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Green’s relations on ordered n-ary
semihypergroups

Jukkrit Daengsaen and Sorasak Leeratanavalee∗

Abstract. In this paper, we introduce the concept of weak i-hyperfilters
of ordered n-ary semihypergroups, where a positive integer 1 ≤ i ≤ n and
n ≥ 2, and discuss their related properties. We define Green’s relations Mi,
J , H and K on ordered n-ary semihypergroups and investigate the relation-
ships between Green’s relations and the equivalence relation Wi, which is
generated by the weak i-hyperfilters. Also, we give the characterizations of
intra-regular ordered n-ary semihypergroups via the properties of weak i-
hyperfilters. Finally, we introduce the concepts of (i-, Λ-)duo ordered n-ary
semihypergroups and establish some interesting properties.

1 Introduction

The theory of algebraic hyperstructures was initiated in 1934 when Marty
[13] introduced the concept of hypergroups based on the notion of hyper-
operations in order to study problems in non-commutative algebras. After-
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wards, this topic have been investigated and applied to several branches of
pure and applied mathematics. Also, different aspects of algebraic hyper-
structures have been introduced and studied by many mathematicians. In
2011, Heidari and Davvaz [10] applied the notion of ordered semigroups to
algebraic hyperstructures. They introduced the concept of ordered semi-
hypergroups as a natural generalization of ordered semigroups and dis-
cussed their related properties. The relationships between ordered semi-
hypergroups and ordered semigroups were investigated in [5, 9]. The notion
of (left, right) hyperideals of ordered semihypergroups, which is a nice gen-
eralization of (left, right) ideals of ordered semigroups, was considered by
Changphas and Davvaz [1]. Tang et al. [17] introduced the notion of (left,
right) hyperfilters of ordered semihypergroups and characterized them in
terms of completely prime hyperideals. Such notion can be considered as
an extension of (left, right) filters of ordered semigroups. As we have known
from [11, 12] that the equivalence relation N , which is generated by the fil-
ters of ordered semigroups, plays a significant role in studying the structural
properties of intra-regular and duo ordered semigroups. In 2016, Omidi and
Davvaz [14] defined and investigated the equivalence relation N on ordered
semihypergroups by using the hyperfilters. Tang and Davvaz [16] defined
the hyper version of Green’s relations L, R, J and H on ordered semihyper-
groups and explained the relationships between the Green’s relations and
the equivalence relation N . Tang et al. [18] introduced the concept of weak
hyperfilters of ordered semihypergroups and established the connections of
Green’s relations, the equivalence relation N and the equivalence relation
W, which is defined by weak hyperfilters. Also, they gave some characteriza-
tions of intra-regular, left duo, right duo and duo ordered semihypergroups
by the properties of weak hyperfilters and the relation W. We notice here
that every hyperfilter is always a weak hyperfilter and the relation W ≠ N
in general.

Recently, a new class of algebraic hyperstructures called an ordered n-
ary semihypergroup, where n ≥ 2, was introduced and studied by Daengsaen
and Leeratanavalee [2]. Such new class represents a natural generalization
of ordered semigroups, ordered semihypergroups and ordered n-ary semi-
groups. Some interesting results concerning hyperideals, hyperfilters and
regularities in ordered n-ary semihypergroups have been investigated by
the same authors in [2, 3]. In this paper, we introduce the concept of weak
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i-hyperfilters of ordered n-ary semihypergroups, where a positive integer
1 ≤ i ≤ n and n ≥ 2. Also, we define the Green’s relations Mi, J , H and
K on ordered n-ary semihypergroups and establish connections between
Green’s relations and the equivalence relation Wi, which is generated by
the weak i-hyperfilters. Furthermore, the characterizations of intra-regular
ordered n-ary semihypergroups by the properties of weak i-hyperfilters are
given. Finally, we introduce the concepts of i-duo , Λ-duo and duo ordered
n-ary semihypergroups and discuss their related properties. As an applica-
tion of the results, the corresponding results on n-ary semihypergroups are
also obtained.

2 Preliminaries

In this section, we recall some basic definitions and some results of n-
ary semihypergroups and ordered n-ary semihypergroups, that will be used
throughout the paper. For more detail, we refer the readers to see [2–4, 6–8].

Let N be the set of all positive integers and i, j, k,m, n ∈ N. Re-
call that an n-ary hypergroupoid [8] (S, f) is a nonempty set S endowed
with an n-ary hyperoperation f , i.e., a mapping f : S × · · · × S → P∗(S)
where S appears n ≥ 2 times and P∗(S) denotes the set of all nonempty
subsets of S. According to the abbreviated symbols in the theory of n-ary
systems, the sequence xi, xi+1, ..., xj of S is denoted by xji . In the case
j < i, this symbol is empty. If xi+1 = xi+2 = ... = xj = x, then we write

xj−i instead of xji+1. In this convention, we write f(x1, x2, ..., xn) := f(xn1 )
and f(x1, ..., xi, y, ..., y, zj+1, ..., zn) := f(xi1, y

j−i, znj+1). For the abbreviated
symbol of a sequence of subsets of S, we define analogously. For nonempty
subsets X1, ..., Xn of S, we use the following notation:

f(Xn
1 ) = f(X1, ..., Xn) :=

⋃

ai∈Xi,i=1,...,n

f(an1 ).

If Xi = {a} for some 1 ≤ i ≤ n, then we write f(Xi−1
1 , a,Xn

i+1) instead of

f(Xi−1
1 , {a}, Xn

i+1). If X1 = ... = Xi = Y and Xi+1 = ... = Xn = Z, then
we write f(Y i, Zn−i) instead of f(Xn

1 ).

An n-ary hypergroupoid (S, f) is called an n-ary semihypergroup [7]
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if the equation

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

holds for all x2n−1
1 ∈ S and all 1 ≤ i ≤ j ≤ n. If m = k(n − 1) + 1 where

k ≥ 2, then the m-ary hyperoperation fk on S is defined by

fk(x
k(n−1)+1
1 ) = f(f(...f(f(xn1︸ ︷︷ ︸

f appears k times

), x2n−1
n+1 ), ...), x

k(n−1)+1
(k−1)(n−1)+2).

In a particular case k = 2, f2(x
2n−1
1 ) = f(f(xn1 ), x

2n−1
n+1 ).

An ordered n-ary semihypergroup [2] (S, f,≤) is an n-ary semihyper-
group (S, f) together with a partial order ≤ that is compatible with f , i.e.,
for any x, y ∈ S,

x ≤ y implies f(zi−1
1 , x, zni+1) ⪯ f(zi−1

1 , y, zni+1)

for all zn1 ∈ S and all 1 ≤ i ≤ n. Note that, for any X,Y ∈ P∗(S), X ⪯ Y
means for every a ∈ X there exists b ∈ Y such that a ≤ b. A nonempty
subset A of an ordered n-ary semihypergroup (S, f,≤) is called an n-ary
subsemihypergroup of S if f(An) ⊆ A. In this case, (A, f,≤) is also an
ordered n-ary semihypergroup.

Throughout this paper, S stands for an ordered n-ary semihypergroup
(S, f,≤), where n ≥ 2, unless specified otherwise. For a nonempty subset
X of S, we denote

(
X
]
= {a ∈ S | a ≤ b for some b ∈ X} .

Lemma 2.1. [2] Let X,Y,X1, ..., Xn be nonempty subsets of S. Then the
following statements hold.

(i) X ⊆ (X].

(ii) ((X]] = (X].

(iii) f((X1], (X2], ..., (Xn]) ⊆ (f(Xn
1 )].

(iv) (X ∪ Y ] = (X] ∪ (Y ].

(v) X ⊆ Y implies (X] ⊆ (Y ].
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Definition 2.2. [2] Let A be a nonempty subset of S. For any 1 ≤ i ≤ n
and n ≥ 2, A is called an i-hyperideal of S if the following assertions are
satisfied.

(1) f(xi−1
1 , y, xni+1) ⊆ A for all y ∈ A and all xi−1

1 , xni+1 ∈ S.

(2) For every x ∈ A and y ∈ S, if y ≤ x then y ∈ A. Equivalently,
(A] ⊆ A.

A is called a hyperideal of S if it is an i-hyperideal of S for all i = 1, ..., n.
From now on, we denote by M i(A) (respectively, J(A)) the i-hyperideal
(respectively, hyperideal) of S generated by A. In the case A = {x}, we
write M i(x) instead of M i({x}).

Lemma 2.3. [2] Let A be a nonempty subset of S. Then the following
statements hold.

(i) M1(A) =
(
f(A,Sn−1) ∪A

]
.

(ii) Mn(A) =
(
f(Sn−1, A) ∪A

]
.

(iii) For any 1 ≤ i ≤ n and n ≥ 3,

M i(A) =

( ⋃

k≥1

fk(S
k(i−1), A, Sk(n−i)) ∪A

]
.

Let A be a nonempty subset of S. A is called prime if, for any xn1 ∈ S,
f(xn1 ) ⊆ A implies xk ∈ A for some k = 1, 2, ..., n. A is called semiprime if,
for any x ∈ S, f(xn) ⊆ A implies x ∈ A. A is called completely prime if,
for any xn1 ∈ S, f(xn1 ) ∩ A ̸= ∅ implies xk ∈ A for some k = 1, 2, ..., n. A is
called completely semiprime if, for any x ∈ S, f(xn)∩A ̸= ∅ implies x ∈ A.

Definition 2.4. [3] Let A be an n-ary subsemihypergroup of S. For any
1 ≤ i ≤ n and n ≥ 2, A is called an i-hyperfilter of S if the following
assertions are satisfied.

(1) If f(xn1 ) ∩A ̸= ∅, for all xn1 ∈ S, then xi ∈ A.

(2) For every x ∈ A and y ∈ S, if x ≤ y, then y ∈ A.
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If A is an i-hyperfilter of S, for all 1 ≤ i ≤ n, then A is called a hyperfilter
of S.

In what follows, we denote byN i(x) (respectively, N(x)) the i-hyperfilter
(respectively, hyperfilter) of S generated by x. The equivalence relations Ni

and N [3] on S are defined as follows:

Ni =
{
(x, y) ∈ S × S | N i(x) = N i(y)

}
,

N = {(x, y) ∈ S × S | N(x) = N(y)} .
For every nonempty subset A of S, we define

δA := {(x, y) ∈ S × S | x, y ∈ A or x, y /∈ A} .

Clearly, δA is an equivalence relation on S. The following theorems are
already proved in [3].

Theorem 2.5. Let A be a nonempty subset of S. For any 1 ≤ i ≤ n and
n ≥ 2, A is a (i-)hyperfilter of S if and only if S \ A = ∅ or S \ A is a
completely prime (i-)hyperideal of S.

Theorem 2.6. Let CP(S) and CP i(S) be the set of all completely prime hy-
perideals and the set of all completely prime i-hyperideals of S, respectively.
Then

N =
⋂

{δA | A ∈ CP(S)} and Ni =
⋂

{δA | A ∈ CP i(S)} .

3 Green’s relations on n-ary semihypergroups

In this section, we introduce the concept of weak i-hyperfilters of ordered
n-ary semihypergroups, where 1 ≤ i ≤ n and n ≥ 2, and investigate their
related properties.

Definition 3.1. Let S be an ordered n-ary semihypergroup with n ≥ 2.
For any 1 ≤ i ≤ n, a nonempty subset A of S is called a weak i-hyperfilter
of S if it satisfies the following conditions.
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(i) If xn1 ∈ A then f(xn1 ) ∩A ̸= ∅.
(ii) If f(xn1 ) ∩A ̸= ∅ for all xn1 ∈ S then xi ∈ A.

(iii) For any x ∈ A and y ∈ S, if x ≤ y then y ∈ A.

A is said to be a weak hyperfilter of S if it is a weak i-hyperfilter of S for
all 1 ≤ i ≤ n.

Clearly, every (i-)hyperfilter of S is always a weak (i-)hyperfilter of S.
Moreover, Definition 3.1 coincides with Definition 3.1 given in [18] if n = 2.
The following theorems describe characterizations of weak (i-)hyperfilter of
ordered n-ary semihypergroups in terms of their prime (i-)hyperideal.

Theorem 3.2. Let S be an ordered n-ary semihypergroup with n ≥ 2 and
let A be a nonempty subset of S. For any 1 ≤ i ≤ n, A is a weak i-hyperfilter
of S if and only if S \A = ∅ or S \A is a prime i-hyperideal of S.

Proof. Let i be a fixed positive integer satisfying 1 ≤ i ≤ n. Let A be a
weak i-hyperfilter of S and S \ A ̸= ∅. To show that S \ A is a prime i-
hyperideal of S, let x ∈ S \A and yi−1

1 , yni+1 ∈ S. If f(yi−1
1 , x, yni+1)∩A ̸= ∅,

then, since A is an i-hyperfilter of S, we have x ∈ A. It is impossible. So
f(yi−1

1 , x, yni+1) ⊆ S \ A. Let y ∈ S \ A and x ∈ S be such that x ≤ y.
Then x ∈ S \ A. In fact, if x ∈ A, then, since A is a weak i-hyperfilter
of S and x ≤ y, we have y ∈ A. It is impossible. Consequently, S \ A is
an i-hyperideal of S. Next, let xn1 ∈ S be such that f(xn1 ) ⊆ S \ A. Then
xj ∈ S \ A for some j = 1, 2, ..., n. In fact, if xj ∈ A for all j = 1, 2, ..., n,
then, since A is an i-hyperideal of S, we have f(xn1 ) ⊆ A. It is impossible.
Thus S \ A is a prime i-hyperideal of S. Conversely, if S \ A = ∅, then we
are done. Suppose that S \ A is a prime i-hyperideal of S. To show that
A is a weak i-hyperfilter of S, let xn1 ∈ A. Then f(xn1 ) ∩ A ̸= ∅. Indeed, if
f(xn1 )∩A = ∅, then f(xn1 ) ⊆ S \A. Since S \A is a prime i-hyperideal of S,
we have xk ∈ S \A for some k = 1, 2, .., n. It is impossible. Next, let yn1 ∈ S
be such that f(yn1 ) ∩A ̸= ∅. Then yi ∈ A. In fact, if yi ∈ S \A, then, since
S \A is an i-hyperideal of S, we have f(yn1 ) ⊆ S \A. It is impossible. Next,
let x ∈ A and y ∈ S be such that x ≤ y. Then y ∈ A. Indeed, if y ∈ S \A,
then, since S \A is an i-hyperideal of S, we have x ∈ S \A, which leads to
contradict with x ∈ A. Therefore A is a weak i-hyperfilter of S.
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Theorem 3.3. Let S be an ordered n-ary semihypergroup with n ≥ 2 and
let A be a nonempty subset of S. Then, A is a weak hyperfilter of S if and
only if S \A = ∅ or S \A is a prime hyperideal of S.

Proof. The proof is similar to Theorem 3.2.

Let S be an ordered n-ary semihypergroup with n ≥ 3. For any
1 ≤ i ≤ n and x ∈ S, we denote by W i(x) (respectively, W (x)) the weak i-
hyperfilter (respectively, weak hyperfilter) of S generated by x and called the
principal weak i-hyperfilter (respectively, hyperfilter) generated by x. Firstly,
we introduce the Green’s relations Mi, J , H and K on S as follows:

Mi :=
{
(x, y) ∈ S × S | M i(x) =M i(y)

}
,

J := {(x, y) ∈ S × S | J(x) = J(y)} ,

H := M1 ∩Mn and K :=
n⋂

i=1

Mi.

The connections among Green’s relations on S can be expressed by the
following diagram.

J

M1 Mn Mi

H

K

Next, we define the equivalence relation Wi (respectively, W) on S,
which is generated by the same principal weak i-hyperfilter (respectively,
hyperfilter) of S, as follows:

Wi :=
{
(x, y) ∈ S × S | W i(x) =W i(y)

}
,

W := {(x, y) ∈ S × S | W (x) =W (y)} .
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Note that (x)Mi (respectively, (x)J , (x)Wi and (x)W) denotes the Mi-class
(respectively, J -class, Wi-class and W-class) containing x. The following
theorem provides the relationship between the Green’s relations and the
equivalence relations N , W.

Theorem 3.4. Let S be an ordered n-ary semihypergroup with n ≥ 3. For
any 1 ≤ i ≤ n, the following statements hold.

(i) If Ai(S) is the set of all i-hyperideals of S, A(S) is the set of all
hyperideals of S, Pi(S) is the set of all prime i-hyperideals of S and
P(S) is the set of all prime hyperideals of S, then

Mi =
⋂

{δA | A ∈ Ai(S)} , J =
⋂

{δB | B ∈ A(S)} ,

Wi =
⋂

{δC | C ∈ Pi(S)} and W =
⋂

{δD | D ∈ P(S)} .

(ii) K ⊆ Mi ⊆ J ⊆ W ⊆ N , K ⊆ Mi ⊆ Wi ⊆ W ⊆ N and K ⊆ Mi ⊆
Wi ⊆ Ni ⊆ N .

(iii) If A is an i-hyperideal of S, B is a hyperideal of S, C is a prime
i-hyperideal of S and D is a prime hyperideal of S, then

A =
⋃

{(x)Mi | x ∈ A} , B =
⋃

{(x)J | x ∈ B} ,

C =
⋃

{(x)Wi | x ∈ C} and D =
⋃

{(x)W | x ∈ D} .

Proof. (i) We first prove that Mi =
⋂ {δA | A ∈ Ai(S)}. Let (x, y) ∈ Mi.

Then M i(x) = M i(y). To show that (x, y) ∈ δA for all A ∈ Ai(S), assume
that (x, y) /∈ δA for some A ∈ Ai(S). Then, we obtain two cases as follows.
Case 1.1: x ∈ A and y /∈ A. Since A is an i-hyperideal of S, we have

y ∈M i(y) =M i(x) =

(
⋃
k≥1

fk(S
k(i−1), x, Sk(n−i)) ∪ {x}

]
⊆

(
⋃
k≥1

fk(S
k(i−1), A, Sk(n−i)) ∪A

]
⊆ (A] = A. It is impossible.

Case 1.2: x /∈ A and y ∈ A. Using the similar processes as in Case 1.1, we
have x ∈ A. It is impossible. So Mi ⊆

⋂{δA | A ∈ Ai(S)}. Conversely,
suppose that (x, y) ∈ δA for all A ∈ Ai(S). Since (x, y) ∈ δM i(y) and y ∈
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M i(y), we get x ∈ M i(y). It follows that M i(x) ⊆ M i(y). Similarly, since
(x, y) ∈ δM i(x) and x ∈ M i(x), we obtain M i(y) ⊆ M i(x). Consequently,

M i(x) = M i(y) and so (x, y) ∈ Mi. It follows that
⋂ {δA | A ∈ Ai(S)} ⊆

Mi. Thus Mi =
⋂{δA | A ∈ Ai(S)}.

Next, we show that Wi =
⋂{δC | C ∈ Pi(S)}. Let (x, y) ∈ Wi. Then

W i(x) =W i(y). Assume that (x, y) /∈ δC for some C ∈ Pi(S). Then, there
are two cases as follows.
Case 2.1: x ∈ C and y /∈ C. Then y ∈ S \ C. Since S \ (S \ C) = C is
a prime i-hyperideal of S, by Theorem 3.2, S \ C is a weak i-hyperfilter of
S. Since y ∈ S \ C, we obtain x ∈ W i(x) = W i(y) ⊆ S \ C, which is a
contradiction.
Case 2.2: x /∈ C and y ∈ C. Using the similar proof as in Case 2.1, we also
get a contradiction. Thus Wi ⊆

⋂ {δC | C ∈ Pi(S)} . To show the reverse
subset, let (x, y) ∈ δC for all C ∈ Pi(S). Assume that (x, y) /∈ Wi. Then,
we have two cases to be considered as follows.
Case 3.1: x /∈ W i(y). Then x ∈ S \ W i(y). Since W i(y) is a weak i-
hyperfilter of S and S \W i(y) ̸= ∅, by Theorem 3.2, S \W i(y) is a prime
i-hyperideal of S. By hypothesis, (x, y) ∈ δS\W i(y). Since y /∈ S \W i(y), we

have x /∈ S \W i(y). This is a contradiction.
Case 3.2: y /∈ W i(x). Using the similar processes as in Case 3.1, we also
get a contradiction. So (x, y) ∈ Wi. It follows that

⋂ {δC | C ∈ Pi(S)} ⊆
Wi. Therefore Wi =

⋂ {δC | C ∈ Pi(S)}. For the rest, their proofs are
analogous.

(ii) Clearly, K ⊆ Mi. Since CP(S) ⊆ P(S) ⊆ A(S) ⊆ Ai(S), by
Theorem 2.6 and (i), we have K ⊆ Mi ⊆ J ⊆ W ⊆ N . Similarly, since
CP(S) ⊆ P(S) ⊆ Pi(S) ⊆ Ai(S) and CP(S) ⊆ CP i(S) ⊆ Pi(S) ⊆ Ai(S),
we obtain K ⊆ Mi ⊆ Wi ⊆ W ⊆ N and K ⊆ Mi ⊆ Wi ⊆ Ni ⊆ N .

(iii) We only show the first equality. Let A be an i-hyperideal of S.
If y ∈ A, then y ∈ (y)Mi ⊆

⋃{(x)Mi | x ∈ A}. So A ⊆ ⋃{(x)Mi | x ∈ A}.
Conversely, let y ∈ (x)Mi for some x ∈ A. By (i), we have (y, x) ∈ Mi =⋂{δA | A ∈ Ai(S)}. So (y, x) ∈ δA. Since x ∈ A, we obtain y ∈ A.
Therefore

⋃{(x)Mi | x ∈ A} ⊆ A and this completes the proof.
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4 Intra-regular ordered n-ary semihypergroups

In this section, we give some characterizations of intra-regular ordered n-ary
semihypergroups by means of Green’s relations Mi and W.

Lemma 4.1. [2] Let S be an ordered n-ary semihypergroup with n ≥ 3.
For any 1 < j < n, the following statements are equivalent.

(i) For each a ∈ S there exist xj−1
1 , xnj+1 ∈ S such that

a ∈
(
f(xj−1

1 , f(an), xnj+1)
]
.

(ii) For each a ∈ S there exists y2n−2
1 ∈ S such that

a ∈
(
f(yn−1

1 , f(f(an), y2n−2
n ))

]
.

Definition 4.2. [2] Let S be an ordered n-ary semihypergroup with n ≥ 3.
An element a ∈ S is called intra-regular if it satisfies one of the equivalent
conditions in Lemma 4.1. S is called intra-regular if every element of S is
intra-regular.

Remark 4.3. Let S be an ordered n-ary semihypergroup with n ≥ 3. Then,
the following statements are equivalent.

(i) S is intra-regular.

(ii) For any 1 < j < n, a ∈
(
f(Sj−1, f(an), Sn−j)

]
for all a ∈ S.

(iii) a ∈
(
f(Sn−1, f(f(an), Sn−1))

]
for all a ∈ S.

Applying previous results, the following lemmas are obtained.

Lemma 4.4. Let S be an ordered n-ary semihypergroup with n ≥ 3. For
any 1 < i < n, the following statements are equivalent.

(i) S is intra-regular.

(ii) A ⊆
(
f(Sj−1, f(An), Sn−j)

] (
A ⊆

(
f(Sn−1, f(f(An), Sn−1))

])

for all ∅ ≠ A ⊆ S.
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(iii) a ∈
(
f(Sj−1, f(an), Sn−j)

] (
a ∈

(
f(Sn−1, f(f(an), Sn−1))

])

for all a ∈ S.

Proof. The proof is straightforward.

Firstly, we characterize intra-regular ordered n-ary semihypergroups
in terms of the weak hyperfilters.

Theorem 4.5. Let S be an ordered n-ary semihypergroup with n ≥ 3. Then,
S is intra-regular if and only if
W (x) =

{
y ∈ S | x ∈

(
f(f(S, yn−1), Sn−1)

]}
for all x ∈ S.

Proof. (=⇒) Let S be an intra-regular ordered n-ary semihypergroup and
x ∈ S. Let

A :=
{
y ∈ S | x ∈

(
f(f(S, yn−1), Sn−1)

]}
.

Obviously, x ∈ A. In fact, since S is intra-regular, by Lemma 4.4, we have
x ∈

(
f(S, f(xn), Sn−2)

]
=
(
f(f(S, xn−1), x, Sn−2)

]
⊆
(
f(f(S, xn−1), Sn−1)

]
.

Hence x ∈ A. To show that A is a weak hyperfilter of S generated by
x, let an1 ∈ A. Then f(an1 ) ∩ A ̸= ∅. Indeed, since an1 ∈ A, we have
x ∈

(
f(f(S, {ai}n−1), Sn−1)

]
for all i = 1, 2, ..., n. Since

x ∈
(
f(f(S, {an}n−1), Sn−1)

]
, x ∈

(
f(f(S, {an−1}n−1), Sn−1)

]

we have

x ∈
(
f(S, f(xn), Sn−2)

]

⊆
(
f2(S,

(
f(f(S, {an}n−1), Sn−1)

]
,
(
f(f(S, {an−1}n−1), Sn−1)

]
, xn−2, Sn−2)

]

⊆
(
f2(S, f(f(S, {an}n−1), Sn−1), f(f(S, {an−1}n−1), Sn−1), xn−2, Sn−2)

]

⊆
(
f4(S

2, an, S
n−3, f(S, f(Sn−1, S), Sn−2), an−1, S

n−1, xn−2, Sn−2)
]

⊆
(
f3(S

2, f(an, S
n−2, an−1), S

n−1, xn−2, Sn−2)
]
, by Lemma 4.4,

⊆
(
f3(S

2,
(
f(S, f(f(an, S

n−2, an−1)
n), Sn−2)

]
, Sn−1, xn−2, Sn−2)

]

⊆
(
f3(S

2, f(S, f(f(an, S
n−2, an−1)

n), Sn−2), Sn−1, xn−2, Sn−2)
]

⊆
(
f5(S

2, S, Sn−2, f(an, S
n−2, an−1), f(an, S

n−2, an−1), S
n−2, Sn−1, xn−2, Sn−2)

]

=

(
f3(S, f(S, f(S, S

n−2, an), S
n−2), an−1, an, S

n−3, f(f(S, an−1, S
n−2), Sn−1),

xn−2, Sn−2)

]
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⊆
(
f3(S

2, an−1, an, S
n−2, xn−2, Sn−2)

]

⊆ ...

⊆
(
f3(S

n, a1, ..., an, S
n−2)

]

=
(
f(f(Sn), f(an

1 ), S
n−2)

]

⊆
(
f(S, f(an

1 ), S
n−2)

]
.

Then, there exists y ∈ f(an1 ) such that x ∈
(
f(S, y, Sn−2)

]
. Since S is

intra-regular, we obtain y ∈
(
f(S, f(yn), Sn−2)

]
. Then

x ∈
(
f(S, y, Sn−2)

]

⊆
(
f(S,

(
f(S, f(yn), Sn−2)

]
, Sn−2)

]

⊆
(
f(S, f(S, y, f(yn−1, S), Sn−3), Sn−2)

]

⊆
(
f(S, f(S, y, Sn−2), Sn−2)

]

⊆ ...

⊆
(

f(S, f( ..., f(S︸ ︷︷ ︸
f appears n − 1 times

, y, Sn−2), ...), Sn−2)

]

⊆
(
f(S, f(..., f(S, f(S, f︸ ︷︷ ︸
f appears n + 1 times

(yn), Sn−2), Sn−2), ...), Sn−2)

]

=

(
f(f(f(Sn), yn−1), y, f(Sn), f(Sn), ..., f(Sn)︸ ︷︷ ︸

f appears n − 2 times

)

]

⊆
(
f(f(S, yn−1), Sn−1)

]
.

Consequently, y ∈ A. It implies A ∩ f(an1 ) ̸= ∅.
Next, let bn1 ∈ S be such that f(bn1 ) ∩ A ̸= ∅. Then, there exist

y ∈ f(bn1 ) and y ∈ A. Then x ∈
(
f(f(S, yn−1), Sn−1)

]
⊆(

f(f(S, f(bn1 )
n−1), Sn−1)

]
. We consider the following three cases.

Case 1: j = 1. Then x ∈
(
f(f(S, f(bn1 )

n−1), Sn−1)
]
⊆(

f(f(S, f(bn1 ), S
n−2), Sn−1)

]
=
(
f(S, b1, f(f(b

n
2 , S), S

n−2), Sn−3)
]
⊆(

f(S, b1, S
n−2)

]
.

Case 2: 1 ≤ j ≤ n. Then

x ∈
(
f(f(S, f(bn1 )

n−1), Sn−1)
]

⊆
(
f(f(S, f(bn1 )

n−j , f(bj−1
1 , bj , b

n
j+1), f(b

n
1 )

j−2), Sn−1)
]

⊆
(
f(f(S, Sn−j , f(Sj−1, bj , S

n−j), Sj−2), Sn−1)
]
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=
(
f(f(Sn), bj , S

n−3, f(Sn))
]

⊆
(
f(S, bj , S

n−2)
]
.

Case 3: j = n. Using the similar proof as in Case 1, we also get x ∈(
f(S, bn, S

n−2)
]
. From Case 1-3, we have x ∈

(
f(S, bj , S

n−2)
]
for all j =

1, 2, ..., n. Since S is intra-regular, we obtain
bj ∈

(
f(Sn−1, f(f({bj}n), Sn−1))

]
. Then

x ∈
(
f(S, bj , S

n−2)
]

⊆
(
f(S, f(Sn−1, f(f({bj}n), Sn−1)), Sn−2)

]

=
(
f(f(f(Sn), {bj}n−1), f(bj , S

n−1), Sn−2)
]

⊆
(
f(f(S, {bj}n−1), Sn−1)

]
.

So bj ∈ A. Next, let y ∈ A and z ∈ S be such that y ≤ z. Then y ∈ (z].

Since y ∈ A, we have x ∈
(
f(f(S, yn−1), Sn−1)

]
⊆
(
f(f(S, (z]n−1), Sn−1)

]

⊆
(
f(f(S, zn−1), Sn−1)

]
. Hence z ∈ A. Thus A is a weak hyperfilter of S

containing x. It follows that W (x) ⊆ A.

Finally, let B be a weak hyperfilter of S containing x. To show that
A ⊆ B, let y ∈ A. Then x ∈

(
f(f(S, yn−1), Sn−1)

]
=
(
f(S, yn−2, f(y, Sn−1))

]
.

Hence, there exists a ∈ f(S, yn−2, f(y, Sn−1)) such that x ≤ a. Since
B is a weak hyperfilter of S containing x, we have a ∈ B. Since a ∈
f(S, yn−2, f(y, Sn−1)), there exist u ∈ S and v ∈ f(y, Sn−1) such that
a ∈ f(u, yn−2, v). It follows that B ∩ f(u, yn−2, v) ̸= ∅. Since B is a
weak hyperfilter of S, we obtain y ∈ B. Consequently, A ⊆ B. Therefore
W (x) = A.

(⇐=) Let x ∈ S. Since x ∈W (x), by Definition 3.1(i), we have f(xn)∩
W (x) ̸= ∅. Then, there exist y ∈ f(xn) and y ∈ W (x). By hypothesis, we
get x ∈

(
f(f(S, yn−1), Sn−1)

]
⊆
(
f(f(S, yn−2, f(xn)), Sn−1)

]

⊆
(
f(Sn−1, f(f(xn), Sn−1))

]
. Therefore S is intra-regular.

In the following theorem, the connections of intra-regular ordered n-
ary semihypergroups and Green’s relations are provided.

Theorem 4.6. Let S be an ordered n-ary semihypergroup with n ≥ 3. Then,
the following statements hold.
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(i) If S is intra-regular, then W = Wi = Mi = J for all 1 < i < n.

(ii) If W = Mi for some 1 ≤ i ≤ n, then S is intra-regular.

Proof. (i) Let S be an intra-regular ordered n-ary semihypergroup with
n ≥ 3 and let i be a fixed positive integer satisfying 1 < i < n. Let
(x, y) ∈ W. Then x ∈ W (x) = W (y). By Theorem 4.5, we obtain
y ∈

(
f(f(S, xn−1), Sn−1)

]
=
(
f(S, xn−2, f(x, Sn−1))

]
⊆
(
f(S, xn−2, S)

]
=(

f(S, xi−2, x, xn−i−1, S)
]
⊆
(
f(Si−1, x, Sn−i)

]
⊆M i(x). SoM i(y) ⊆M i(x).

Similarly, since y ∈ W (y) = W (x), using the analogous process, we have
M i(x) ⊆ M i(y) and then M i(x) = M i(y). Consequently, (x, y) ∈ Mi and
so W ⊆ Mi. By Theorem 3.4(ii), we conclude that W = Mi = Wi = J .

(ii) Let W = Mi for some 1 ≤ i ≤ n. Let x ∈ S. Since x ∈W (x), by
Definition 3.1(i), we have f(xn) ∩W (x) ̸= ∅. Then, there exist y ∈ f(xn)
and y ∈ W (x). It follows that W (y) ⊆ W (x). Since W (y) ∩ f(xn) ̸= ∅
and W (y) is a weak hyperfilter of S, we get x ∈ W (y). Consequently,
W (x) ⊆ W (y) and so W (x) = W (y). Using the similar processes, we have
W (y) = W (z) for some z ∈ f(f(xn)n). So W (x) = W (z). It implies that
(x, z) ∈ W = Mi. Since x ∈M i(x) =M i(z), we have

x ∈ M i(z)

⊆ M i(f(f(xn)n))

=


⋃

k≥1

fk(S
k(i−1), f(f(xn)n), Sk(n−i))

⋃
f(f(xn)n)




⊆
(

n−1⋃

j=2

f(Sj−1, f(f(xn)n), Sn−j)
⋃

f(Sn−1, f(f(f(xn)n), Sn−1))
⋃

f(f(xn)n)

]

⊆
(

n−1⋃

j=2

f(Sj−1, f(f(xn)n−j , f(xn), f(xn)j−1), Sn−j)
⋃

f(Sn−1, f(f(xn), f(f(xn)n−1, S), Sn−2))
⋃

f(xn−2, f(x2, f(xn)n−3, x), f(f(xn), xn−1))

]

⊆
(
f(Sn−1, f(f(xn), Sn−1))

]
.

Therefore S is an intra-regular ordered n-ary semihypergroup.
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5 Duo ordered n-ary semihypergroups

In this section, we introduce the concept of i-duo and Λ-duo ordered n-
ary semihypergroups and characterize them in terms of Green’s relations
Mi and the relation Wi. We notice here that the notion of i-duo ordered
n-ary semihypergroup is an extension of a left and a right duo ordered
semihypergroup and the notion of Λ-duo ordered n-ary semihypergroups is
a generalization of a duo ordered semihypergroup, see [18].

Definition 5.1. Let S be an ordered n-ary semihypergroup with n ≥ 2.
For any 1 ≤ i ≤ n and i ̸= n+1

2 , S is called i-duo if every i-hyperideal of S
is an (n− i+ 1)-hyperideal of S.

Here, every 1-duo ordered n-ary semihypergroup is said to be a right
duo ordered n-ary semihypergroup and every n-duo ordered n-ary semihy-
pergroup is called a left duo ordered n-ary semihypergroup.

Example 5.2. Let S = {a, b, c, d, e}. Define a ternary hyperoperation
f : S × S × S → P∗(S) by f(x31) = (x1 ◦ x2) ◦ x3, for all x31 ∈ S, where ◦ is
defined by the following table.

◦ a b c d e

a {a} {b} {a} {a} {a}
b {a} {b} {a} {a} {a}
c {a} {b} {a} {a} {a}
d {a} {b} {a} {a} {a}
e {a} {b} {a} {a} {a, d, e}

Define a partial order ≤ on S as follows:

≤:= {(a, a), (a, e), (b, b), (c, c), (d, d), (d, e), (e, e)}.

Then (S, f,≤) is an ordered ternary semihypergroup. Clearly, the sets
{a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, d, e} and S are all 1-hyperideals of
S. Also, they are 3-hyperideals of S. Therefore S is a right duo ordered
ternary semihypergroup. However, S is not a left duo ordered ternary semi-
hypergroup since {a, c, d} is a 3-hyperideal of S but {a, c, d} is not a 1-
hyperideal of S.
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Example 5.3. Let S = {a, b, c, d, e}. Define a hyperoperation f : S × S ×
S × S → P∗(S) by f(x41) = ((x1 ◦ x2) ◦ x3) ◦ x4, for all x41 ∈ S, where ◦ is
defined by the following table. Define a partial order ≤ on S as follows:

◦ a b c d e

a {a} {b} {a} {a} {a}
b {a} {b} {a} {a} {a}
c {a} {b} {c} {a} {a}
d {a} {b} {a} {a} {a, d}
e {a} {b} {a} {a} {a, e}

≤:= {(a, a), (a, d), (a, e), (b, b), (c, c), (d, d), (e, e)}.

Then (S, f,≤) is an ordered 4-ary semihypergroup. It is not difficult
to show that S is not a 1-duo ordered 4-ary semihypergroup because the set
{a, b, e} is a 1-hyperideal of S but it is not a 4-hyperideal of S. Similarly,
since the set {a, d, e} is a 4-hyperideal of S but it is not a 1-hyperideal of S,
S is not a 4-duo ordered 4-ary semihypergroup. On the other hand, S is a 2-
duo ordered 4-ary semihypergroup because every 2-hyperideal of S, i.e., the
sets {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, d, e} and S, is a 3-hyperideal
of S.

Theorem 5.4. Let S be an ordered n-ary semihypergroup with n ≥ 3. Then,
the following statements hold.

(i) If S is intra-regular, then S is i-duo and every i-hyperideal of S is
semiprime for all 1 < i < n.

(ii) For any 1 < i < n, every i-hyperideal of S is semiprime if and only if
W = Mi.

Proof. (i) Suppose that S is an intra-regular ordered n-ary semihypergroup.
Let i be a fixed positive integer satisfying 1 < i < n. To show that S is an i-
duo ordered n-ary semihypergroup, i.e. every i-hyperideal of S is a (n−i+1)-
hyperideal of S, let A be an i-hyperideal of S. Let x ∈ A and yn−i

1 , ynn−i+2 ∈
S. Since S is intra-regular, we have x ∈

(
f(Sn−1, f(f(xn), Sn−1))

]
=(

f(f(Sn−1, x), xi−2, x, xn−i−1, f(x, Sn−1))
]
⊆
(
f(Si−1, x, Sn−i)

]
. By asso-

ciativity, we have

f(yn−i
1 , x, ynn−i+2) ⊆ f(Sn−i, x, Si−1)
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⊆ f(Sn−i,
(
f(Si−1, x, Sn−i)

]
, Si−1)

⊆
(
f(Sn−i, f(Si−1, x, Sn−i), Si−1)

]

=
(
f(Sn−1, f(x, Sn−1))

]

⊆
(
f(Sn−1, f(f(Si−1, x, Sn−i), Sn−1))

]

=
(
f(f(Sn), Si−2, x, Sn−i−1, f(Sn))

]

⊆
(
f(Si−1, x, Sn−i)

]
.

Since A is an i-hyperideal of S, we have f(Si−1, x, Sn−i) ⊆ A and then(
f(Si−1, x, Sn−i)

]
⊆ (A] = A. Consequently, A is a (n − i + 1)-hyperideal

of S and so S is an i-duo ordered n-ary semihypergroup. Next, let J be
an i-hyperideal of S. Let x ∈ S be such that f(xn) ⊆ J . Since S is intra-
regular, we have x ∈

(
f(Sn−1, f(f(xn), Sn−1))

]
⊆
(
f(Sn−1, f(J, Sn−1))

]
=(

f(Sn−i, f(Si−1, J, Sn−i), Si−1)
]
. Since J is an i-hyperideal of S, we have

x ∈
(
f(Sn−i, f(Si−1, J, Sn−i), Si−1)

]
⊆
(
f(Sn−i, J, Si−1)

]
. Since S is i-duo,

J is also a (n−i+1)-hyperideal of S. It follows that x ∈
(
f(Sn−i, J, Si−1)

]
⊆

(J ] = J . Therefore, J is a semiprime i-hyperideal of S.

(ii) Suppose that every i-hyperideal of S is semiprime. In this case,
we will apply the proof of Theorem 4.6(ii). First of all, we will show that
x ∈ M i(f(f(xn)n)) for all x ∈ S. Let x ∈ S and let y ∈ f(xn). Since
f(yn) ⊆ f(f(xn)n) ⊆ M i(f(f(xn)n)) and M i(f(f(xn)n)) is a semiprime
i-hyperideal of S, we have y ∈M i(f(f(xn)n)). So f(xn) ⊆M i(f(f(xn)n)).
Since M i(f(f(xn)n)) is a semiprime i-hyper-ideal of S, we obtain x ∈
M i(f(f(xn)n)). Using the similar poof as in Theorem 4.6(ii), we obtain that
S is an intra-regular ordered n-ary semihypergroup. By Theorem 4.6(i), we
have W = Mi. Conversely, it is obvious by (i) and Theorem 4.6(ii).

Next, the relationships between the weak hyperfilters and the i-duo
ordered n-ary semihypergroups, where i = 1(i = n) and n ≥ 3, are dis-
cussed.

Theorem 5.5. Let S be an ordered n-ary semihypergroup with n ≥ 3.
Then, every n-hyperideal of S is semiprime and S is left duo if and only if
W (x) =

{
y ∈ S | x ∈

(
f(Sn−1, y)

]}
for all x ∈ S.

Proof. (=⇒) Let S be a left duo ordered n-ary semihypergroup and sup-
pose that every n-hyperideal of S is semiprime. Let x ∈ S. Put A :=
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{
y ∈ S | x ∈

(
f(Sn−1, y)

]}
. Obviously, x ∈ A. Indeed, since f(xn) ⊆

f(Sn−1, x) ⊆
(
f(Sn−1, x)

]
and

(
f(Sn−1, x)

]
is a semiprime n-hyperideal

of S, we have x ∈
(
f(Sn−1, x)

]
. Hence x ∈ A. In order to show that A

is a weak hyperfilter of S generated by x, we now consider the following
assertions.

(1) Let yn1 ∈ A. Then f(yn1 ) ∩ A ̸= ∅. In fact, since yi ∈ A, we have
x ∈

(
f(Sn−1, yi)

]
for all i = 1, 2, .., n. By associativity, we have

f(xn) ⊆ f(
(
f(Sn−1, y1)

]
,
(
f(Sn−1, y2)

]
,
(
f(Sn−1, y3)

]
, ...,

(
f(Sn−1, yn)

]
)

⊆
(
f(f(Sn−1, y1), f(S

n−1, y2), f(S
n−1, y3), ..., f(S

n−1, yn))
]

=
(
f(f(f(Sn−1, y1), S

n−1), y2, f(S
n−1, y3), ..., f(S

n−1, yn))
]
.

Since
(
f(Sn−1, y1)

]
is an n-hyperideal of S and S is left duo,

(
f(Sn−1, y1)

]

is a 1-hyperideal of S. Since f(Sn−1, y1) ⊆
(
f(Sn−1, y1)

]
, we have

f(f(Sn−1, y1), S
n−1) ⊆

(
f(Sn−1, y1)

]
.

Then we have

f(xn) ⊆
(
f(
(
f(Sn−1, y1)

]
, y2, f(S

n−1, y3), ..., f(S
n−1, yn))

]

⊆
(
f(f(Sn−1, y1), y2, f(S

n−1, y3), ..., f(S
n−1, yn))

]

=
(
f(S, f(Sn−2, y1, y2), f(S

n−1, y3), ..., f(S
n−1, yn))

]

=
(
f(S, f(f(Sn−2, y21), S

n−1), y3, f(S
n−1, y4), ..., f(S

n−1, yn))
]
,

since
(
f(Sn−2, y21)

]
is an n-hyperideal of S and S is left duo,

⊆
(
f(S, f(Sn−2, y21), y3, f(S

n−1, y4), ..., f(S
n−1, yn))

]

=
(
f(S2, f(Sn−3, y31), f(S

n−1, y4), ..., f(S
n−1, yn))

]

⊆ ...

⊆
(
f(Sn−2, f(S, yn−1

1 ), f(Sn−1, yn))
]

=
(
f(Sn−2, f(f(S, yn−1

1 ), Sn−1), yn)
]
,

since
(
f(S, yn−1

1 )
]
is an n-hyperideal of S and S is left duo,

⊆
(
f(Sn−2, f(S, yn−1

1 ), yn)
]

=
(
f(Sn−1, f(yn1 ))

]
.

Since
(
f(Sn−1, f(yn1 ))

]
is a semiprime n-hyperideal of S, we have x ∈(

f(Sn−1, f(yn1 ))
]
. Then, there exist v ∈ f(yn1 ) and u ∈ f(Sn−1, v) such

that x ≤ u. Consequently, x ∈
(
f(Sn−1, v)

]
and so v ∈ A. It implies that

f(yn1 ) ∩A ̸= ∅.
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(2) Let yn1 ∈ S be such that f(yn1 )∩A ̸= ∅. Then there exist w ∈ f(yn1 )
and w ∈ A. It follows that x ∈

(
f(Sn−1, w)

]
⊆
(
f(Sn−1, f(yn1 ))

]
. For each

1 ≤ j ≤ n, we have

f(xn) ⊆
(
f(f(Sn−1, f(yn1 ))

n)
]

=
(
f(f(Sn−1, f(yn1 ))

n−j , f(Sn−1, f(yn1 )), f(S
n−1, f(yn1 ))

j−1)
]

⊆
(
f(Sn−j , f(Sn−1, f(yn1 )), S

j−1)
]

=
(
f(Sn−j , f(f(Sn−1, y1), y

j−1
2 , yj , y

n
j+1), S

j−1)
]

⊆
(
f(Sn−j , f(Sj−1, yj , S

n−j), Sj−1)
]

=
(
f(f(Sn−1, yj), S

n−1)
]
.

Since
(
f(Sn−1, yj)

]
is an n-hyperideal of S and S is left duo,

(
f(Sn−1, yj)

]

is a 1-hyperideal of S. Hence f(f(Sn−1, yj), S
n−1) ⊆

(
f(Sn−1, yj)

]
and then

f(xn) ⊆
(
f(Sn−1, yj)

]
. Since

(
f(Sn−1, yj)

]
is a semiprime n-hyperideal of

S, we have x ∈
(
f(Sn−1, yj)

]
. Hence yj ∈ A.

(3) Let y ∈ A and z ∈ S be such that y ≤ z. Then y ∈ (z]. Since
y ∈ A, we get x ∈

(
f(Sn−1, y)

]
⊆
(
f(Sn−1, (z])

]
⊆
(
f(Sn−1, z)

]
. So z ∈ A.

From (1)–(3), we conclude that A is a weak j-hyperfilter of S con-
taining x. For arbitrary 1 ≤ j ≤ n, A is a weak hyperfilter of S containing
x. It follows that W (x) ⊆ A.

Finally, let B be a weak hyperfilter of S containing x. To show that
A ⊆ B, let y ∈ A. Then x ∈

(
f(Sn−1, y)

]
. Hence, there exists u ∈

f(Sn−1, y) such that x ≤ u. Also, there are zn−1
1 ∈ S such that u ∈

f(zn−1
1 , y). Since B ∋ x ≤ u and B is a weak hyperfilter of S, we get u ∈ B.

It follows that f(zn−1
1 , y)∩B ̸= ∅. Again, since B is a weak hyperfilter of S,

we have y ∈ B. So A ⊆ B. It implies that A ⊆W (x). ThereforeW (x) = A.

(⇐=) Let A be an n-hyperideal of S. Let x ∈ S be such that
f(xn) ⊆ A. Since x ∈ W (x), we have f(xn) ∩ W (x) ̸= ∅. Then there
exist y ∈ f(xn) and y ∈ W (x). By hypothesis, we have x ∈

(
f(Sn−1, y)

]
⊆(

f(Sn−1, f(xn))
]
⊆
(
f(Sn−1, A)

]
⊆ A. So A is a semiprime n-hyperideal of

S. To show that S is left duo, let J be an n-hyperideal of S. Let a ∈ J
and zn−1

1 ∈ S. Let y ∈ f(a, zn−1
1 ). Since y ∈ W (y) ∩ f(a, zn−1

1 ) and W (y)
is a weak hyperfilter of S, we have a, zn−1

1 ∈ W (y). By Definition 3.1(i),
we obtain f(zn−1

1 , a) ∩W (y) ̸= ∅. Then, there exist b ∈ f(zn−1
1 , a) and b ∈

W (y). By hypothesis, we have y ∈
(
f(Sn−1, b)

]
⊆
(
f(Sn−1, f(zn−1

1 , a))
]
=
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(
f(Sn−2, f(S, zn−1

1 ), a)
]
⊆
(
f(Sn−1, a)

]
⊆
(
f(Sn−1, A)

]
⊆ (A] = A. So

f(a, zn−1
1 ) ⊆ A, i.e., A is a 1-hyperideal of S. Therefore S is a left duo

ordered n-ary semihypergroup and this completes the proof.

Theorem 5.6. Let S be a left duo ordered n-ary semihypergroup with n ≥ 3.
Then, every n-hyperideal of S is semiprime if and only if W = Mn.

Proof. Suppose that every n-hyperideal of S is semiprime. Let (x, y) ∈ W.
Then x ∈ W (x) = W (y). By Theorem 5.5, we have y ∈

(
f(Sn−1, x)

]
⊆

Mn(x). It follows thatMn(y) ⊆Mn(x). Similarly, since y ∈W (y) =W (x),
we obtain Mn(x) ⊆ Mn(y). Consequently, Mn(x) = Mn(y) and then
(x, y) ∈ Mn. It follows that W ⊆ Mn. By Theorem 3.4(ii), we conclude
that W = Mn. Conversely, let J be an n-hyperideal of S. Let x ∈ S
be such that f(xn) ⊆ J . Using the similar proof as in Theorem 4.6(ii),
there exists y ∈ f(xn) such that W (x) = W (y). It implies that (x, y) ∈
W = Mn. Then x ∈ Mn(y) ⊆ Mn(f(xn)) =

(
f(xn) ∪ f(Sn−1, f(xn))

]
⊆(

J ∪ f(Sn−1, J)
]
⊆ (J ] = J . Therefore J is a semiprime n-hyperideal of

S.

Theorem 5.7. Let S be a right duo ordered n-ary semihypergroup with
n ≥ 3. Then, the following statements are equivalent.

(i) Every 1-hyperideal of S is semiprime.

(ii) W = M1.

(iii) W (x) =
{
y ∈ S | x ∈

(
f(y, Sn−1)

]}
for all x ∈ S.

Proof. The proof is similar to Theorems 5.5 and 5.6.

Finally, we introduce the concept of Λ-duo ordered n-ary semihyper-
groups and investigate some related properties.

Definition 5.8. Let S be an ordered n-ary semihypergroup with n ≥ 2
and let ∅ ≠ Λ ⊆ {1, 2, ..., n}. A nonempty subset A of S is called a Λ-
hyperideal [15] of S if f(Si−1, A, Sn−i) ⊆ A for all i ∈ Λ and (A] ⊆ A. S is
called Λ-duo if, for any i ∈ Λ, it is i-duo and every i-hyperideal of S is a
Λ-hyperideal of S. S is called duo if it is Λ-duo where Λ = {1, 2, ..., n}. In



164 J. Daengsaen and S. Leeratanavalee

other words, S is duo if and only if every i-hyperideal of S is a hyperideal
of S for all i = 1, 2, .., n.

Example 5.9. Let S = {a, b, c, d, e}. Define a ternary hyperoperation
f : S × S × S → P∗(S) by the following tables. Define a partial order ≤ on

f a b c d

aa {a} {a} {a} {a}
ab {a} {a} {a} {a}
ac {a} {a} {a} {a}
ad {a} {a} {a} {a}

f a b c d

ba {a} {a} {a} {a}
bb {a} {b} {b} {a, d}
bc {a} {b} {b} {a, d}
bd {a} {a, d} {a, d} {a, d}
f a b c d

ca {a} {a} {a} {a}
cb {a} {b} {b} {a, d}
cc {a} {b} {b} {a, d}
cd {a} {a, d} {a, d} {a, d}
f a b c d

da {a} {a} {a} {a}
db {a} {a, d} {a, d} {a, d}
dc {a} {a, d} {a, d} {a, d}
dd {a} {a, d} {a, d} {a, d}

S as follows:

≤:= {(a, a), (a, d), (b, b), (c, c), (d, d), (e, e)}.

Then (S, f,≤) is an ordered ternary semihypergroup. Clearly, the sets
{a, d}, {a, b, d} and S are all (1-, 2-, 3-)hyperideals of S. Therefore S is a
duo ordered ternary semihypergroup.

Example 5.10. Let S = {a, b, c, d, e, 0}. Define a hyperoperation f : S ×
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S × S × S → P∗(S) by

f(x41) =

{
{d, e} if x1 = a, x2 = x3 = b, x4 = c,

0 otherwise,

for all x41 ∈ S. Define a partial order ≤ on S as follows:

≤ := {(0, 0), (0, a), (0, b), (0, c), (0, d), (0, e), (a, a), (b, b), (c, c),
(d, a), (d, d), (e, e)}.

Then (S, f,≤) is an ordered 4-ary semihypergroup. Let Λ = {2, 3}.
Clearly, the sets {0}, {0, c}, {0, d}, {0, e}, {0, a, d}, {0, a, e}, {0, c, d}, {0, c, e},
{0, d, e}, {0, a, c, d}, {0, a, d, e}, {0, c, d, e}, {0, a, b, d, e}, {0, b, c, d, e} and S are
all Λ-hyperideals of S. This follows that S is a Λ-duo ordered 4-ary semi-
hypergroup. On the other hand, S is not a Λ-duo ordered 4-ary semi-
hypergroup, where Λ = {1, 2, 4}, since H = {0, a, c, d} is a 2-hyperideal
of S but H is not a 1-hyperideal and a 4-hyperideal of S. In fact, since
{d, e} = f(a, b, b, c) ⊆ f(H,S, S, S) and {d, e} = f(a, b, b, c) ⊆ f(S, S, S,H),
we obtain f(H,S, S, S) ̸⊆ H and f(S, S, S,H) ̸⊆ H.

Theorem 5.11. Let S be a Λ-duo ordered n-ary semihypergroup with ∅ ̸=
Λ ⊆ {1, 2, ..., n} and n ≥ 3. Then, every Λ-hyperideal of S is semiprime if
and only if W =

⋂
i∈Λ

Mi.

Proof. Suppose that every Λ-hyperideal of S is semiprime. Let i be a fixed
element in Λ and let J be an i-hyperideal of S. Since S is Λ-duo, J is a Λ-
hyperideal of S. By hypothesis, J is semiprime. By Theorems 5.4, 5.6 and
5.7, we have W = Mi. So W =

⋂
i∈Λ

Mi. Conversely, let J be a Λ-hyperideal

of S. Then J is an i-hyperideal of S for all i ∈ Λ. Since W =
⋂
i∈Λ

Mi ⊆ Mi,

using the similar processes as in Theorems 5.4, 5.6 and 5.7, we conclude
that J is a semiprime Λ-hyperideal of S. This completes the proof.

Corollary 5.12. Let S be a Λ-duo ordered n-ary semihypergroup where
Λ = {1, n} and n ≥ 3. Then, every Λ-hyperideal of S is semiprime if and
only if W = H.

Corollary 5.13. Let S be a duo ordered n-ary semihypergroup with n ≥ 3.
Then, every hyperideal of S is semiprime if and only if W = K.
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