = fk(ak→x) is among the factors in the definition of f(x).

Lemma 3.5. The mapping h : M → L preserves binary meets.

Proof. By 3.2 we have

h(x) ∧ h(y) =
∨
i,j
hi(x) ∧ hj(y) ∧ ai ∧ aj =

∨
i,j
hi(x) ∧ hi(y) ∧ ai ∧ aj =

=
∨
i,j
hi(x ∧ y) ∧ ai ∧ aj =

∨
i
hi(x ∧ y) ∧ ai ∧

∨
j
aj =

=
∨
i
hi(x ∧ y) ∧ ai = h(x ∧ y).

Theorem 3.6. If localic maps fi : o(ai) → M agree on the intersections
o(ai) ∩ o(aj) and if

∨
i o(ai) = L then there exists precisely one localic map

f : L→M such that f |o(ai) = fi for all i, namely the f from 3.3.
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Proof. By definition of
∨
Si in S(L) and taking into account that localic

maps preserve meets, we see that there is at most one such f .

Now observe that the maps from 3.3 are adjoint. Indeed, we have

h(x) ≤ y ⇔ ∀i ∈ J, hi(x) ≤ ai→y

⇔ ∀i ∈ J, x ≤ fi(ai→y) ⇔ x ≤ ∧
i∈J

fi(ai→y) = f(y).

Hence, first, h preserves all joins. By 3.5 it preserves binary meets; since
also h(1) =

∨
hi(1)∧ ai =

∨
ai = 1, h is a frame homomorphism and f is a

localic map.

Note 3.7. Needless to say, we have here the diagram

o(ai)
⊆

''
o(ai) ∩ o(aj)

⊆
77

⊆

''

(i, j ∈ J) L

o(aj)

⊆
77

about which we have proved that it is a generalized pushout, that is, that

o(ai)
⊆

''
(i, j ∈ J) L

o(aj)

⊆
77

is the colimit of the rest of the diagram. In the next section it will be of
advantage to reverse the reasoning, namely considering the colimit first and
then deduce the required result.
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4 Assembling a localic map from closed parts

4.1 Setting. This time we have a finite closed cover of L, that is, closed
sublocales c(a1), . . . , c(an) such that

∨n
i=1 c(ai) = L in S(L). Further, we

have localic maps fi : c(ai)→M such that

∀i, j, fi|(c(ai) ∩ c(aj)) = fj |(c(ai) ∩ c(aj)).

Since c(ai)∩ c(aj) = c(ai∨aj) = ↑(ai∨aj), this amounts to the requirement
that

∀i, j, x ≥ ai ∨ aj ⇒ fi(x) = fj(x).

We are looking for an f : L→M such that f |c(ai) = fi for all i.

4.2 Consider the diagram of frame homomorphisms

L
β−−−−→ ↑b

α

y
yα′

↑a β′−−−−→ ↑(a ∨ b)

(4.2.1)

with α(x) = α′(x) = a ∨ x and β(x) = β′(x) = b ∨ x. It is a well known
(and almost obvious) fact that this diagram is a pushout. But we also have
the following proposition.

Proposition. If a ∧ b = 0 then (4.2.1) is a pullback.

Proof. Extend (4.2.1) to

L
β //

ε

##
α

��

↑b

α′

��

↑a× ↑b

p2

88

p1

{{
↑a β′ // ↑(a ∨ b)

with pi, for i = 1, 2, the product projections and ε the mapping given by

ε(x) = (a ∨ x, b ∨ x).
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By the standard construction of pullback, it suffices to prove that ε is the
equalizer of β′p1 and α′p2 (the equalities α = p1ε and β = p2ε are trivial).

First, obviously ε is a frame homomorphism, and

β′p1ε(x) = a ∨ b ∨ x = α′p2ε(x).

It is one-to-one: if a ∨ x = a ∨ y and b ∨ x = b ∨ y then x = (a ∧ b) ∨ x =
(a ∨ x) ∧ (b ∨ x) = (a ∨ y) ∧ (b ∨ y) = y.

Now let
h : M → ↑a× ↑b

be a frame homomorphism such that β′p1h = α′p2h. That is, for hi = pih
we have h1(x) ∨ b = h2(x) ∨ a. We need to show that there is a unique k
that completes the diagram

L
ε // ↑a× ↑b

β′p1 //

α′p2

// ↑(a ∨ b)

M

k

OO

h

==

Define
k : M → L by setting k(x) = h1(x) ∧ h2(x).

Then

εk(x) = (a ∨ (h1(x) ∧ h2(x)), b ∨ (h1(x) ∧ h2(x))) =

= ((a ∨ h1(x)) ∧ (a ∨ h2(x)), (b ∨ h1(x)) ∧ (b ∨ h2(x))) =

= ((a ∨ h1(x)) ∧ (b ∨ h1(x)), (a ∨ h2(x)) ∧ (b ∨ h2(x))) =

= ((a ∧ b) ∨ h1(x), (a ∧ b) ∨ h2(x)) = (h1(x), h2(x)) = h(x).

Since h, ε are homomorphisms and ε is one-to-one, it follows that k is a
homomorphism and that it is unique such that h = εk.

4.3 Consider the embedding (localic) maps

j1 : c(a) ↪→ L and j2 : c(b) ↪→ L.

They are the right adjoints of the α respectively β above and hence the
pullback (4.2.1) in Frm translates to the pushout in Loc
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L
j2←−−−− c(b)

j1

x
xj′1

c(a)
j′2←−−−− c(a ∨ b)

(4.3.1)

with j′1 and j′2 the inclusion maps.

Theorem 4.4. Let c(ai), i = 1, 2, . . . , n, be closed sublocales of L such that∨n
i=1 c(ai) = L and let fi : c(ai)→M be localic maps such that

for all i, j, fi|(c(ai) ∩ c(aj)) = fj |(c(ai) ∩ c(aj)).

Then there exists precisely one localic map f : L→M such that f |c(ai) = fi
for all i.

Proof. It suffices to prove the statement for n = 2. Set a = a1 and b = a2.
Since L = c(a) ∨ c(b) = ↑(a ∧ b) we have a ∧ b = 0 and can use the pullback
4.2.1, and consequently the pushout (4.3.1). The equality

f1|(c(a) ∩ c(b)) = f2|(c(a) ∩ c(b))

reads, in the notation from 4.3, f1j
′
2 = f2j

′
1 and hence we have a localic map

f : L → M such that fji = fi, that is, f |c(a) = f1 and f |c(b) = f2. The
uniqueness follows also from the pushout (or, alternatively, by f preserving
meets, as the uniqueness in 3.6).

5 Maps f : L→M and preimages

5.1 In this section we will, first, discuss preserving closed and open sublo-
cales by preimages. That is, we have frames L and M and ask what map-
pings f : L→M are characterized by the requirement(s) that

f−1[S] is closed for closed S respectively f−1[S] is open for open S.
(5.1.1)

For a localic map f we have

f−1[c(a)] = f−1[c(a)] = c(f∗(a)) and f−1[o(a)] = o(f∗(a).
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The question is what maps we obtain if one or both of the conditions (5.1.1)
are assumed.

Proposition 5.2. Preimages f−1[c(a)] of closed sublocales are closed if and
only if f has a left adjoint (that is, if and only if f preserves all meets).

Proof. Let f∗ exist. Then for any a ∈M ,

f−1[c(a)] = {x ∈ L | a ≤ f(x)} = {x ∈ L | f∗(a) ≤ x} = c(f∗(a)).

On the other hand, if for each a there is a b = φ(a) such that f−1[c(a)] =
c(φ(a)) then a ≤ f(x) if and only if φ(a) ≤ x.

Note 5.2.1. Here we have a characteristics of meet-preserving maps among
all the f : L → M akin to that of continuous maps in classical topol-
ogy. Hence, the reader may expect at least a proof of assembling a meet-
preserving map

f : L = ↑a1 ∨ · · · ∨ ↑an →M

from meet-preserving fi : ↑ai → M following precisely the trivial reasoning
about assembling a continuous map. But even here the translation is not
quite straightforward (

∨
Si is not

⋃
Si), and a value of such a result is

meagre: meet-preserving maps do not have much geometric sense, taking
the ↑a for something like closed subobjects is only a weak analogy, there
are no reasonable opens complementing them, etc.

5.3 The localic and set-preimages of closed sublocales under localic maps
coincide. This is, however, not the case for open sublocales. We will discuss
preserving open sublocales by set-preimages for general f : L → M (we
have to: f−1[S] makes sense for localic maps only). Thus we have to keep in
mind that the condition f−1[o(a)] = o(b) is not automatic even for a localic
f (while f−1[o(a)] = o(b) is).

The coincidence of f−1[o(a)] and f−1[o(a)] will be discussed in the second
part of this section.

Observation 5.4. Let L,M be frames and let f : L → M be a mapping.
Then all the f−1[S] with open S are open if and only if there is a mapping
φ : M → L such that

φ(x)→y = y if and only if x→f(y) = f(y). (5.4.1)
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(Indeed, (5.4.1) is just a reformulation of o(φ(x)) = f−1[o(x)].)

Remarks 5.4.1. (1) Note that even if f is a right adjoint, such φ may exist
without coinciding with the f∗. Consider the following trivial example:

Take f = const1, the right adjoint of which is f∗ = const0. Now for
φ = const1 6= f∗ one has always φ(x)→y = 1→y = y and also x→f(y) =
x→1 = 1.

(2) For each localic map one has f(f∗(x)→ y) = x→ f(y) (recall 2.2.1).
Thus, for φ = f∗ (and f localic) the implication “⇒” in (5.4.1) is automatic.

5.5 The linear case. The situation is simpler in the case of linearly
ordered frames L, M . We have

Proposition. Let L,M be linearly ordered frames and f : L→M a map-
ping. Then the following statements are equivalent.

(1) f has a left adjoint f∗ such that f∗(1) = 1.

(2) f is a localic map.

(3) f−1[S] is closed for each closed S and satisfies (5.4.1) with φ = f∗ (and
hence in particular f−1[S] is open for each open S).

Proof. (1)≡(2) is trivial, since x∧ y = min{x, y} is preserved by any mono-
tone map.

(2)⇒(3): In view of 5.1.2 it suffices to prove the statement about (5.4.1).
In a linearly ordered frame we have x→ y = 1 if x ≤ y and x→ y = y
otherwise. Furthermore, if f∗ is a frame homomorphism, f(x) = 1 implies
x = 1. Thus we have for y = 1, both f∗(x)→ y = y and x→ f(y) = f(y)
for any x, and for y 6= 1, f∗(x)→y = y if and only if f∗(x) � y if and only
if x � f(y) if and only if x→f(y) = f(y).

(3)⇒(1): By 5.1.2 f is a right adjoint. Now to prove that f∗(1) = 1 we have
to show that f(y) = 1 implies y = 1: if f(y) = 1 we have x→ f(y) = f(y)
and hence f∗(x)→ y = y and also x ≤ f(y), so that f∗(x) ≤ y and hence
y = f∗(x)→y = 1.
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5.6 Let f : L→M be a localic map. We have

Proposition. f−1[o(a)] is a sublocale for each a ∈M if and only if

(a→f(y) = f(y), f∗(a) ≤ x→y) ⇒ x→y = 1 (that is, x ≤ y).

Proof. Evidently f−1[o(a)] is a sublocale of L if and only if

∀x, y ∈ L, (a→f(y) = f(y) ⇒ a→f(x→y)).

But a→f(x→y) =
∨{w | w ∧ a ≤ f(x→y)} and therefore a→f(x→y) =

f(x→y) if and only if

w ∧ a ≤ f(x→y) ⇒ w ≤ f(x→y).

This formula is obviously equivalent to

x ∧ f∗(w) ∧ f∗(a) ≤ y ⇒ x ∧ f∗(w) ≤ y

and this, in turn, to

x ∧ f∗(a) ≤ y ⇒ x ≤ y

(by setting in particular w = 1).

5.7 One extreme case of the behavior of the f : L → M with respect to
the preimages of open sublocales is the case of linear L and general M . Since
in L, x→y = 1 or y, f−1[o(a)] which is always a meet-set is automatically a
sublocale. In fact, an L such that for all f : L→M , f−1[o(a)] is a sublocale
has typically only trivial pseudocomplements and hence “is not far from
being linear” (an element x with 0 < x∗ < 1 and a localic map f : L → M
with linear M � {0, 1} and f(x) = 0 would contradict 5.6: set a = f(x)).

5.8 We know, however, more about the other extreme case, that of a
Boolean M .

Theorem. f−1[o(a)] is a sublocale for each f : L → M and a ∈ M if and
only if M is Boolean.
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Proof. “⇐” follows from 5.6, but also directly: a→ x = a∗ ∨ x = x if and
only if x ≥ a∗; hence f−1[o(a)] = f−1[c(a∗)] which is a sublocale.

“⇒”: Let the statement on the f hold. Take L = S(M)op and f : L → M
the right adjoint to the frame embedding h = (x 7→ c(x)) : M → L. Thus
in particular f(c(x)) = x.

Now for a fixed y ∈M consider a = y ∨ y∗ so that in particular a→0 =
a∗ = 0 and 0 ∈ o(a). We have f(0M ) = 0 and hence 0M ∈ f−1[o(a)]. Since
f−1[o(a)] is a sublocale, each complemented element of L, in particular each
c(x), is in f−1[o(a)]. Thus,

a→x = a→f(c(x)) = x

for each x, and 1 = a→a = a.

Remark 5.9. Examples of localic maps with (in our notation)

f−1[S] = O 6= f−1[S]

can be found in [7]:

(a) In Example 4.2 we find a localic surjection f : L → Q such that for
any nonzero pointless sublocale S of Q, its localic preimage f−1[S] is zero.
Of course, since f is a surjection, the set-theoretical preimage f−1[S] must
be nonzero.

(b) Example 4.10 yields another localic surjection f : L→ Q that satis-
fies the identity

f−1[S] = f−1[X r (X r S)]

for every sublocale S of Q for which f−1[S] is closed. Therefore, it suffices
to take such an S for which X r (X r S) (the double supplement of S)
differs from S: their set-theoretical preimages will be certainly different.
Furthermore, Proposition 4.9 in [7] shows that the same happens with any
surjection f : L→M which is a regular epimorphism.
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