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Abstract. This paper is a chronological survey, with no proofs, of a direc-
tion in categorical algebra, which is based on categorical Galois theory and
involves generalized central extensions, commutators, and internal groupoids
in Barr exact Mal’tsev and more general categories. Galois theory proposes
a notion of central extension, and motivates the study of internal groupoids,
which is then used as an additional motivation for developing commutator
theory. On the other hand, commutator theory suggests: (a) another notion
of central extension that turns out to be equivalent to the Galois-theoretic one
under surprisingly mild additional conditions; (b) a way to describe internal
groupoids in ‘nice’ categories. This is essentially a 20 year story (with only
a couple of new observations), from introducing categorical Galois theory in
1984 by the author, to obtaining and publishing final forms of results (a) and
(b) in 2004 by M. Gran and by D. Bourn and M. Gran, respectively.
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Introduction

On the last page of [40], S. Eilenberg and S. Mac Lane say: “An inspec-
tion of the concept of a functor and of a natural equivalence shows that
they may be applied not only to groups and their homomorphisms, but
also to...”, and then “...These and similar applications can be embodied in
a suitable axiomatic theory. The resulting much wider concept of natu-
rality, as an equivalence between functors, will be studied in a subsequent
paper”. The subsequent paper [41], which initiated a fundamental new step
in the development of the whole structure of mathematics, was published
in 1945, although it was “Presented to the Society”, whatever that means,
in September 8, 1942 (even earlier than [40] was “communicated”).

Hence, accidentally or not, the category of groups was the first category
to appear. On the other hand, the appearance of the category of groups
at the foundation of categorical algebra in [122] and [123] was certainly not
an accident, but a clear intention of the author to develop a categorical
approach to group theory, with a particular emphasis at pairs of concepts
dual to each other. This intention is much less visible in [124], where the title
Categorical algebra expresses what is today called Category theory – and not
Categorical approach to algebra, which is the way we use this expression in
the present paper. And using it that way we can say:

Mac Lane’s paper [123] created the first great wave in the development
of categorical algebra, whose ‘main stream’ soon after that becomes the
theory of abelian categories, although the non-abelian part was also quite
successful.

Let us add here a general remark about the early history of category
theory. The above-mentioned first wave was followed by the domination
of topos theory with impressive motivations from geometry and logic, and
by creation of new ideas and directions in general category theory, from
those described in [125] to categorical logic and to categorical topology
(and many others, at the time and later), which itself created various gaps
between abstract and concrete, and between thinking categorically and the
set-theory-based mathematics. Moreover, this created a kind of conflict be-
tween those who followed the development of category theory and those who
never used categorical notions and results beyond the very first ones and
what was introduced by ‘non-category-theorists’ specifically for the purposes
of their narrow areas. The term exact category provides a typical example:
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for category-theorists it usually means Barr exact category, making all va-
rieties of universal algebras exact, while nobody else would agree that, say,
semigroups form an exact category!

Attributing, only very vaguely of course, the first wave of categorical
algebra to 1950-1985, and the formation of what was described in the general
remark above to 1960-1990, I would say that the second wave of categorical
algebra begins soon after 1990 with extensive use of several concepts and
‘theories’ that would not be associated with this part of category theory
before. The list of such new ingredients, put in essentially-chronological
order, includes (regular and) Barr exact categories [3], internal categorical
structures, Smith commutator theory [141], categorical Galois theory in the
author’s sense, and Bourn protomodular categories [6], among many others.
I would also say, in spite of being one of the authors of [106], that that paper
made an important link between the two waves, often referred to simply as
Old = New. At this stage, however, category theory expands enormously,
and what we call categorical algebra here becomes only a small part of it.

The present paper, which will hopefully become a part of a much greater
project, is devoted to one direction of the second-wave categorical algebra,
which is based on categorical Galois theory and involves central extensions,
commutators, and internal groupoids. As the Abstract says, Galois theory
proposes a notion of central extension, and motivates the study of internal
groupoids, which is then used as an additional motivation for developing
commutator theory. On the other hand, commutator theory suggests: (a)
another notion of central extension that turns out to be equivalent to the
Galois-theoretic one under surprisingly mild additional conditions; (b) a
way to describe internal groupoids in ‘nice’ categories. This is essentially
a 20 year story (except Example 12.5), from introducing categorical Galois
theory in 1984 by the author [88], to obtaining and publishing final forms
of results (a) and (b) in 2004 by M. Gran and by D. Bourn [14] and M.
Gran [72], respectively.

The paper has 12 sections:

1. Grothendieck’s and Magid’s Galois theories

2. Categorical Galois theory

3. Central extensions of groups
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4. Generalized central extensions

5. Internal categories in Mal’tsev varieties

6. Mal’tsev categories and commutators

7. Congruence modularity and Kiss difference term

8. Internal groupoids in congruence modular varieties

9. From pregroupoids to pseudogroupoids

10. Explicit presentations of commutators via limits and colimits in Mal’tsev
categories

11. Back to central extensions

12. Back to internal groupoids

(apart from this Introduction), organized as follows:

Section 1 recalls the passage from the fundamental theorem of classical Ga-
lois theory (Theorem 1.1, formulated via Galois connections) to its
Grothendieck’s form (Theorem 1.3), and mentions its generalization due
to A. R. Magid [126]. Section 2 is a simplified short survey of categorical
Galois theory. Section 3 shows that applying Galois theory to the abelian-
ization reflection of groups into abelian groups makes central extensions of
groups covering morphisms in the sense of Galois theory. There are two
conclusions: (a) categorical Galois theory has important examples far away
from the contexts considered by A. Grothendieck; (b) there is a natural
way to generalize central extensions, from groups to, say, other algebraic
structures. Moreover, as shown in Section 4 (Theorem 4.1), in the case
of groups with additional algebraic structure (only requiring pointedness)
such generalized central extensions will be the same as those introduced
by A. Fröhlich’s school. Section 5 moves from varieties of groups with
additional structure to arbitrary varieties of universal algebras admitting
a Mal’tsev term (see (5.1); however its only purpose is to describe inter-
nal categories/groupoids in such varieties, postponing central extensions to
Section 11. Section 6 recalls the passage from the results presented in Sec-
tion 5 to their categorical counterparts, and in fact shows how this passage
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leads to purely-categorical motivation for introducing a general notion of
commutator. The next algebraic generalization, from Mal’tsev (=congru-
ence permutable) to congruence modular is considered in Section 8 after
recalling the notion of Kiss difference term in Section 7. While a categori-
cal approach to commutators in Mal’tsev categories can be based on Kock
pregroupoids (mentioned already in Section 6), the congruence modular con-
text requires replacing them with so-called pseudogroupoids, as explained in
Section 9. Section 10 gives explicit presentations of the commutator of two
internal equivalence relations in a Barr exact Mal’tsev category with finite
colimits (actually each of the two uses a slightly more general context) due
to M. C. Pedicchio and to D. Bourn. Section 11 compares Galois-theoretic
and commutator-theoretic definition of central extensions, which we refer to
as categorically central extensions and algebraically central extensions, re-
spectively. The most general level for this comparison is the level of a factor
permutable category in the sense of M. Gran. Section 12 describes internal
groupoids in regular categories satisfying the shifting property in the sense
of D. Bourn and M. Gran. It also contains a new example showing that
the shifting property does not imply congruence modularity in the case of
(varieties of) infinitary algebras.

The greater project (if it will be ever completed, possibly with co-
authors, and maybe even without the present author) should include papers
devoted to:

• Aspects of categorical algebra developed by D. Bourn, partly with co-
authors, which is based on what Bourn calls the fibration of points
and his notion of protomodularity.

• Further (in comparison with this paper) results on commutators and
central extensions, higher central extensions, and (co)homology in
semi-abelian and more general categories.

• Categorical universal algebra, including a systematic study of categor-
ical counterparts of classes of varieties of universal algebras determined
by the so-called Mal’tsev conditions.

• The full story around semi-abelian categories in the sense of [106] and
the above-mentioned “Old = New”.
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• Internal categorical structures at various levels of generality (including
those considered in this paper, but with many more results, and with
a special attention to the semi-abelian context, where internal crossed
modules [97] can be used.

• Radical and torsion theories in semi-abelian and more general cate-
gories.

• Applications to internal and topological algebras, to monoids, to quan-
dles, and to topos theory.

These papers would probably refer to the work of D. Arias, F. Borceux, D.
Bourn, R. Brown, A. Carboni, J. M. Casas, A. S. Cigoli, M. M. Clementino,
T. Datuashvili, D. Dikranjan, G. Donadze, M. Duckerts, V. Even, T. Ev-
eraert, J. Goedecke, M. Gran, M. Grandis, J. A. R. Gray, M. Hartl, H.
Inassaridze, N. Inassaridze, E. Inyangala, Z. Janelidze, T. Janelidze-Gray,
M. Jibladze, P. T. Johnstone, G. M. Kelly, E. Khmaladze, R. Kieboom, M.
Ladra González, S. Lack, J. Lambek, B. Loiseau, S. Mantovani, N. Martins-
Ferreira, L. Márki, G. Metere, A. Montoli, M. C. Pedicchio, A. Patchkoria,
G. Peschke, T. Pirashvili, T. Porter, D. Rodelo, A. H. Roque, J. Rosický,
V. Rossi, M. Sobral, L. Sousa, W. Tholen, A. Ursini, T. Van der Linden,
E. M. Vitale... and to many old authors, starting from S. Mac Lane. This
list is certainly incomplete, and I apologize to those whose names are not
mentioned.

Remark 0.1.
(a) Since our reference list is so large, I would like to list here the authors
whose contributions were particularly important for developments described
in this paper. Ordered alphabetically they are:

• D. Bourn, who found a new categorical construction of the
Smith–Pedicchio commutator described in Section 10, and was first
to consider it in regular Mal’tsev categories instead of Barr exact
Mal’tsev categories. In addition to that, in his joint work with M.
Gran, he extended the description of internal groupoids known for
Barr exact Mal’tsev categories and for congruence modular varieties
to the context of regular categories satisfying the shifting property (see
Theorem 12.6).
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• A. Carboni, whose joint work with M. C. Pedicchio and N. Pirovano is
briefly described at the beginning of Section 6. His interest in Mal’tsev
categories played an important stimulating role.

• M. Gran, who made a considerable progress in understanding internal
categorical structures and central extensions, not only in the categor-
ical context, but also in the universal-algebraic context (see Remark
8.2, Theorem 11.3, Theorem 11.6, and the above-mentioned Theo-
rem 12.6).

• H. P. Gumm, who introduced factor permutable varieties of universal
algebras and the algebraic shifting property, and showed that every
congruence modular variety is factor permutable and that a variety
has the shifting property if and only if it is congruence modular. His
results are not used explicitly in this paper, but they inspired intro-
ducing the categorical counterparts of the factor permutability and the
shifting property (see Remark 11.5 and Remark 12.4, respectively).

• J. Hagemann and C. Hermann, whose generalization of Smith’s com-
mutator theory from Mal’tsev varieties to congruence modular vari-
eties was also certainly a good source of inspiration (together with
further results of P. Gumm, E. Kiss, and R. Freese and R. McKenzie;
see Remark 7.1).

• G. M. Kelly, who convinced me to replace universal-algebraic context
in the study central extensions to the context of Barr exact cate-
gories, and made a great contribution in this study. He also greatly
contributed in the study of Mal’tsev and Goursat categories.

• J. Lambek, whose interest in Mal’tsev operations and their role in
homological algebra brought attention to what is now called Mal’tsev
and Goursat categories.

• M. C. Pedicchio, who played the main role in extending the Smith com-
mutator theory to categorical context; her name is mentioned many
times in this paper.

• J. D. H. Smith, who is the father of the abstract theory of commuta-
tors. He introduced them for Mal’tsev varieties, which seemed to be
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a natural next step of generalization after the groups with multiple
operators in the sense of P. J. Higgins. However, his approach was
a fundamental new step of abstraction opening big doors for further
generalizations.

(b) If the list above were to include mathematicians of previous generations,
A. Mal’tsev would certainly be among them. Note that his surname appears
in references also as Malcev, Mal’cev, and Maltsev; the correct form, as ac-
cepted today, is Mal’tsev, which corresponds to Russian Мальцев, with
sound “ts” corresponding to Russian “ц” .

(c) A morphism f : A → B in a category with pullbacks determines an
internal equivalence relation A ×B A ⇒ A on A, the kernel pair of f . Un-
fortunately no widely accepted symbol was ever introduced for this basic
concept; for instance D. Bourn often writes R[f ] (which I strongly disagree
with), while some papers of various authors that do not need to use ordinary
kernels (including [27] and [26]) write Ker(f) (or Kerf or kerf). I shall
write Eq(f), as in [98] and elsewhere.

Apart from standard terminology of category theory (as, say, in Mac
Lane’s [125]) and of general algebra, this paper freely uses various more
recent notions of categorical algebra, most of which can be found e.g. in the
book [4] of F. Borceux and D. Bourn. Note also that:

• Defining internal structures in a category we follow [107] rather than
[4].

• Internal Kock pregroupoids, called just internal pregroupoids (although
they have nothing to do with pregroupoids in the sense used in The-
orem 2.11), are defined e.g. in [133] (originally in [119]).

• Goursat categories are defined and studied in detail in [26].

• A few more special algebraic notions are occasionally used in the first
four sections – but ignoring them will not prevent the reader from
understanding the rest of the paper.
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1 Grothendieck’s and Magid’s Galois theories

Given a group G and a G-set E, there is a standard Galois connection

P (E) P (G)
S 7→ S∗ = {g ∈ G | e ∈ S ⇒ ge = e}

{e ∈ E | g ∈ H ⇒ ge = e} = H∗ ←[ H
(1.1)

between the power sets of E and of G, which, as every Galois connection,
induces a bijection

{S ∈ P (E) | S = (S∗)∗} ≈ {H ∈ P (G) | H = (H∗)∗} (1.2)

between the sets of Galois closed subsets of E and of G. Describing these
closed subsets, one immediately observes that:

• if H is a closed subset of G, then it is a subgroup of G;

• if E is equipped with any kind of algebraic structure, G acts on E via
automorphisms of that structure, and S is a Galois closed subset of
E, then S is a subalgebra of E.

In addition to these observations, the fundamental theorem of classical Ga-
lois theory says:

Theorem 1.1. If F ⊆ E is a finite Galois field extension and G is its
Galois group, then, for the Galois connection above, we have:

(a) a subset H of G is Galois closed if and only if it is a subgroup of G;

(b) a subset S of E is Galois closed if and only if it is a subfield of E
containing F .

In fact, according to many textbooks, the fundamental theorem of clas-
sical Galois theory should also include information about normal subex-
tensions and lifting of homomorphisms between subextensions of the given
Galois extensions. The resulting ‘one page theorem’ is actually a simple
corollary of the following short one:

Theorem 1.2. If E ⊇ F is a finite Galois field extension and G is its Galois
group, then the opposite category of subextensions of E ⊇ F is equivalent to
the category of transitive G-sets.
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The Grothendieck form of the fundamental theorem of classical Galois
theory is even more elegant:

Theorem 1.3. If E ⊇ F is a finite Galois field extension and G is its
Galois group, then the opposite category of F -algebras A with E⊗F A ≈ En
for some natural n is equivalent to the category of finite G-sets.

In order to deduce Theorem 1.2 from Theorem 1.3 one just needs to ob-
serve that the isomorphism E⊗FA ≈ En holds if and only if A is isomorphic
to a finite product of subextensions of F ⊆ E (considered as F -algebras).
The algebras of that kind are said to be split over E ⊇ F , and their opposite
category is denoted by Spl(E ⊇ F ) (or Spl(E/F )).

Theorem 1.3 has several known generalizations and counterparts, by A.
Grothendieck himself and by other authors. For instance in the case of
commutative rings, its most general version is due to A. R. Magid [126]. In
fact it is more explicitly formulated in [127] as Theorem 6.1; see also [89]
and [25]. Instead of considering the details let us only mention that the
counterparts of separable algebras of the Galois theory of fields are:

• Étale coverings in the Grothendieck’s Galois theory of schemes [82].

• Ordinary covering maps of ‘good’ topological spaces in the classical
theory of covering spaces that goes back to H. Poincaré.

• Componentially locally strongly separable algebras in Magid’s Galois
theory of commutative rings. Recall that: (a) for a commutative ring
R (with 1), a commutativeR-algebraA (with 1) is said to be separable,
if A ⊗R A is a projective A-module; (b) a separable R-algebra A is
said to be strongly separable, if it is also a projective R-module; (c)
an R-algebra A is said to be locally strongly separable, if every finite
subset of it is contained in a strongly separable R-subalgebra; (d) an
R-algebra A is said to be componentially locally strongly separable,
if, for every maximal ideal x of the Boolean algebra of idempotents of
R, the Boolean localization Ax = A⊗R (R/Rx) = A⊗RRx is a locally
strongly separable Rx-algebra.
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2 Categorical Galois theory

As it was shown in [88], the main theorem of A. R. Magid’s separable
Galois theory of commutative rings [126] can be obtained a special case of
an abstract theorem in a purely categorical context, far more general than
what is usually considered as the context of Grothendieck’s Galois theory.
The resulting categorical Galois theory, whose four slightly different versions
were first presented in [88], [90], [92], and [95], respectively, can be briefly
described as follows.

Definition 2.1. (Definition 1.4 of [98]) A Galois structure on a category C
with finite limits consists of an adjunction

(I,H, η, ε) : C→ X. (2.1)

together and two classes F and Φ of morphisms in C and X respectively,
whose elements are called fibrations; the following conditions on fibrations
are required:

(a) all pullbacks along fibrations exist, and the classes of fibrations are
pullback stable;

(b) the classes of fibrations are closed under composition and contain all
isomorphisms;

(c) the functors I and H preserve fibrations.

Such a Galois structure is said to be finitely complete, absolute, admissible,
or closed, if it satisfies the following conditions respectively:

(d) the categories C and X have all finite limits;

(e) all morphisms in C and in X are fibrations;

(f) for every object C in C and every fibration ϕ : X → I(C) in X, the
composite of canonical morphisms I(C×HI(C)H(X))→ IH(X)→ X
is an isomorphism;

(g) for every object A in C, the morphism ηA : A→ HI(A) is a fibration,
and for every object X ∈ X, the morphism εX : IH(X) → X is an
isomorphism.
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Let us repeat the examples listed in [98] in the same order:

Example 2.2. Let A be a category having a terminal object 1, and C =
Fam(A) the category of families A = (Ai)i∈I(A) of objects in A, where a
morphism f : A → B in Fam(A) is a map I(f) : I(A) → I(B) together
with a family (fi : Ai → BI(f)(i))i∈I(A) of morphisms in A. This defines
Fam(A) and a functor I : Fam(A) → Sets simultaneously. The right
adjoint H of I sends sets to families of terminal objects indexed by them.
Taking F and Φ the classes of all morphisms in C and X, respectively, we
obtain a Galois structure that is absolute, admissible, and closed.

Example 2.3. The category C of connected locally connected topological
spaces has an admissible Galois structure defined as in Example 2.2 but
with F being the class of local homeomorphisms.

Example 2.4. Any adjunction (I,H, η, ε) : C → X becomes a Galois
structure if we take F and Φ to be the classes of isomorphisms in C and X
respectively. It is always admissible, and closed if and only if it is a category
equivalence.

Example 2.5. Any pair (C, F ) consisting of a category C and a class F of
morphisms in C satisfying the conditions 2.1(a) and 2.1(b), determine an
identity Galois structure; it consists of the identity adjunction (1, 1, 1, 1) :
C→ C with F = Φ, and it is always admissible and closed.

Example 2.6. There is an obvious finite version of Example 2.2. It uses
finite families of objects in A instead of arbitrary ones, and Finite Sets
instead of Sets. In particular C could be the opposite category of finite-
dimensional commutative algebras (with 1) over a field.

Example 2.7. There is also a profinite version of Example 2.2, with X =
Profinite Spaces = Stone Spaces. It is in fact described in [23]. Let us
restrict ourselves here to the following two special cases:

(a) C is the opposite category of commutative rings (with 1). In this
case the functors I and H have the following description: I(A) is the
Boolean spectrum (=Pierce spectrum) of the ring A, that is, it is de-
fined either as the Stone space (=the space of maximal ideals) of the
Boolean algebra of idempotents in A, or as the space of connected
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components of the Zariski spectrum of A; H(X) is the ring of contin-
uous maps from the space X to the ring of integers equipped with the
discrete topology.

(b) C is the category of compact Hausdorff spaces, I carries spaces to the
spaces of their connected components, and H is the inclusion functor.

In both cases all the additional conditions of Definition 2.1 hold. In case
(a) the admissibility was used in [88] (see also [90]) in order to show that
the Galois theory of [126] extends to general categories. Case (b) was used
in [24] to give a categorical description of the monotone-light factorization
of continuous maps of compact spaces.

Example 2.8. Let C be a variety of universal algebras, X a subvariety in
C, (I,H, η, ε) : C → X the reflection-inclusion adjunction, and F and Φ
the classes of regular epimorphisms (=surjections) in C and X respectively.
This Galois structure is finitely complete and closed. Moreover, as shown
in [101] (in fact in a more general context, recalled here later: see Subsection
11.1), it is admissible whenever C is congruence modular, that is, whenever
the lattices of congruences of its objects are modular. As explained in
Section 4, this Galois structure and its categorical counterpart are needed
to develop a generalized theory of central extensions.

Example 2.9. Let C be the category of simplicial sets, X the category of
(small) groupoids, (I,H, η, ε) : C→ X the fundamental groupoid-nerve ad-
junction, and F and Φ the classes of Kan fibrations in C and X respectively.
The admissibility of this Galois structure is used in [18], and the same can
be done for many other Quillen homotopy structures.

A number of other examples and specific further properties and results
that hold here and there can be found, explicitly or not, in [1, 2, 5, 10,
11, 15–20, 22–25, 29–31, 33–39, 42–60, 65, 68–81, 86, 90–96, 99–105, 111,
113, 115, 116, 130, 135–140, 143-149]; further generalizations are considered
in [109], [110], and [112].

The main part of the following definition, namely 2.10(b), is a special
case of a definition from [95], while its absolute version with (E, p) being
normal is already in [88]:

Definition 2.10. Given an admissible Galois structure as in Definition 2.1,
an object (A, f) of F (B), that is, a fibration f : A→ B in C, is said to be:
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(a) a trivial covering of B, if the diagram

A HI(A)

B HI(B)

f

ηA

ηB

HI(f)

(2.2)

is a pullback;

(b) split over (E, p) ∈ F (B), if its pullback along p is a trivial covering of
E;

(c) a monadic extension of B, if the pullback functor f∗ : F (B) → F (A)
is monadic;

(d) a covering of B, if there exists a monadic extension (E, p) of B such
that (A, f) is split over (E, p); the full subcategory of F (B) with
objects all such (A, f) will be denoted by Spl(E, p);

(e) a normal extension of B, if it satisfies the condition of (d) with p = f .

By analogy with Theorem 1.3, which is its very special case, (a simpli-
fied form of) the fundamental theorem of categorical Galois theory can be
formulated as:

Theorem 2.11. [95] Given an admissible Galois structure as above and a
monadic extension (E, p) of B, there is a canonical category equivalence

Spl(E, p) ∼ XGal(E,p) ∩ Φ, (2.3)

in which:

(a) Gal(E, p) is the I-image of the kernel pair of p considered as an in-
ternal precategory (or a pregroupoid) in X;
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(b) XGal(E,p) ∩ Φ is the category of internal actions F = (F0, πF , ξF ) of
Gal(E, p) in X with πF in Φ; such an internal action can be displayed
in the form of commutative diagrams

I(E ×B E)×I(E) F0 F0

I(E ×B E) I(E)

π1

ξF

I(π2)

πF

(2.4)

I(E ×B E ×B E)×I(E) F0 I(E ×B E)×I(E) I(E ×B E)×I(E) F0 I(E ×B E)×I(E) F0 F0

I(E ×B E)×I(E) F0 F0

I(〈π1, π3〉)× 1

Θ 1× ξ 〈I(〈1, 1〉)πF , 1〉

ξF

ξF

(2.5)
where πi(i = 1, 2, 3) denote various suitable pullback projections, Θ =
〈I(〈π1, π2〉), I(〈π2, π3〉)〉 × 1, and the existence of the displayed pull-
backs follows from the fact that πF and p are fibrations.

Applying this theorem to various examples of Galois structures we obtain
many ‘concrete’ Galois theories, as explained in various above-mentioned
papers. Recalling all of them would be a long story only one very special
part/direction of which is relevant for the purposes of the present paper.
That special direction is what the next two sections are devoted to.

3 Central extensions of groups

In order to present Grothendieck’s Galois theory as a special case of the
categorical one it suffices to consider a Galois structure Γ satisfying all ad-
ditional conditions. That is, we can assume Γ to be finitely complete, abso-
lute, admissible, and closed, which reduces it to a semi-left-exact reflection
I : C→ X in the sense of C. Cassidy, M. Hébert, and G. M. Kelly [32] (see
also [24] and [102]). Moreover, in the Grothendieck’s case, the category X
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involved is ‘almost’ the category of sets, and this makes the Galois groups
Gal(E, p) ‘almost’ coincide with the corresponding automorphism groups
Aut(E, p).

Therefore, back in 1984, to ask whether there exists an interesting non-
Grothendieck Galois theory was to ask whether there exists a reflection
I : C → X with an interesting Galois theory and X being very dif-
ferent from the category of sets, which will make Gal(E, p) very differ-
ent from Aut(E, p). The readers might agree with me that the reflection
I : Groups → AbGroups from the category of groups to the category of
abelian groups would be ‘the most classical’ first example to try. Note that
three areas of abstract algebra have their own descriptions of this reflection:

• Universal algebra sees it as the abelianization functor: for a group C,
I(C) = C/ ∼, where ∼ is the smallest congruence on C making the
corresponding quotient group abelian.

• Homological algebra sees it as the first homology: I(C) = H1(C,Z).

• Group theory sees it via the commutators: I(C) = C/[C,C].

And, examining Galois theory of this reflection we obtain:

Theorem 3.1. (Essentially from [90]) For the reflection I : Groups →
AbGroups above, we have:

(a) a group C is admissible, that is, for every morphism ϕ : X → I(C)
in AbGroups, the composite I(C ×HI(C) H(X)) → IH(X) → X of
condition 2.1(f) (or, equivalently, the morphism
I(C×HI(C)H(X))→ IH(X)) is an isomorphism, if and only if C has
a perfect commutator, that is, if and only if [[C,C], [C,C]] = [C,C];

(b) (E, p) is a monadic extension of a group B if and only if p : E → B
is surjective;

(c) if p : E → B is a surjective homomorphism of perfect groups, then
(E, p) is a normal extension of B if and only if it is central extension
of B (that is, the kernel of p is contained in the centre of E; using the
standard group-theoretic symbols, Ker(p) ⊆ Z(E));
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(d) if (E, p) satisfies the equivalent conditions of (c), then Gal(E, p) ≈
Ker(p), where Ker(p) is considered as an internal group in AbGroups;
in particular, if (E, p) is a universal central extension of B, then
Gal(E, p) ≈ H2(B,Z).

Although even more is proved in [90], having admissibility only in the
case of a perfect commutator was ‘bad’... Fortunately that problem was
solved in [92] simply by using the Galois structure whose adjunction is
same reflection and whose fibrations are (not all but just) the surjective
group homomorphisms:

Theorem 3.2. (Essentially from [92]) With respect to the Galois structure
whose underlying adjunction is the reflection I : Groups → AbGroups
above and whose fibrations are all surjective homomorphisms, of groups and
of abelian groups respectively, we have:

(a) this Galois structure is complete, admissible, and closed;

(b) every fibration in it (that is, in the category of groups) is a monadic
extension;

(c) the following conditions on (A, f) ∈ F (B) (in the notation of 2.10),
are equivalent:

(c1) (A, f) is a covering of B;

(c2) (A, f) is a normal extension of B;

(c3) (A, f) is a central extension of B (that is, Ker(p) ⊆ Z(E)).

(d) if (A, f) satisfies the equivalent conditions of (c), and A is perfect,
then Gal(A, f) ≈ Ker(f).

4 Generalized central extensions

As the results recalled in the previous section suggested, categorical Galois
theory can also be considered as a generalized theory of central extensions.
Moreover, it was a nice surprise for me that this generalization contains the
theory of generalized central extensions due to A. Fröhlich, A. S.-T. Lue,
and J. Furtado-Coelho as a special case (amongst several of their papers
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that include this topic we refer to [64], [120], [121], [66], and [67]). Let us
recall:

• Let C be a variety of Ω-groups (=groups with multiple operators in the
sense of [87]), X a subvariety of C, (I,H, η, ε) : C→ X the canonical
reflection, and R : C → C the functor defined by R(C) = Ker(ηC).
For a surjective homomorphism f : A→ B, let us call (A, f) a Fröhlich
central extension of B if, for every pair of morphisms g, h : C → A in
C with fg = fh, we have R(g) = R(h).

• When C is a fixed category of associative algebras, “Fröhlich cen-
tral” is the same “X-central” in [64], with the formulation above given
in [120] (different symbols are used), with a reference to [64]. The con-
text of arbitrary Ω-groups is explicitly used only by Furtado-Coelho,
although both Fröhlich and Lue also mention that it could be used.

• The fact that Theorem 3.2 extends to Fröhlich central extensions is
hidden in a brief remark in [92], and a special case of it is already
in [90] (it was known to me at least in 1986, when the Russian version
of [90] was submitted for publication). However, a clear formulation
with a full proof is only presented later as Theorem 5.2 in [101], a
part of which repeated below as Theorem 4.1, in a style similar to
Theorem 3.2.

• The theory of Fröhlich central extensions was originally based on
Fröhlich’s approach to the theory of Baer invariants, which suggests
to consider the theory of Baer invariants from the Galois-theoretic
viewpoint. An important first step in this direction was made by T.
Everaert and T. Van der Linden [57].

Theorem 4.1. (Essentially from [101]) With respect to the Galois structure,
whose underlying adjunction is the reflection above from a variety C of
Ω-groups to a subvariety X of it, and whose fibrations are all surjective
homomorphisms in C and in X, we have:

(a) this Galois structure is complete, admissible, and closed;

(b) every fibration in it (that is, in its categories C and X) is a monadic
extension;
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(c) the following conditions on (A, f) ∈ F (B) (in the notation of 2.10),
are equivalent:

(c1) (A, f) is a covering of B;

(c2) (A, f) is a normal extension of B;

(c3) (A, f) is a Fröhlich central extension of B.

(d) if (A, f) satisfies the equivalent conditions of (c), and A has zero image
in X, then Gal(A, f) ≈ Ker(f).

Remark 4.2. Theorem 4.1(c) is a part of Theorem 5.2 in [101], which has
eight equivalent conditions. The equivalence of these eight conditions was
extended to the quasi-pointed Barr exact (Bourn) protomodular categories
by D. Bourn and M. Gran (see Theorem 2.1 in [11]).

5 Internal categories in Mal’tsev varieties

As first observed in [90], Galois groupoids of Fröhlich central extensions
admit a kind of simplified description. Soon after that I have learned about
crossed modules from R. Brown, and about every reflexive homomorphic
relation in a Mal’tsev variety (=congruence permutable variety) being a
congruence from J. Lambek. This suggested to me that the existence of a
Mal’tsev term, that is, a ternary term p with

p(x, y, y) = x = p(y, y, x), (5.1)

in a variety X of universal algebras, should provide a simplified description
of internal categories in X. And indeed, the following definition and two
theorems were introduced/proved in [93]:

Definition 5.1. An internal multiplicative graph G = (G0, G1, d, c, e,m) in
a category X with pullbacks is a diagram

G1 ×G0 G1 G1 G0
m

c

d

e

(5.2)
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in X, in which de = 1G0 = ce,G1 ×G0 G1 = G1 ×(d,c) G1 is the pullback of
d and c, and the diagram

G1 G1 ×G0 G1 G1

G1

〈ec, 1G1〉 〈1G1 , ed〉

m

(5.3)

commutes. In particular, when X is a variety of universal algebras, such
a G is a an internal reflexive graph (G0, G1, d, c, e) in C equipped with a
multiplication homomorphism m : G1×G0G1 → G1 written as m(f, g) = fg,
and satisfying

f = f1y and 1yg = g (5.4)

whenever d(f) = y = c(g), where 1y = e(y). We shall also write f : y → x
when d(f) = y and c(f) = x.

Theorem 5.2. If G = (G0, G1, d, c, e,m) is an internal multiplicative graph
in a Mal’tsev variety X with Mal’tsev term p, then:

(a) for f and g in G1 with d(f) = y = c(g), we have

p(f, 1y, g) = fg = p(g, 1y, f); (5.5)

(b) G is an internal groupoid in X, that is, d(fg) = d(g), c(fg) = c(f),
f(gh) = (fg)h whenever d(f) = c(g) and d(g) = c(h), and every
f : y → x in G1 is invertible with respect to the multiplication m, with
the inverse given by

f−1 = p(1x, f, 1y) = p(1y, f, 1x). (5.6)

Theorem 5.3. The following conditions on an internal reflexive graph G =
(G0, G1, d, c, e) in a Mal’tsev variety X with Mal’tsev term p are equivalent:

(a) there exists (a unique) m : G1×G0G1 → G1 making (G0, G1, d, c, e,m)
a multiplicative graph in X;
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(b) the map m : G1 ×G0 G1 → G1 defined by the first equation of (5.5) is
a morphism in X;

(c) the map m : G1 ×G0 G1 → G1 defined by the second equation of (5.5)
is a morphism in X.

Remark 5.4. As mentioned in [93], everything we said in this section is
‘Yoneda invariant’. That is, using Yoneda embedding, one can repeat it in
any category of the form ST , where S is a category with finite limits and
T an algebraic theory for which SetsT is a Mal’tsev variety. Note that, in
particular, when S is a naturally Mal’tsev category in the sense of [117],
ST ≈ S canonically for a suitable ‘naturally Mal’tsev’ T , and the important
implications (i)⇒(ii) and (i)⇒(iii) in the main theorem of [117] follow from
the results of [93]. However, although it is an important special case, [93]
does not refer to [117] simply because I have not seen [117] then. Let us
also mention the paper [131] whose context could be used to generalize the
results of [93].

6 Mal’tsev categories and commutators

One of my discussions with A. Carboni in Milan, 1990, was devoted to
Mal’tsev categories. He was insisting that the notion of Mal’tsev category
considered in his paper with M. C. Pedicchio and J. Lambek is the right
categorical counterpart of the notion of Mal’tsev variety, good for gener-
alizing ‘all results’. I asked him then if one can also generalize the results
of [93]. The answer ‘almost yes’ was given in a few months in [28], where the
authors kindly mention that the paper was inspired by [93]. However, these
authors, A. Carboni, M. C. Pedicchio, and N. Pirovano, did much more:

• As far as I know, for the first time Mal’tsev categories were stud-
ied in [28] in full generality, that is, under no colimit assumption.
Saying this, let us recall that the notion of Mal’tsev category has
emerged slowly in several older papers that assumed one or more
of the following conditions: existence of pushouts and/or (some) co-
equalizers, regularity, Barr exactness. The list of relevant papers in-
cludes [128], [129], [61], [62], [27], and [26].
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• While conditions (b) and (c) of Theorem 5.3 could not be copied in the
categorical context, what was done in [28] is even better in a sense.
The known counterpart of (any of) those conditions in the case of
the category of groups is [Ker(d),Ker(c)] = 0, which, translated into
the language of universal algebra via the J. D. H. Smith commutator
theory [141], would say: the congruences on G1 determined by d and
by c centralize each other. And exactly this formulation, with the right
categorical notion of centralization developed, was obtained in [28].

The categorical notion of centralization immediately gives the categori-
cal counterpart of the Smith commutator: for internal equivalence relations
R and S on an object A of a Mal’tsev category, the commutator [R,S]
should be defined as the smallest equivalence relation T on A, such that the
equivalence relations on A/T induced by R and S centralize each other. Af-
ter that one should just analyse what is needed for such induced equivalence
relations and the smallest T to exist. A slightly different approach, more
closely related to what was done in universal algebra before, is used in [132]
and yet another one in [133]; however, as Theorem 3.9 of [132] shows, the
result is the same. I would say, due to the importance of the papers [132]
and [133], the Mal’tsev-categorical version of Smith commutator should now
be called the Smith–Pedicchio commutator.

What I called here “yet another” approach of [133] fully agreed with
my own idea that came out directly from the analysis of the group case,
independently of [141] and of [28]. According to it, one should define the
commutator [R,S] of two equivalence relations R and S on an object A in
a category X as follows:

• Under mild conditions on X, the forgetful functor

U : Cat(X)→ ReflGraph(X) (6.1)

from the category ReflGraph(X) of internal reflexive graphs in X to
the category Cat(X) of internal categories in X has a left adjoint F .
If X is a Mal’tsev category (satisfying those mild conditions), then,
for every G = (G0, G1, d, c, e) in
ReflGraph(X), the canonical morphism (ηG)1 : G1 → UF (G)1 is
a regular epimorphism; for example this is the case when X is any
Mal’tsev variety.
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• If, given A, R, and S as above, we can find G = (G0, G1, d, c, e) in
ReflGraph(X) with A = G1 and R and S being the kernel pairs of d
and c, respectively, then we define the commutator [R,S] as the kernel
pair of (ηG)1. We shall briefly write

[R,S] = Eq((ηG)1). (6.2)

• In order to define [R,S] for arbitrary R and S, one should modify
the structures involved in (6.1) in such a way that a counterpart of a
reflexive graph needed for R and S can always be found. As follows
from the results of [133] such a modification does exist: we should
replace (6.1) with the forgetful functor

U ′ : Pregroupoid(X)→ Span(X) (6.3)

to the category Span(X) of spans in X from the category
Pregroupoid(X) of internal pregroupoids in X in the sense of A. Kock
(see e.g. [119]; as already mentioned, they have nothing to do with
pregroupoids in the sense of categorical Galois theory, mentioned in
Theorem 2.11), also called herdoids. And, whenever X is a Barr exact
Mal’tsev category, we always have

[R,S] = Eq((η′G)1), (6.4)

for G being the span A/R← A→ A/S and (η′G)1 being the canonical
morphism similar to (ηG)1.

All this leads to what I would call “the most practical” purely-algebraic
definition of the Smith commutator, which well agrees with Theorem 5.3
and which was certainly known in universal algebra, although, as far as I
know, was never mentioned explicitly before [104]:

Definition 6.1. (Definition 2.2 in [104]) Let X be a Mal’tsev variety with
a Mal’tsev term p, A an object in X, and R and S congruences on A. The
Smith commutator [R,S] is the smallest congruence T on A such that the
map

{(a, b, c) ∈ A3 | (a, b) ∈ R & (b, c) ∈ S)} → A/T, (6.5)

sending (a, b, c) to the T -class of p(a, b, c) is a homomorphism of algebras.
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7 Congruence modularity and Kiss difference term

When I mentioned the categorical approach to commutator theory to L.
Márki, his reply was that the universal-algebraic commutator theory al-
ready changed its main context from congruence permutable (=Mal’tsev)
to congruence modular, which is far more general. Then, since M. C. Pedic-
chio discovered the relevance of Kock pregroupoids in commutator theory, I
asked her whether the pregroupoid approach can be extended to the congru-
ence modular case. This discussion eventually led to two joint papers: [107],
whose ‘second’ main result is recalled in the next section, and [108], where a
general definition of a commutator (recalled in Section 9) was given. In or-
der to speak about these papers, we need to recall a purely-algebraic result,
due to E. Kiss, from his paper [118]; it says that every congruence modular
variety admits what the author calls a 4-difference term; we call it a Kiss
difference term. Let us also recall:

• a Kiss difference term is defined as a 4-ary term q with

q(x, y, x, y) = x = q(y, y, x, x), (7.1)

and such that, for every two congruences R and S on the same algebra,
one has

((a, b), (c, d), (c′, d) ∈ R & (a, c), (a, c′), (b, d) ∈ S)
⇒ (q(a, b, c, d), q(a, b, c′, d)) ∈ [R,S].

(7.2)

• a Mal’tsev term p (when it exists) immediately gives a Kiss difference
term q via

q(x, y, t, z) = p(x, y, z); (7.3)

• in any congruence distributive variety, we always have [R,S] = R∩S,
which allows us to define a Kiss term q via

q(x, y, t, z) = t. (7.4)

As (7.3) and (7.4) show, Kiss difference terms nicely provide an alternative
way of seeing Mal’tsev and congruence distributive varieties as special cases
of congruence modular varieties.
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Remark 7.1. In (7.2), since the ground variety is not Mal’tsev, the com-
mutator [R,S] cannot be defined as in the previous section, and a more so-
phisticated definition from universal algebra (see [85], [83], [84], [63], where
several definitions equivalent in the congruence modular case, are compared,
and [118]) is needed. The more recent definition from [108] given in Section
9 (see (9.7)) is such that in the congruence modular case, it is:

(a) equivalent to all other known definitions;

(b) suggested, in a sense, by using a Kiss difference term instead of a
Mal’tsev term.

In more general cases its relationship with other commutators was studied
by A. Szendrei, published nowhere (as far as I know) except the three-line
conference talk abstract [142], where the main result is not formulated.

8 Internal groupoids in congruence modular varieties

The main purpose of [107] was to extend the results of [93] (repeated in Sec-
tion 5 of the present paper) from Mal’tsev to congruence modular varieties,
using a Kiss difference term instead of a Mal’tsev term. Accordingly, the
results of [107] include the following:

Theorem 8.1. (Corollary 4.3 in [107]) Let G = (G0, G1, d, c, e) be an inter-
nal reflexive graph in a congruence modular variety X with Kiss difference
term q. The following conditions are equivalent:

(a) there exists an internal groupoid in X whose underlying internal re-
flexive graph is G;

(b) there exists a unique internal groupoid in X whose underlying internal
reflexive graph is G;

(c) the commutator [Eq(d), Eq(c)] is trivial (that is, it is the internal
equality relation ∆G1), and (G1, d, c) induces a symmetric and transi-
tive relation on G0.

If these conditions hold, then, for each f : y → x, g : z → y, h : t → z in
G1, we have

fg = q(f, 1y, u, g), (8.1)
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f−1 = q(1x, f, v, 1y), (8.2)

for every u and v in G1 with d(u) = z, c(u) = x, d(v) = x, and c(v) = y
(such u and v always do exist by the transitivity and symmetry in condition
(c).

Remark 8.2. (a) As follows from (7.3), the formulas (8.1) and (8.2) nat-
urally generalize the (first parts of the) formulas (5.5) and (5.6), re-
spectively.

(b) As follows from (7.4) and (8.1) ((8.2) is not needed in this case), every
internal groupoid in a congruence distributive variety is an equivalence
relation. This fact, however, was observed before (8.1), originally by
M. C. Pedicchio, who showed that this property even characterizes
the congruence distributive varieties (published later in [134]; as men-
tioned in [107] she actually did it in the paper “Internal groupoids
and pregroupoids in regular categories, to appear”, hence before the
submission of [107]).

(c) A very different proof of (a)⇔(c) of Theorem 8.1 is given in [134]
among other results.

(d) An almost immediate but beautiful reformulation of condition (c) of
Theorem 8.1 is due to M. Gran (see Remark 1.1 in [71]). It replaced the
second requirement of 8.1(c) with (Eq(d))(Eq(c)) = (Eq(c))(Eq(d)).
In fact [71] has many more interesting results, one of which is men-
tioned in Section 11.

9 From pregroupoids to pseudogroupoids

Theorem 9.1 below combines some results of [133] (cf. Section 6). In fact
the equivalence of its conditions can be used as definitions ‘by each other’
of at least two out of the three notions involved, which is perfectly shown
in [133]. Having this in mind, we do not recall the notion “centralizing each
other” used in 9.1(a).

Theorem 9.1. Let X be a Barr exact Mal’tsev category, A an object in X,
and R and S internal equivalence relations on A. The following conditions
are equivalent:
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(a) R and S centralize each other;

(b) [R,S] = ∆A (the internal equality relation on A);

(c) there exists an internal Kock pregroupoid in X whose underlying span
is

A/R← A→ A/S;

(d) there exists a unique internal Kock pregroupoid in X whose underlying
span is

A/R← A→ A/S.

In particular, these conditions hold whenever R ∧ S = ∆A.

Remark 9.2. The equality R∧S = ∆A above makes the span A/R← A→
A/S an internal relation, and conversely, every internal relation B ← A→
C, in which A → B and A → C are regular epimorphisms, is of this form.
On the other hand, for an arbitrary span B ← A → C, using the (regular
epi, mono) factorizations A → B′ → B and A → C ′ → C, we obtain a
closely related span, namely B′ ← A → C ′, of regular epimorphisms. We
then observe:

(a) B ← A → C admits an internal Kock pregroupoid structure if and
only if B′ ← A→ C ′ does;

(b) therefore to say that R ∧ S = ∆A implies (c) of Theorem 9.1, is the
same as to say that every internal relation in X admits an internal
Kock pregroupoid structure;

(c) an internal relation admits a (necessarily unique) internal Kock pre-
groupoid structure if and only if it is difunctional;

(d) a category is a Mal’tsev category if and only if every internal relation
in it is difunctional;

(e) therefore the last assertion of Theorem 9.1 actually characterizes Barr
exact Mal’tsev categories among the Barr exact categories.

As this remark suggests, in order to define the notion of commutator
in a general (or, say, Barr exact) category we have to replace the Kock
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pregroupoid structure with a new one that exists on every internal relation.
Such a structure, called pseudogroupoid was introduced in [108] (the preprint
version was published in February 1998 as Trieste University Preprint in
Mathematics 423). As explained in [108], this new structure was “almost”
introduced in [141], and then again in [118] (but in a very different way).
Let us recall it:

Definition 9.3.

(a) Given a span

G = (G0 G1 G′0)
π π′

(9.1)

in a category X with finite limits, the system (G4, π11, π12, π21, π22) is
defined as the limiting cone of the diagram

G1 G′0 G1

G0 G4 G0

G1 G′0 G1

π′ π′

π′ π′

π

ππ

π

π11

π21

π12

π22

(9.2)

of solid arrows, as displayed. When X = Sets, shall write (f, g, k, h)
for the unique element u in G4 with π11(u) = f , π12(u) = k, π21(u) =
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g, and π22(u) = h, and display this element as

x

y z

t

f k

g h

(9.3)

where π′(f) = x = π′(k), π(f) = y = π(g), π(k) = z = π(h), and
π′(g) = t = π′(h).

(b) A pseudogroupoid is a pair (G,m) in which G is a span (9.1) in Sets,
such that, for every element (9.3) in G4, we have:

• m(f, g, k, h) is parallel to k, that is, πm(f, g, k, h) = z
and π′m(f, g, k, h) = x;

• m(f, g, k, h) does not depend on k, that is,
m(f, g, k, h) = m(f, g, k′, h) whenever (f, g, k′, h) also belongs to
G4;

• if f = g, then m(f, g, k, h) = h;

• if g = h, then m(f, g, k, h) = f ;

• m(m(f, g, k, h), i, n, j)) = m(f, g, n,m(h, i, l, j)) whenever (h, i, l, j)
and (f, g, l, n) are in G4.

(c) An internal psudogroupoid in a category X is defined by (b) using the
Yoneda embedding X→ SetsXop

.

Remark 9.4. The object G4 in Definition 9.3(a) forms an internal double
equivalence relation on G1 (in the sense of [108]) denoted by Eq(G) in [108].
Using the symbol � of [28], also used in [8] and elsewhere, we have

Eq(G) = Eq(π)�Eq(π′), (9.4)
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up to permutations of factors (this is not mentioned in in [108]).
Together with the forgetful functors (6.1) and (6.3), let us consider the

forgetful functor

U ′′ : Pseudogroupoid(X)→ Span(X) (9.5)

(we denote it by U ′′ since we used U and U ′ for (6.1) and (6.3), respectively).
Given internal equivalence relations R and S on an object A in a category
X with finite limits, it is natural now to define the commutator [R,S] as

[R,S] = Eq((η′′G)1), (9.6)

for G being the span A/R ← A → A/S and (η′′G)1 being the canonical
morphism similar to (ηG)1 and (η′G)1. This is done in [108] for X being a
variety of universal algebras. However, when X is an abstract category and
we don’t want to make the existence of a left adjoint for U ′′ an additional
requirement on X, we could say:

• If X is a Barr exact Mal’tsev category with coequalizers, then the
existence of left adjoints of U and U ′ is proved in [132] and [133] (up
to trivial reformulations).

• If X is a regular Mal’tsev category with finite colimits, U has a left
adjoint by Proposition 3.4 in [8] (of course it is not just a passage from
Barr exactness to regularity that took nine years from [132] to [8]: the
whole new approach was developed in [8]); the fact that U ′ has a left
adjoint can also be deduced from the results of [8].

• The above-mentioned results solve out problem in the regular Mal’tsev
case, since, whenever X is a Mal’tsev category, the internal pseu-
dogroupoid and internal pregroupoid structures in X are the same.

• For a general category X with finite limits, we only require X to have
arbitrary intersections of subobjects, and then define [R,S] (as it is
done in [108]) as the intersection of all Eq(α1), for all morphisms α
from the span A/R← A→ A/S to an underlying span of any internal
pseudogroupoid.

• What we still don’t know, is a reasonable sufficient condition on X
that holds in every regular Mal’tsev category and in every congruence
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modular variety of universal algebras, under which the morphisms of
the form (η′′G)1 (see (9.6)) are regular epimorphisms – which would
imply that the left adjoint of U ′′ is completely determined by all com-
mutators and, most importantly, allow one to generalize Theorem 9.1.

Let us now restrict ourselves again to the algebraic context, and for
the rest of this section X will denote a variety of universal algebras. Let
us also fix any object (=algebra) A in X and internal equivalence relations
(=congruences) R and S on A.

As already mentioned in Section 7, when X is congruence modular,
the commutator [R,S] can be defined in several equivalent ways, which we
did not recall since we prefer (9.6) here, but which are important for us
since they support (9.6) by being equivalent to it. As we also mentioned
in Section 7, the notion of Kiss difference suggests a simpler definition of a
commutator, at least in a congruence modular variety, where it always exist.
And indeed, as the congruence modular counterpart of Definition 6.1, we
have

Theorem 9.5. (Follows from Theorem 5.5 in [108]) Let X be a congruence
modular variety with a Kiss difference term q, and A, R, and S be as above.
The commutator [R,S] is the smallest congruence T on A such that:

(a) the map

{(a, b, d, c) ∈ A4 | ((a, b), (c, d) ∈ R) & ((a, d), (b, c) ∈ S)]} → A/T,
(9.7)

sending (a, b, d, c) to the T -class of q(a, b, d, c) is a homomorphism of
algebras.

(b) (q(a, b, d, c), q(a, b, d′, c)) ∈ T , whenever both (a, b, d, c) and q(a, b, d′, c)
belong to the domain of the map (9.7).

Strictly speaking, this theorem cannot be used as a definition of commu-
tator, since the commutators are already involved in the definition of a Kiss
difference term; still, as soon as a Kiss difference term is fixed it is useful in
calculating particular commutators in the same way as Definition 6.1 is in
the Mal’tsev (=congruence permutable) case.

In fact consideration of commutators in [108] led to introducing there
new notions of Kiss, Gumm, Lipparini, and abelianizable varieties, but we



32 G. Janelidze

shall not consider them here since we know almost nothing about their
categorical counterparts.

10 Explicit presentations of commutators via limits and col-
imits in Mal’tsev categories

There are two such presentations, due to M. C. Pedicchio [132] and due
to D. Bourn [8], which assume the ground category X to be a Barr exact
Mal’tsev category with coequalizers and a regular Mal’tsev category with
finite colimits, respectively (although the requirement of having all finite
colimits in [8] can also be weakened).

Pedicchio’s construction of the commutator [R,S], of two equivalence
relations R and S on an object A in a Barr exact Mal’tsev category X with
coequalizers, extends one of the constructions known for algebras, and it
can be described in several steps as follows:

• Let us write (A,R, dR, cR, eR) and (A,S, dS , cS , eS) for R and S, re-
spectively, considered as internal reflexive graphs in X. Take q : R→
Q to be the coequalizer of morphisms eRdS , eRcR : S → R.

• Define ∆R,S = (∆R,S , π1, π2) as the kernel pair of R→ Q.

• Construct the pullback

P A

∆R,S R

p1

p2

π2

eR

(10.1)
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• Define [R,S] via the (commutative) diagram

P [R,S]

∆R,S R

p1

π1 (10.2)

where the top horizontal arrow and the right-hand vertical arrow form
the (regular epi, mono)-factorization of the composite π1p1.

Briefly

[R,S] = π1(π−1
2 (A)), (10.3)

as it is written in [132] (with X instead of A).

While the advantage of Pedicchio’s approach is in showing that the con-
struction of [R,S] can be copied from the algebraic context, the advantage
of Bourn’s approach is in its simplicity. According to [8], we define [R,S]
as follows:

• Again we write (A,R, dR, cR, eR) and (A,S, dS , cS , eS) for R and S,
respectively, considered as internal reflexive graphs in X. But now we
begin with the pullback

R×A S S

R AcR

dS

(10.4)
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• After that we take M to be the colimit of the diagram

R

R×A S A

S

〈1R, eScR〉 dR

〈1R, eScR〉 cS

(10.5)

• And define [R,S] as the kernel pair of the canonical morphism A→M .

Remark 10.1.

(a) Further analysis shows that while Pedicchio’s construction is a cate-
gorical counterpart of a construction in universal algebra (called there
the commutator defined via “the term condition”), Bourn’s construc-
tion is the direct realization of (6.4), since the canonical morphism
A → M is in fact the same as the canonical morphism (η′G)1 used in
(6.4), where G is the span A/R← A→ A/S.

(b) Recall that, instead of internal Kock pregroupoids, Bourn is actually
working with slightly different structures introduced in his joint papers
with Gran [12] and [13] and called connectors there. Omitting various
elegant results of those two papers on centrality in regular Mal’tsev
categories, let us only mention that an internal Kock pregroupoid in a
category X, whose underlying span is A/R ← A→ A/S, is the same
as Bourn–Gran connector on the pair (R,S) satisfying suitable asso-
ciativity condition; however, that condition is automatically satisfied
when X is a Mal’tsev category. Still, as soon as X has non-effective
equivalence relations even associative connectors become more general
than internal Kock pregroupoids.
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(c) The problem with commutators of (internal) non-effective equivalence
relations is that the commutators themselves are always effective by
the definition. In particular, when R and/or S are non-effective, the
fundamental property [R,S] ≤ R ∧ S could fail to hold.

(d) As follows from the presentation (1.5) in [108], the notion of internal
pseudogroupoid can be generalized in the same way as the notion of
connector generalizes the notion of internal Kock pregroupoid. We
are omitting details since we are not going to use this generalization
here.

11 Back to central extensions

While the classical definition of central extension of groups is very straight-
forward, it has several well-motivated generalizations, out of which we will
consider two, in Subsections 11.1 and 11.2, respectively; we shall compare
them in Subsection 11.3. In fact there are at least two more:

• One of them is already considered, in the special case of Ω-groups.

• The other one defines central extensions as certain torsors; it can be
easily compared with the one from Subsection 11.1 using the relation-
ship between Galois theory and torsors in general, however that would
take us far away from the main topics of this paper.

11.1 Central extensions categorically, via Galois theory

The context of [101] uses a Barr exact category C and a Birkhoff subcat-
egory X of C, which is defined as full reflective subcategory of C closed
under subobjects and quotient objects. This determines a Galois structure
Γ consisting of the reflection-inclusion adjunction (I,H, η, ε) : C → X and
fibrations in C and in X being regular epimorphisms. And, exactly as in
the special case considered in Example 2.8, this Galois structure is admis-
sible whenever the semilattices of internal equivalence relations on objects
in C are modular lattices (see Theorem 3.4 in [101]). And when this Galois
structure Γ is admissible, a central extension of an object B in C is defined
in as a covering of B with respect to Γ. That is, (A, f) is a central extension
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of B, if and only if f : A → B is a regular epimorphism and there exists a
regular epimorphism p : E → B for which the diagram

E ×B A HI(E ×B A)

E HI(E)

π1

ηE×BA

ηE

HI(π1)

(11.1)

where π1 : E ×B A → E is the suitable projection, is a pullback (here we
could omit H since it is an inclusion functor. This definition is formulated
directly for (C,X) in [101], since no other Galois structure is used there.
Furthermore, as proved in [101], when C is a Goursat category, every central
extension is normal – which means that, in the Goursat case, we could
equivalently take (E, p) to be (A, f) itself. Let us also mention a new proof
of this result by M. Gran and D. Rodelo [76], and that V. Rossi [139] proved
a similar result for almost Barr exact Mal’tsev categories, but only under
the assumptions on X we will use below in this section.

11.2 Central extensions via the commutator theory

Let f : A→ B be a regular epimorphism in a Barr exact category (we shall
not consider here the more general context of a regular category) C. When
there is a chosen notion of commutator in C, one might call (A, f) a central
extension of B if

[∇A, Eq(f)] = ∆A, (11.2)

that is, when the commutator of the largest internal equivalence relation
∇A = A × A and the kernel pair of f is trivial. However, there is another
possibility, which would be the same in when C is either a Mal’tsev category
or a congruence modular variety of universal algebras (or just a Gumm
variety in the sense of [108]). For, we observe:

• If the commutators are defined via (9.6), (11.2) would mean that
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(η′′G)1, for

G = (1 A B)
f

(11.3)

is a monomorphism, or, equivalently that G is a subspan of the un-
derlying span of an internal pseudogroupoid.

• Or, we could require instead the span (11.3) itself to be the under-
lying span of an internal pseudogroupoid – or of an internal Kock
pregroupoid, which is equivalent since 1 is involved.

We shall choose this second option, and, if the span (11.3) itself is indeed the
underlying span of an internal Kock pregroupoid, we shall say that (A, f) is
an algebraically central extension of B. In fact this choice was made in [72].

11.3 The comparison results

The obvious distinction between the central extensions defined via (11.1),
which we will call now categorically central, and the algebraically central
extensions is that the categorical ones depend on a specified Birkhoff sub-
category X of C, while the algebraic ones do not. Therefore, and following
the classical case of groups, let us assume that:

• C is a Barr exact category;

• X is the full subcategory of C formed by all affine objects, where an
object A in C is said to be affine if the span 1 ← A → 1 admits an
internal Kock pregroupoid structure;

• X is a Birkhoff subcategory of C, the assumption to which we shall
refer as Birkhoff subcategory assumption;

• The Galois structure described in Subsection 11.1 must be admissible;
we shall refer to this as admissibity assumption.

The first comparison results (after immediate corollaries of the results men-
tioned in Sections 3 and 4), where the Birkhoff subcategory assumption
follows from known properties of commutators (see e.g. [63]) and the ad-
missibility follows from the already mentioned Theorem 3.4 in [101], were:
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Theorem 11.1. [103]

(a) If C is a congruence modular variety of universal algebras, then every
categorically central extension in C is algebraically central.

(b) If C is a variety of Ω-groups, then a pair (A, f) is a categorically
central extension if and only if it is algebraically central.

Theorem 11.2. (Theorem 4.3(b) of [104]) If C is a Mal’tsev variety of
universal algebras, then a pair (A, f) is a categorically central extension in
C if and only if it is algebraically central.

Theorem 11.3. [71] If C is a congruence modular variety of universal
algebras, then a pair (A, f) is a categorically central extension in C if and
only if it is algebraically central.

Here Theorem 11.2 implies Theorem 11.1(b), and Gran’s Theorem 11.3
implies both Theorem 11.1 and Theorem 11.2 of course. Moreover, Gran’s
Theorem 11.3 is a kind of final result, which allows us to claim that cat-
egorical Galois theory and commutator theory in universal algebra lead to
the same notion of centrality. On the other hand, since commutator the-
ory related techniques can be developed in a categorical context, a purely-
categorical generalization of Theorem 11.3 would be a natural next step.
Gran’s Theorem 11.6 below is an important result of such kind. In order to
formulate it we need part (a) of the following:

Definition 11.4. [72] A regular category C is said to be factor permutable,
if, for every product diagram

K K × L L
π1 π2

(11.4)

and every internal equivalence relation R on K × L, we have

(Eq(π1))R = R(Eq(π1)), Eq(π2))R = R(Eq(π2)) (11.5)

(it suffices to require, say, only the first of these equalities of course).

Remark 11.5.
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(a) Factor permutable categories were introduced as the precise categor-
ical counterpart of factor permutable varieties in the sense of H. P.
Gumm [84], and, according to Corollary 4.5 in [84], every congruence
modular variety of universal algebras is factor permutable.

(b) Every Mal’tsev category and every strongly unital category in the
sense of Bourn [7] is factor permutable.

Theorem 11.6. (See Corollaries 3.15 and 3.17, and Theorems 5.2 and 6.1
in [72]) If C is a Barr exact factor permutable category whose category of
affine objects is reflective in it, then the Birkhoff subcategory assumption
and the admissibility assumption hold, and a pair (A, f) is a categorically
central extension in C if and only if it is algebraically central.

Note also that assuming the shifting property (see Definition 12.3 in the
next section) instead of factor permutabity, Rossi proved the admissibility
assumption in [139].

12 Back to internal groupoids

Let us begin by comparing the descriptions of internal groupoids in a Mal’tsev
variety in Section 5 (originally from [93]) and in a congruence modular va-
riety in Section 8 (originally from [107]). The first of them can be deduced
from the second one using the implication (b)⇒(a) of the following theorem
to the kernel pairs of the domain and codomain morphisms of an internal
reflexive graph:

Theorem 12.1. Let R and S be internal equivalence relations (=congru-
ences) on an object A in a congruence modular variety X with a Kiss differ-
ence term q, and let G be the span A/R ← A → A/S in X. The following
conditions are equivalent:

(a) [R,S] = ∆A;

(b) the map m : G4 → G1 = A defined by m(a, b, d, c) = q(a, b, d, c) is a
morphism in X, and q(a, b, d, c) = q(a, b, d′, c) whenever (a, b, d, c) and
(a, b, d′, c) are in G4.
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However, this theorem, which is just a simplified version of Theorem 9.5,
is identical to Theorem 3.8(iii) in [118], up to terminology and notation of
course.

In order to change our context from varieties of algebras to abstract
categories, we will need to replace congruence modularity with the shifting
property formulated in Definition 12.3 below, which itself comes from uni-
versal algebra and is equivalent to congruence modularity in case of varieties
(see Remark 12.4).

Theorem 12.2. Let X be a category with finite limits, A an object in X,
and R, S, and T internal equivalence relations on A. Then the following
conditions are equivalent:

(a) if R ∧ S ≤ T , then for every object X in X and morphisms a, b, c, d :
X → A, the morphism 〈c, d〉 : X → A×A factors through (the canon-
ical morphism) T → A× A whenever 〈a, b〉 and 〈c, d〉 factors through
R→ A×A, 〈c, a〉 and 〈b, d〉 : X → A×A factor through S → A×A,
and 〈a, b〉 factors through T → A×A;

(b) condition (a) under the additional assumption T ≤ R;

(c) for every internal equivalence relation T on A with R ∧ S ≤ T ≤ R,
the diagram

T�S T�R

T R
(12.1)

of canonical morphisms is a discrete fibration of internal equivalence
relations, that is, the square involving the first and the third (or, equiv-
alently, the second and the forth) horizontal arrow in it is a pullback.

Definition 12.3. The category X is said to satisfy the shifting property if
it satisfies the equivalent conditions of Theorem 12.2.
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Remark 12.4. (a) The shifting property formulated as 12.2(a) is a straight-
forward generalization of its universal-algebraic version introduced earlier
by H. P. Gumm [84], where the roles of a, b, c, d were played by elements of
A. It was proved in [84] that a variety of universal algebras satisfies it if and
only if it is congruence modular (“The Shifting Lemma”). The categorical
version of shifting property, condition 12.2(c), and its equivalence to 12.2(a)
are due to D. Bourn and M. Gran [14]. The implication (a)⇒(b) is trivial,
while the implication (a)⇒(b) is almost so: just replace T with its meet
with R.
(b) When the ground category X is regular, conditions 12.2(a) and 12.2(b)
can be formulated, respectively, as follows:

R ∧ S ≤ T ⇒ (S(R ∧ T )S) ∧R ≤ T, (12.2)

R ∧ S ≤ T ≤ R⇒ (STS) ∧R ≤ T. (12.3)

Suppose now X is not only regular but also modular, in the sense that the
semilattices of internal equivalence relations on objects in C are modular
lattices (this condition, different from modularity in the sense of A. Carboni
[21], was already mentioned in Subsection 11.1 and before). In this case
(12.3) becomes trivial:

(STS) ∧R ≤ (S ∨ T ) ∧R ≤ (R ∧ S) ∨ T = T,

which, in the case of algebras, was Gumm’s observation. That is, every
modular regular category has the shifting property. This observation was
known to D. Bourn and M. Gran when they wrote [14], as follows from the
explanation in their Example 2.4.2; some further comparison results are also
made by D. Bourn in [9]. However, as the Example 12.5 below shows, the
shifting property does not imply modularity even in the case of varieties of
infinitary universal algebras. Unfortunately no such clarification has been
made for factor permutability: we only know that:

• not every factor permutable exact category is modular – since this was
known already for varieties of universal algebras;

• adding infinitary operations to the signature of a modular variety does
not make it non-factor-permutable – since neither shifting condition
nor factor permutability will fail after adding infinitary operations;
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• the shifting condition restricted to effective equivalence relations does
not imply factor permutability (even for effective equivalence rela-
tions), as a simple example in the quasi-variety of commutative monoids
with cancellation constructed by Z. Janelidze [114] shows.

Example 12.5. Let X be the variety of distributive lattices equipped with
an additional operation λ of countable arity. We do not assume the existence
of 0 and/or 1, but assuming their existence would require only a minor
modification of what we are saying. We take:

• N to be the set {0, 1, 2, ...} of natural numbers with its usual order,
considered as a lattice;

• A to be the sublattice set of N × N consisting of all pairs (n,m) of
natural numbers with |n−m| ≤ 1, with the operation λ defined by

λ(a1, a2, a3, ...) ={
(0, 0), if the distances d(an, an+1) (n ∈ N) are bounded;
(0, 1), if the distances d(an, an+1) (n ∈ N) are unbounded;

• R = {((n,m), (n′,m′)) ∈ A×A | m = m′};

• S = {((n,m), (n′,m′)) ∈ A×A | n = n′};

• T has equivalence classes {(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1), (1, 2)}, and
all other equivalence classes as in R.

It is then easy to check that R,S, and T are congruences on A with R∧S =
T ∧S = ∆ (=the equality relation) and R∨S = T ∨S = ∇A = A×A (and
T ⊆ R) which shows that the lattice of congruences on A is not congruence
modular. On the other hand, X satisfies the shifting condition since the
variety of distributive lattices does, and since the shifting condition involves
only constructions (namely the intersection and composition of congruences)
that do not depend on λ. Note that the underlying lattices of A,R, and S
here are the same as in Remark 3.4 of [26].

The most general known categorical version of Theorem 8.1 (together
with Gran’s 8.2(d)) is
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Theorem 12.6. (Corollaries 5.2 and 5.3 in [14], formulated slightly differ-
ently) Let G = (G0, G1, d, c, e) be an internal reflexive graph in a regular
category X satisfying the shifting property. The following conditions are
equivalent:

(a) there exists an internal groupoid in X whose underlying internal re-
flexive graph is G;

(b) there exists a unique internal groupoid in X whose underlying internal
reflexive graph is G;

(c) there exists an internal Kock pregroupoid in X whose underlying span
is

G0 G1 G0
d c

(d) there exists a unique internal Kock pregroupoid in X whose underlying
span is as in (c);

(e) there exists an internal pseudogroupoid in X whose underlying span is
as in (c), and (G1, d, c) induces a symmetric and transitive relation
on G0;

(f) there exists a unique internal pseudogroupoid in X whose underlying
span is as in (c), and (G1, d, c) induces a symmetric and transitive
relation on G0;

(g) there exists an internal pseudogroupoid in X whose underlying span is
as in (c), and

(Eq(d))(Eq(c)) = (Eq(c))(Eq(d));

(h) there exists a unique internal pseudogroupoid in X whose underlying
span is as in (c), and

(Eq(d))(Eq(c)) = (Eq(c))(Eq(d)).
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Furthermore, if these conditions hold, then [Eq(d), Eq(c)] = ∆G1, where the
commutator [Eq(d), Eq(c)] is defined as the intersection of all Eq(α1), for
all morphisms α from the span formed by d and c to an underlying span of
an internal pseudogroupoid; in particular, this commutator does exist.

Remark 12.7.

(a) We do not know whether the [Eq(d), Eq(c)] = ∆G1 implies the exis-
tence of an internal pseudogroupoid structure on the span

G0 G1 G0
d c

otherwise we could formulate Theorem 12.6 similarly to Theorem 8.1
(since all other conditions would obviously be equivalent to the listed
ones).

(b) The advantage of using regular categories instead of Barr exact ones
is apparent even in the purely universal-algebraic context – since all
quasi-varieties of algebras are regular, and a quasi-variety is Barr exact
if and only if it is a variety.
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[32] C. Cassidy, M. Hébert, and G.M. Kelly, Reflective subcategories, localizations, and
factorization systems, J. Aust. Math. Soc. (Series A) 38 (1985), 287-329.

[33] D. Chikhladze, Separable morphisms of simplicial sets, J. Homotopy Relat. Struct.
1(1) (2006), 169–173.



History of categorical algebra I 47

[34] M.M. Clementino, A note on the categorical van Kampen theorem, Topology Appl.
158(7) (2011), 926–929.

[35] M.M. Clementino and D. Hofmann, Descent morphisms and a Van Kampen in cat-
egories of lax algebras, Topology Appl. 159(9) (2012), 2310–2319.

[36] M.M. Clementino, D. Hofmann, and A. Montoli, Covering morphisms in categories
of relational algebras, Appl. Categ. Structures 22(5-6) (2014), 767–788.

[37] M. Duckerts-Antoine, “Fundamental groups in E-semi-abelian categories”, PhD
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