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Determinant and rank functions in
semisimple pivotal Ab-categories

Khalid Draoui∗, Hanan Choulli, and Hakima Mouanis

Abstract. We investigate and generalize quantum determinants to semisim-
ple spherical and pivotal categories. It is well known that traces are preserved
by strong tensor functors; we show on one hand that in fact, weaker condi-
tions on a functor are sufficient to continue preserving traces. On the other
hand, we prove that these determinants are well-behaved under strong tensor
functors. Further, we introduce a notion of domination rank for objects of a
semisimple pivotal category and prove similar properties of the ordinary case.
Furthermore, we expand the determinantal and McCoy ranks to introduce a
morphism quantum rank function on a semisimple pivotal category.

1 Introduction

Given an m by n matrix M over a field, its (column) rank, defined as the
dimension of the subspace generated by its columns, coincides with the (row)
rank defined identically; which is exactly the size of the largest submatrix
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of M of non zero determinant (determinantal rank) or equivalently, equals
the smallest k for which M = BC with B is an m by k matrix and C
is a k by n matrix (Schein rank). These rank scalars do not all coincide
no longer in case of a commutative ring. Under reasons of searching rank
conditions for solvability of linear systems of equations, the McCoy rank
(as the best possible generalization for this purpose, of the classical above
recalled ranks) is introduced in [1], see also [8], and it is defined as

rk(M) = max{t, AnnR(It(M)) = (0)}
where, It(M) is the ideal in R generated by all the (t× t) minors of M and

AnnR(It(M)) = {r ∈ R, ra = 0, ∀a ∈ It(M)}.

In [3], the authors defined rank functions in the context of a trian-
gulated category. In this paper, we begin with the introduction of a domi-
nation rank concept for an object V of a semisimple (in the sense of [13])
pivotal category C, using the fact that for any two objects U and V of C,
HomC(U, V ) is a finitely generated and projective module [12, Lemma 4.2.1,
page 100] over the commutative ground ring EndC(I) of C. Inspired by the
work [2] on a categorification of the classical determinants to semisimple
ribbon categories, the first aim of this work is to extend the above notions
of determinantal and McCoy ranks into the context of a semisimple piv-
otal category C, profiting from the fact that to each endomorphism f of an
object V of C, there is associated a square matrix over the commutative
ground ring EndC(I) of C, with entries expressed by means of the quantum
trace and dimension defined in this context.

The second interest of this paper is the determinant concept, as an
essential element in linear algebra and one of most meaningful invariants
related to square matrices, investigated by Cramer in order to solve systems
of linear equations. The authors in [2] gave a positive answer to the following
question:

Can we define a notion of determinant (giving a formula) of an endo-
morphism of an object of a semisimple ribbon Ab−category [12], in such a
way that

(a) We meet the classical determinant when we consider the category vectK
of finite dimensional vector spaces over a field K.
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(b) We keep similar properties as the classical case.

Hence, a categorical generalization of the classical determinants. For
this end, they exploited the fact that traces are being categorified and widely
studied in general contexts; namely, quantum traces of endomorphisms of
dualizable objects in different monoidal categories [5–7, 11] thanks to the
tensor products therein, these traces yield the notion of the quantum dimen-
sion of an object, as an element of EndC(I), as the trace of the identity map,
which find their interesting applications for example in quantum topology,
by constructing quantum invariants [12]. They also profited from the fact
that these two ingredients (traces and determinants) are intimately related.
Pivotal categories allow the definition of left and right traces. Hence, we
generalize the above categorification to the context of a semisimple piv-
otal/spherical category. We define the left quantum determinant of an en-
domorphism f : V → V as the left trace of the endomorphism fnlΛn

V ,
namely:

ldetnV (f) := Trl(f
nlΛn

V );

where lΛn
V is the endomorphism of V n(= V ⊗n

) given by:

lΛn
V =

∑

σ∈Sn1

ε(σ)(Trn1
l (idW1))

−1D1
σ ⊗ ...⊗

∑

σ∈Snm

ε(σ)(Trnm
l (idWm))

−1Dm
σ ;

where (Wj)1≤j≤m are representative objects of their classes of isomorphic
objects in the considered dominating family (Vi(r); εr;µr)1≤r≤n of V , of sim-

ple objects, and Dj
σ is the endomorphism of V nj (= V ⊗nj

) defined by (the
details are presented in section 4):

Dj
σ = µsj

1
εσ(sj

1) ⊗ ....⊗ µsj
nj
εσ(sj

nj
);

where Ij = Jsj

1
, sj

nj
K, such that J1, nK = ⋃̇

1≤j≤m
Ij , with nj = |Ij |.

Note here that these are not to confuse with the “quantum determi-
nants” introduced in the case of q−matrices [9, page 79].

It is well known that strong tensor functors preserve traces [14, page
49]. We provide a sufficient condition for a Frobenius tensor (monoidal)
functor [4] to continue preserving traces. Furthermore, we show that strong
tensor functors preserve also quantum determinants.
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2 Preliminaries

We refer to [9, 10, 13, 14] for more details of the following reminder of some
notions from the theory of monoidal categories.

A monoidal category (C;⊗; I;α; l; r) is given by a category C, a bi-
functor ⊗ : C × C −→ C, a unit object I and natural isomorphisms
α : (U ⊗V )⊗W −→ U ⊗ (V ⊗W ), l : I ⊗U −→ U and r : U ⊗ I −→ U , for
all U, V,W ∈ Ob(C), called associativity constraint, left and right unitality
constraints respectively, such that the pentagon and triangle axioms hold.
If moreover, α, l and r are identities, then C is called strict.

A tensor (monoidal) functor (F ;F0;F2) between strict monoidal cat-
egories (C;⊗; I) and (D;⊗′; I ′) is a functor F : C −→ D together with
maps F0 : I ′ −→ F (I) and F2 U,V : F (U) ⊗ F (V ) −→ F (U ⊗ V ), for all
U, V ∈ Ob(C), such that the associativity, left and right unitality diagrams
commute [14, page 15].

(F ;F0;F2) is called strong if F0 and F2 U,V are isomorphisms for all
U, V ∈ Ob(C).

A category C is an Ab−category (or preadditive), provided that the
hom sets HomC(U, V ) are additive abelian groups, and the composition and
tensor product of morphisms are bilinear.

A left (resp. right) duality for a strict monoidal category C, consists
of a left (resp. right) duality for every object V of C; namely an object V ∗

of C and morphisms dV : V ∗ ⊗ V −→ I; (resp. d
′
V : V ⊗ V ∗ −→ I) and

bV : I −→ V ⊗ V ∗ (resp. b
′
V : I −→ V ∗ ⊗ V ) such that

(idV ⊗ dV )(bV ⊗ idV ) = idV and (dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗ ;

respectively

(d
′
V ⊗ idV )(idV ⊗ b

′
V ) = idV and (idV ∗ ⊗ d

′
V )(b

′
V ⊗ idV ∗) = idV ∗ .

For any morphism f : U −→ V between left dualizable objects, its left dual
morphism f∗ : V ∗ −→ U∗ is defined by

f∗ = (dV ⊗ idU∗)(idV ∗ ⊗ f ⊗ idU∗)(idV ∗ ⊗ bU ).
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Similarly one defines its right dual morphism using this time the right du-
ality structures (V ∗; d

′
V ; b

′
V ), V ∈ Ob(C).

A pivotal category is a monoidal category C, endowed with left duality
(V ∗; dV ; bV ) and right duality (V ∗; d

′
V ; b

′
V ) structures, for every object V of

C, such that the induced left and right dual functors coincide as monoidal
functors, and the induced isomorphisms

V ∗ ⊗ U∗ λU,V−−−→ (U ⊗ V )∗

are the same (see [14, 1.7.1, page 26], also [11]).

Left and right traces of an endomorphism f : V −→ V in a pivotal
category C are defined as

Trl(f) = dV (1⊗ f)b
′
V ; Trr(f) = d

′
V (f ⊗ 1)bV .

Furthermore, left and right partial traces of an endomorphism f ∈ EndC(U⊗
V ) in a pivotal category C are defined as

pTrr(f) = (idU ⊗ d
′
V )(f ⊗ idV ∗)(idU ⊗ bV ) ∈ EndC(U);

pTrl(f) = (dU ⊗ idV )(idU∗ ⊗ f)(b
′
U ⊗ idV ) ∈ EndC(V ).

The left and right dimensions of an object V of a pivotal category C are
defined by

diml(V ) = Trl(idV ) ; dimr(V ) = Trr(idV ).

Consequently, we have diml(V
∗) = dimr(V ); dimr(V

∗) = diml(V ) and any
two isomorphic objects have equal left (resp. right) dimensions.

A spherical category is a pivotal category where left and right traces
coincide (denoted simply Tr(f), for all f ∈ EndC(V )).

The following definitions follow [12] (without restriction to ribbon
Ab−categories).

Let C be a pivotal Ab−category. An object V of C is called simple,
if the map EndC(I) −→ EndC(V ), k 7→ k ⊗ idV is a bijection, and V is
said to be dominated by simple objects if there exist a finite set of simple
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objects {Vi}i of C (the same simple object may be repeated) and morphisms
εi : V → Vi ; µi : Vi → V , for all i, such that

∑
i
µiεi = idV .

C is called dominated by a family {Vi}i∈J of simple objects, where J
is an index set, if every object V of C is dominated by a finite sub-family of
{Vi}i∈J . This family will be denoted by (Vi(r); εr;µr)1≤r≤n and referred to as
a dominating family of V , where i(r) ∈ J and εr : V → Vi(r) ; µr : Vi(r) → V
as above, for all 1 ≤ r ≤ n. Seen as a function, i : N −→ J is one to one.

A monoidal category C is called pure [14, page 14] if for all k ∈
EndC(I), and for all f ∈Mor(C), one has k.f = f.k, where k.f := k ⊗ f .

In the sequel; without loss of generality, C will always mean a strict
monoidal category (C;⊗; I) (by Mac-Lane’s coherence Theorem [10], assert-
ing that every monoidal category is equivalent to a strict one). KC denotes
the commutative ground ring EndC(I) of C and K denotes a base field with
unit.

3 Domination rank in semisimple pivotal categories

A semisimple category is usually defined in the literature to be an abelian
category, where each of its objects splits as a direct sum of simple ones.
Here we follow a different terminology, Turaev [12], that does not involve
direct sums . Let’s start with a slightly different (more general) definition of
a semisimple category than the one given in [12], where the author restricts
the study to ribbon categories, but here we shall let the category C be
pivotal or particularly spherical and keep the same definition, as long as the
definition of semisimplicity on C is independant and does not require the
ribbon structure on it as introduced by the same author in [13, page 416].

Definition 3.1. [12, page 99] A semisimple category is a couple (C, {Vi}i∈J),
consisting of a pivotal Ab−category C and a family {Vi}i∈J of simple objects
of C, such that the following hold.

(a) There exists 0 ∈ J , such that V0 = I (Normalization axiom).

(b) For all i ∈ J , there exists i∗ ∈ J , such that Vi∗ ≃ V ∗
i (Duality axiom).

(c) C is dominated by the family {Vi}i∈J (Domination axiom).
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(d) For any non isomorphic simple objects Vi and Vj ; i, j ∈ J , we have
HomC(Vi, Vj) = {0} (Schur’s axiom).

Sometimes we will simply write C for (C, {Vi}i∈J).

Remark 3.2. In a semisimple category, every object is dominated by a
finite family of simple objects, but the cardinal of such family is not unique
in the sense that one object can be dominated by families of different cardi-
nals. To see this, consider the following situation: Let V be a simple object
of a semisimple category C, then V is obviousely dominated by the family
(V ; idV ; idV ). Let now W be another simple object of C, isomorphic to V ,
say via α : W −→ V . Consider the family (W ; εi;µi)1≤i≤3, where µi = α
for i = 1, 2, µ3 = −α, and εi = α−1 for i = 1, 2, 3. Thus defined, it is
not difficult to see that this is a dominating family of V , consisting of one
simple object W .

The following remark will serve for making clear a definition and some
results of a domination rank.

Remark 3.3. (a) rank(HomC(Vi, Vj)) = δi,j (the Kronecker symbol), for
all i, j ∈ J . In fact HomC(Vi, Vj) is a free KC−module, of rank 1 if
Vi ≃ Vj , and 0 otherwise by Shur’s axiom.

(b) HomC(Vi, Vj) ≃ HomC(Vj , Vi), for all i, j ∈ J , and hence we also have
that HomC(V

∗
i , V

∗
j ) ≃ HomC(V

∗
j , V

∗
i ) by the duality axiom.

(c) rank(HomC(Vi, Vj)) = 1, if and only if, rank(HomC(V
∗
i , V

∗
j )) = 1.

Definition 3.4. Let (C; {Vi}i∈J) be a semisimple category and U an ob-
ject of C, dominated by a family of simple objects of cardinal n. We call
domination rank of U and denote by rankd(U), the positive integer defined
by

rankd(U) := max
1≤r0≤n

(
n∑

r=1

rank(HomC(Vi(r0), Vi(r)))

)
(3.1)

where, (Vi(r); εr;µr)1≤r≤n runs over all families of simple objects and of
cardinal n, that are dominating U . In other words, rankd(U) is nothing but
the maximum number of isomorphic dominating simple objects among all
possible dominating families of U , of cardinal n.
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Remark 3.5. The above defined quantity rankd(U) is well defined as 1 ≤
rand(U) ≤ n for any family of cardinal n, and it depends on the chosen
dominating family, hence whenever unmentioned for the rest of the paper,
the domination rank of an object (in a semisimple category) is defined on
the picked dominating family. In case the dominating family was unique,
up to isomorphisms between the simple objects (in the sense that if there
exists another dominating family of U , of simple objects (V ′

i(s))1≤s≤n, there

is some permutation π ∈ Sn, such that Vi(r) ≃ V ′
π(i(r)) for all 1 ≤ r ≤ n,

where Sn is the set of all permutations of the elements of the set {1, ..., n}),
the domination rank in this case is the maximal number of isomorphic simple
objects therein.

Theorem 3.6. Let (C; {Vi}i∈J) be a semisimple category and U and V be
isomorphic objects of C. Then

(a) rankd(Vi) = 1, for all i ∈ J .

(b) rankd(V ) = rankd(U).

(c) rankd(U
∗) = rankd(U).

Proof. (a): For all i ∈ J , Vi is dominated by itself and HomC(Vi, Vi) is a
free module of rank 1.

(b): U is dominated by n simple objects (Vi)i, if and only if, V is
dominated by the same simple objects (Vi)i (even though with different
domination structure maps).

(c): U is dominated by n simple objects (Vi)i, if and only if, U∗ is
dominated by (V ∗

i )i.

Proposition 3.7. Let (C; {Vi}i∈J) be a semisimple category and U an object
of C dominated by a family of simple objects (Vi(r))1≤r≤n, unique up to
isomorphisms between the simple objects in the dominating families. Then
Vi(r) ≃ Vi(s), for all 1 ≤ r, s ≤ n, if and only if, rankd(U) = n.

Proof. Immediate.

Example 3.8. Let V be an object of the category vectK of finite dimensional
vector spaces over a filed K . Then, rankd(V ) as defined above, coincides
with its dimension.
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Example 3.9. Let V be an object of the category ModR of finitely gener-
ated projective modules over a local ring R (R is the unique simple object
of ModR). Then, rankd(V ) = rank(V ).

In fact, V being projective and R local, V is free by the Kaplansky’s
Theorem. But V is finitely generated, then it has a finite free basis, hence
a finite rank n. Consequently, rankd(V ) = n.

Example 3.10. Let R be a commutative ring with unit, G a multiplica-
tive abelian group with neutral element e, and c : G ⊗ G → R× a bilinear
map, where R× is the set of invertible elements of R. Consider the cat-
egory V whose objects are elements of G and morphisms are defined as:
HomV(g, g) = R and HomV(g, h) = {0} if g ̸= h, for all g, h ∈ G. The
identity morphism is given by the unit of R, the tensor product of objects
is given by the product in G and the composition and tensor product of
morphisms is given by the product in R. V can be equipped with a braiding
gh → gh by means of c as c(g, h) ∈ R, and a twist: g → g as c(g, g) ∈ R
for all g, h ∈ G; making V into a ribbon category with e as unit object,
see [12, Sect. I.1.7.2]. In particular, V is semisimple with {Vi}i∈J consists
of all objects of V as they are all simple. Thus, every object V of V is dom-
inated by itself and so rankd(V ) = 1. This construction can be generalized
by fixing a group homomorphism α : G → R× satisfying α(g2) = 1, for all
g ∈ G; with the same structures as above, except the twist which is defined
now to be g → g as α(g)c(g, g) ∈ R, for all g ∈ G.

4 Quantum determinants in semisimple pivotal categories

Definition 4.1. Let (C; {Vi}i∈J) be a semisimple category, V an object of C
and let F = (Vi(r); εr;µr)1≤r≤n and F ′ = (V ′

i(s); ε
′
s;µ

′
s)1≤s≤m be dominating

families of V , of simple objects.

(1) We say that F and F ′ are equivalent and we write F ∼ F ′ if

(a) m = n.

(b) There exists some permutation π ∈ Sn, such that Vi(r) ≃ V ′
π(i(r))

for all 1 ≤ r ≤ n.
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(2) F is called standard if

(a) εrµs = δr,s idVi(r)
, for all 1 ≤ r, s ≤ n.

(b) F is minimal in the sense that if F ′ is another dominating family
satisfying (a), then the cardinal of F is less than that of F ′.

Denote by Dom(V ) the set of all dominating families of simple objects
of V , and by Domn(V ) the sub-set consisting of those families of same
cardinal n ∈ N∗ of the form:

Domn(V ) =
{
(Vi(r); εr;µr)1≤r≤n ∈ Dom(V ), such that

εrµs = δr,s idVi(r)
, for all 1 ≤ r, s ≤ n

}
.

Proposition 4.2. The relation ” ∼ ” defined in Definition 4.1 between
dominating families on V , is an equivalence relation. Moreover, let
(Vi(r); εr;µr)1≤r≤n be a fixed dominating family in Domn(V ). Then, all
elements of Domn(V ), equivalent to this family, are of the form:

(
V ′
π(i(r));αrεrh

−1;hµrα
−1
r

)
1≤r≤n

for some automorphism h ∈ AutC(V ), and a family of isomorphisms αi(r) :
Vi(r) → V ′

π(i(r)), for all 1 ≤ r ≤ n.

Proof. “ ∼ ” is clearly an equivalence relation. For any h ∈ AutC(V ), and
any isomorphism αr : Vi(r) −→ V ′

π(i(r)), for all 1 ≤ r ≤ n, the element(
V ′
π(i(r));αrεrh

−1;hµrα
−1
r

)
1≤r≤n

is obviously a dominating family of V and

belongs to Domn(V ).

Conversely, let (V ′
i(s); ε

′
s;µ

′
s)1≤s≤n be a family in Domn(V ), equiva-

lent to the fixed one. The fact that they are equivalent implies that there
exists a permutation π ∈ Sn and a family of isomorphisms {αr : Vi(r) −→
V ′
π(i(r))}1≤r≤n. In this way, the family (V ′

i(s); ε
′
s;µ

′
s)1≤s≤n can be written as

(V ′
π(i(r)); ε

′
π(r);µ

′
π(r))1≤r≤n. Define h : V −→ V by h :=

∑
r
µ′π(r)αrεr, then

h ∈ AutC(V ) and it is invertible with inverse given by h−1 :=
∑
s
µsα

−1
s ε′π(s).

In fact:

hh−1 =
∑

r,s

µ′π(r)αrεrµsα
−1
s ε′π(s) =

∑

r

µ′π(r)ε
′
π(r) = idV .
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Similarly, h−1h = idV . Furthermore, for all 1 ≤ r ≤ n, we clearly
have

ε′π(r) = αrεrh
−1 and µ′π(r) = hµrα

−1
r .

Remark 4.3. Let F be a standard dominating family of V . Then, for any
F ′ ∼ F , F ′ is standard as well.

Proposition 4.4. Let K be a field and (C; {Vi}i∈J) a semisimple category,
where {Vi}i∈J consists of all the simple objects of C. Assume that C is
enriched over finite dimensional K−vector spaces, such that KC ≃ K. Then,
every object of C admits a standard dominating family, and if the simple
objects of C are all isomorphic, then all standard dominating families on
any object are equivalent.

Proof. Let V be an object of C and {Vj : j ∈ J} a set of simple objects of C,
then for all j ∈ J , HomC(V, Vj) is a finite dimensional KC−vector space and
its dual is HomC(Vj , V ). Picking a basis (µj(r))1≤r≤n of HomC(V, Vj) and
its dual basis (εj(r))1≤r≤n. Then V is dominated by (Vj ; εj(r);µj(r))1≤r≤n,
and εj(r)µj(s) = δr,s idVj , for all 1 ≤ r, s ≤ n. The minimal of such resulting
families is standard, and they are equivalent if C owns only one class of
isomorphic simple objects.

Assume for this section and the forthcoming ones that all standard
families on the objects of the considered semisimple category C are equiva-
lent.

Let C be a semisimple category and V an object of C dominated by
a family (Vi(r); εr;µr)1≤r≤n of simple objects. Note that all simple objects
of C have invertible left and right dimensions in KC ([12, Lemma 4.2.4,
page 103]). Let J1, nK = I1 ∪ I2 ∪ ... ∪ Im, where m ≤ n, be a partition of
J1, nK := [1, n] ∩ N into classes of isomorphic simple objects. Without loss
of generality, we can assume, in the sequel, that all the simple objects in
the class Ij , for all 1 ≤ j ≤ m, are equal to a simple object Wj which will
represent its class. This is by constructing a new dominating family. This
resulting family, with simple objects the Wj ’s, is equivalent to the initial
one. To make it clear, we shall illustrate the situation via an example. If
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I1 contains Vi(1), ..., Vi(5), choose any candidate, e.g: Vi(1) = W1, and let

ε′k = α−1
k εk, and µ

′
k = µkαk, for all 1 ≤ k ≤ 5, where αk : W1 → Vi(k) is an

isomorphism, as the objects in the same class are isomorphic. Now replace
Vi(1), εk, µk by W1, ε

′
k, µ

′
k respectively, and repeat the same procedure for

the rest of classes.

Denote by lΛn
V , the endomorphism of V n(= V ⊗n

) defined by

lΛn
V =

∑

σ∈Sn1

ε(σ)(Trn1
l (idW1))

−1D1
σ ⊗ ...⊗

∑

σ∈Snm

ε(σ)(Trnm
l (idWm))

−1Dm
σ

(4.1)
where, for every 1 ≤ j ≤ m and every permutation σ ∈ Snj , Wj is a

representative object of its class Ij as in the above discussion, and Dj
σ is the

endomorphism of V nj (= V ⊗nj
) defined by:

Dj
σ = µsj

1
εσ(sj

1) ⊗ ....⊗ µsj
nj
εσ(sj

nj
); (4.2)

where Ij = Jsj

1
, sj

nj
K, with sj

1
, ..., sj

nj
are elements of the set {1, ..., n}, distinct

two by two, and nj = |Ij | (its cardinal); such that J1, nK = ⋃̇
1≤j≤m

Ij a disjoint

union.

Similarly, denote by rΛn
V , the endomorphism of V n defined by:

rΛn
V =

∑

σ∈Sn1

ε(σ)(Trn1
r (idW1))

−1D1
σ ⊗ ...⊗

∑

σ∈Snm

ε(σ)(Trnm
r (idWm))

−1Dm
σ .

(4.3)

Definition 4.5. Let (C; {Vi}i∈J) be a semisimple category; V an object of
C dominated by a standard family of cardinal n and f ∈ EndC(V ). We call
left quantum determinant of f , and denote it by ldetnV (f), the element of
the ring KC defined by

ldetnV (f) = Trl(f
nlΛn

V ).

Similarly, we call right quantum determinant of f , and denote it by
rdetnV (f), the element of KC defined by

rdetnV (f) = Trr(f
nrΛn

V ).
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Remark 4.6. Note that for all 1 ≤ r, s ≤ n, if Vi(r) is not isomorphic to
Vi(s), then εrfµs = 0 by Schur’s axiom, and in this case, Trl(εrfµs) =
Trr(εrfµs) = 0. On the other hand, if Vi(r) ≃ Vi(s), then Trl(εrfµs)
and Trr(εrfµs) appearing in the explicit expressions of Trl(f

nlΛn
V ) and

Trr(f
nrΛn

V ) are well defined by the above discussion. Hence, ldetnV (f) and
rdetnV (f) are well defined and do not depend on the choice of the repartition
of the simple objects in the dominating family. In fact, in Lemma 4.11, we
prove that these two elements coincide with the usual determinant of some
corresponding matrices, and the change of the order of two isomorphic sim-
ple objects in the partition yields a change of the corresponding lines (resp.
columns) in the associated matrix, followed by a change of the correspond-
ing columns (resp. lines), hence resulting equal determinants. Similarly, the
change now of the order of two classes Ii and Ij yields a change of lines and
columns by an even number, hence the determinant is still invariant. We
prove in Proposition 4.13 that ldetnV (f) and rdetnV (f) are invariant under
the choice of the standard dominating family until they are assumed to be
equivalent (Definition 4.1).

Theorem 4.7. Let (C; {Vi}i∈J) be a semisimple pure category; V an object
of C dominated by a standard family (Vi(r); εr;µr)r of cardinal n and f ∈
EndC(V ). Then

(a) ldetnV (idV ) = rdetnV (idV ) = idI .

(b) ldetnV (q ⊗ f) = qnldetnV (f) and rdetnV (q ⊗ f) = qnrdetnV (f); for all
q ∈ K×C (K×C denotes the set of invertible morphisms of KC).

(c) ldetnV (f
∗) = rdetnV (f) and rdetnV (f

∗) = ldetnV (f).

Proof. C being pure, the left and right traces are ⊗−multiplicative, i.e,
Trl(f⊗g) = Trl(f)⊗Trl(g), for any endomorphisms f and g of C. Similarly
for the right trace. Then we have

(a): ldetnV (idV ) = Trl(lΛ
n
V )

=
∑

σ∈Sn1

ε(σ)(Trn1
l (idW1))

−1Trl(D
1
σ) ...

∑
σ∈Snm

ε(σ)(Trnm
l (idWm))

−1Trl(D
m
σ )

=
∑

σ∈Sn1

ε(σ)(Trn1
l (idW1))

−1Trl(εσ(s1
1
)µs1

1
) ... T rl(εσ(s1

n1
))µs1

n1
) ...
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∑
σ∈Snm

ε(σ)(Trnm
l (idWm))

−1Trl(εσ(sm
1
)µsm

1
) ... T rl(εσ(sm

nm
)µsm

nm

)

= (Trn1
l (idW1))

−1Trn1
l (idW1) ... (Tr

nm
l (idWm))

−1Trnm
l (idWm)

= idI .

(b): C being pure, the tensor product is bilinear, then (q ⊗ f)n =
qn.fn, hence ldetnV (q⊗f) = Trl((q⊗f)nlΛn

V ) = qnTrl(f
nlΛn

V ) = qnldetnV (f);
and similarly for the second claim.

(c): V ∗ is dominated by (V ∗
i(r);µ

∗
r ; ε

∗
r)r, and for all 1 ≤ j ≤ m and all

1 ≤ k ≤ nj , we have

(Tr
nj

l (idW ∗
j
))−1 = (Tr

nj
r (idWj ))

−1 (4.4)

and
Trl(f

∗ε∗sj

k
µ∗σ(sj

k)
) = Trr(µσ(sj

k)εsj

k
f) = Trr(fµσ(sj

k)εsj

k
). (4.5)

Hence, we obtain that
ldetnV (f

∗) = Trl((f
n)∗lΛn

V ∗)
=

∑
σ∈Sn1

ε(σ)(Trn1
l (idW ∗

1
))−1Trl(f

∗ε∗s1
1
µ∗σ(s1

1
)) ... T rl(f

∗ε∗s1
n1

µ∗σ(s1
n1
)) ...

∑
σ∈Snm

ε(σ)(Trnm
l (idW ∗

m
))−1Trl(f

∗ε∗sm
1
µ∗σ(sm

1
)) ... T rl(f

∗ε∗sm
nm

µ∗σ(sm
nm
))

=
∑

σ∈Sn1

ε(σ)(Trn1
r (idW1))

−1Trr(fµσ(s1
1
)εs1

1
) ... T rr(µσ(s1

n1
)εs1

n1
) ...

∑
σ∈Snm

ε(σ)(Trnm
r (idWm))

−1Trr(fµσ(sm
1
)εsm

1
) ... T rr(fµσ(sm

nm
)εsm

nm

)

= Trr(f
nrΛn

V ) (replacing the permutation σ by σ−1)
= rdetnV (f).

Similarly, rdetnV (f
∗) = ldetnV (f).

Remark 4.8. We immediately deduce from the previous Theorem 4.7, (c),
that

ldetnV ((f
∗)∗) = ldetnV (f) and rdetnV ((f

∗)∗) = rdetnV (f).

The following Proposition relates the quantum determinant of the
partial trace of an endomorphism, with this last’s trace.

Proposition 4.9. Let (C; {Vi}i∈J) be a semisimple category, U and V ob-
jects of C and f ∈ EndC(U ⊗ V ). Then
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(a) If V ∈ {Vi}i∈J , then diml(V ) ldet1V (pTrl(f)) = Trl(f).

(b) If U ∈ {Vi}i∈J , then dimr(U) rdet1U (pTrr(f)) = Trr(f).

Proof. (a): we have:

ldet1V (pTrl(f)) = Trl(pTr
n
l (f)lΛ

1
V ) = dim−1

l (V )Tr1l (f).

(b): Similar to (a).

Proposition 4.10. Let (C; {Vi}i∈J) be a semisimple category such that C
is spherical; V an object of C dominated by a standard family of cardinal n
and f ∈ EndC(V ). Then

ldetnV (f) = rdetnV (f)

which we simply denote by detnV (f).

Proof. Straightforward.

The following Lemmas serve in the coming Theorem for proving mul-
tiplicativity of quantum determinants and later on for rank introduction.

Lemma 4.11. Let (C; {Vi}i∈J) be a spherical semisimple category; V an
object of C dominated by a family (Vi(r); εr;µr)r of cardinal n and f ∈
EndC(V ). Then

detnV (f) = det(Mf ) (4.6)

where Mf = (afr,s)1≤r,s≤n :=
(
Tr(εrfµs)dim

−1(Wr,s)
)
1≤r,s≤n

, where we

denote by Wr,s the chosen representative simple object of the class that con-
tains r and s.

Proof. Note that the entries afr,s are well defined as if Vi(r) and Vi(s) are not

isomorphic, we have that afr,s = 0 by Schur’s axiom. Now, Mf is a block

diagonal matrix: Mf = diag(Mf
1 , ...,M

f
m) where, for all 1 ≤ j ≤ m :

Mf
j =

(
Tr(εlfµk)dim(Wj)

−1
)
sj

1≤l,k≤sj
nj

.
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Recall thatWj is a representative object of its class Ij . Then, we have

det(Mf ) = det(Mf
1 ) ... det(M

f
m)

=
∑

σ∈Sn1

ε(σ)(dimn1(W1))
−1Tr(εs1

1
fµσ(s1

1
))...T r(εs1

n1
fµσ(s1

n1
))...

∑
σ∈Snm

ε(σ)(dimnm(Wm))−1Tr(εsm
1
fµσ(sm

1
))...T r(εs1

nm

fµσ(s1
nm
))

=
∑

σ∈Sn1

ε(σ)(Trn1(idW1))
−1Tr(fn1D1

σ) ...

∑
σ∈Snm

ε(σ)(Trnm(idWm))
−1Tr(fnmDm

σ )

= Tr(fn1(
∑

σ∈Sn1

ε(σ)(Trn1(idW1))
−1D1

σ) ...

T r(fnm(
∑

σ∈Snm

ε(σ)(Trnm(idWm))
−1Dm

σ ))

= Tr(fn(
∑

σ∈Sn1

ε(σ)(Trn1(idW1))
−1D1

σ ⊗ ...

⊗ ∑
σ∈Snm

ε(σ)(Trnm(idWm))
−1Dm

σ ))

= detnV (f).

Lemma 4.12. Let C be a semisimple spherical category and V an object of
C dominated by a family (Vi(r); εr;µr)r of cardinal n and f, g ∈ EndC(V ).

Then Mfg =MfMg.

Proof. If Vi(r) is not isomorphic to Vi(s), then a
f
r,s = agr,s = 0 = afgr,s.

If Vi(r) ≃ Vi(s), let Wr,s be as in the previous Lemma 4.11. Then we have

afgr,s = Tr(εr fg µs)dim
−1(Wr,s)

= Tr(εr f(idV )g µs)dim
−1(Wr,s)

= Tr(εrf(
n∑

l=1

µlεl)gµs)dim
−1(Wr,s)

=
n∑

l=1

Tr(εrfµl εlgµs)dim
−1(Wr,s)

=

n∑

l=1

Tr( (kr,l ⊗ idWl,s
) εlgµs)dim

−1(Wr,s)
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=
n∑

l=1

Tr(kr,l ⊗ εlgµs)dim
−1(Wr,s)

=
n∑

l=1

Tr(kr,l)Tr(εlgµs)dim
−1(Wr,s)

=

n∑

l=1

Tr(kr,l ⊗ idWr,l
)dim−1(Wr,l)Tr(εlgµs)dim

−1(Wr,s)

=

n∑

l=1

afr,la
g
l,s

for some unique kr,l in KC , as εrfµl is an endomorphism of a simple object
Wr,l. Finally, M

fg =MfMg.

Proposition 4.13. Let C be a semisimple spherical category and V an ob-
ject of C dominated by a standard family of cardinal n and let f ∈ EndC(V ).
Then, detnV (f) is invariant under the choice of the standard dominating fam-
ily.

Proof. Let F = (Vi(r); εr;µr)r and F ′ = (V ′
i(s); ε

′
s;µ

′
s)s be two standard fam-

ilies on V . Then F ∼ F ′, by assumption. There exists then a permutation
π ∈ Sn, such that F ′ = (V ′

π(i(r)); ε
′
π(r);µ

′
π(r))r. By Proposition 4.2, we have

Mf
F ′ =

(
Tr(ε′π(k)fµ

′
π(l))dim

−1(W ′
π(k),π(l))

)
k,l

=
(
Tr(αkεkh

−1fhµlα
−1
l )dim−1(Wk,l)

)
k,l

=
(
Tr(α−1

l αkεkh
−1fhµl)dim

−1(Wk,l)
)
k,l

=
(
Tr(εkh

−1fhµl)dim
−1(Wk,l)

)
k,l

=Mh−1fh
F ,

where Wk,l and W
′
π(k),π(l) are the chosen representatives of their classes and

αk = αl : Wk,l −→ W ′
π(k),π(l) is an isomorphism between them. Using now

Lemma 4.12, we obtain that

detF ′(Mf ) = detF (Mh−1fh)
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= detF (Mh−1
MfMh)

= detF (Mf ),

where h =
∑
r
µ′π(r)εr and its inverse h−1 =

∑
s
µsε

′
π(s), which justifies the

last passage. In fact, Mh−1
= (Mh)−1 by the fact that εrµs = δr,s idVi(r)

,
for all 1 ≤ r, s ≤ n. Hence, as required.

Theorem 4.14. Let (C; {Vi}i∈J) be a spherical semisimple category; V an
object of C dominated by a standard family of cardinal n and f ∈ EndC(V ).
Then, detnV (f) verifies the following

(a) detnV (idV ) = idI .

(b) detnV (q ⊗ f) = qndetnV (f); for all q ∈ K×C .

(c) detnV (f
∗) = detnV (f).

(d) detnV (fg) = detnV (f)det
n
V (g), for all g ∈ EndC(V ).

Proof. C is spherical (not assumed to be pure), then trace is⊗−multiplicative
[14, page 50]. Hence:

(a), (c): Immediate from Theorem 4.7.

(b): Using the fact that Tr(q.f) = qTr(f) and note that (q.f)n :=
(q ⊗ f)n need not be equal to qn.fn (which holds if C is pure).

(d): This holds by Lemma 4.12.

The quantum determinant is not additive for arbitrary objects, but
for simple objects, this holds. Moreover we have

Corollary 4.15. Let V be a simple object of a spherical semisimple category
C. Then, the map

det : EndC(V ) −→ KC , f 7→ det(f) := det1V (f)

is an isomorphism of KC−algebras.

Proof. Let k ∈ KC and f, g ∈ EndC(V ). We have det(k.f) = k.det(f) by
Theorem 4.14, (b). On the other hand, we have det(f + g) = det1V (f +
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g) = Tr((f +g)dim−1(V ).idV ) = dim−1(V )Tr(f +g) = dim−1(V )(Tr(f)+
Tr(g)) = det(f) + det(g). This proves linearity.

Let f ∈ EndC(V ), such that det(f) = 0. Then dim−1(V )Tr(f) = 0,
but f is an endomorphism of a simple object, hence there exists a unique
k ∈ KC , such that f = k ⊗ idV , then k = 0 and so f = 0. This proves
injectivity.

Let k ∈ KC , and put f = k.idV . Then we have det(f) = k, hence
surjectivity holds.
Finally, by Theorem 4.14, (a), (d), det is an isomorphism of KC−algebras.

Definition 4.16. Let F : C −→ D be a tensor (F ; r; r0) and cotensor
(F ; i; i0) functor between monoidal categories. We say that F is conatural
if for any morphisms f : U −→ V and g : X −→ Y in C, where U, V,X, Y ∈
Ob(C), the following diagrams commute:

F (U)⊗ F (X)

F (f)⊗F (g)
��

F (U ⊗X)
i

oo

F (f⊗g)
��

F (V )⊗ F (Y )
r // F (V ⊗ Y )

F (U)⊗ F (X)
r //

F (f)⊗F (g)
��

F (U ⊗X)

F (f⊗g)
��

F (V )⊗ F (Y ) F (V ⊗ Y )
i

oo

Example 4.17. Any strong tensor functor is conatural.

Proof. Immediate from naturality of both F2 and F−1
2 .

We know (e.g, [14, page 49]) that traces are preserved under pivotal
functors (see [14, page 29], for definition of the latter). Here we present
weaker conditions on a functor to continue preserving traces.

Proposition 4.18. Any conatural Frobenius tensor functor ([4]), between
pivotal categories, preserves left and right traces.

Proof. Let F : C −→ D be a conatural Frobenius tensor functor be-
tween pivotal categories with tensor structure (F ; r; r0) and cotensor struc-
ture (F ; i; i0), V an object of C with left duality structures denoted by
(V ∗; dV ; bV ) and f ∈ EndC(V ). We have Trl(F (f)) = i0F (Trl(f))r0. In
fact, being a Frobenius tensor functor, F preserves duals and then
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(F (V ∗); i0F (d)r; iF (b)r0) are left duality structures on F (V ). On another
hand, we have

Trl(F (f)) = i0F (d)r(id⊗ F (f))iF (b)r0

= i0F (d)F (id⊗ f)F (b)r0

= i0F (Trl(f))r0.

The first and third equalities hold by definition, whereas the second is
due to the conaturality assumption. The same thing holds for right traces.

Lemma 4.19. Let (C; {Vi}i∈J) be a semisimple category and

F = (F ;F0;F2) : C −→ D

an additive strong tensor equivalence from C to a pivotal Ab−category D.
Let V be an object of C, dominated by a family (Vi(r); εr;µr)r of cardinal n.
Then, F (V ) is dominated by the family (F (Vi(r));F (εr);F (µr))r.

Proof. We have to show that for all 1 ≤ r ≤ n, the map ψr : KD −→
EndD(F (Vi(r))), k 7→ k⊗ idF (Vi(r)) is a bijection. Let fr ∈ EndD(F (Vi(r))).
F being a tensor equivalence, it is in particular fully faithful, hence there
exists a unique gr ∈ EndC(Vi(r)) such that F (gr) = fr. But Vi(r) is simple,
thus, there exists a unique hr ∈ KC such that gr = hr ⊗ idVi(r)

. Finally, for
any 1 ≤ r ≤ n, we have

fr = F (gr)

= F (hr ⊗ idVi(r)
)

= F2F
−1
2 F (hr ⊗ idVi(r)

)F2F
−1
2

= F2(F (hr)⊗ F (idVi(r)
))F2

= F2(F0F
−1
0 F (hr)F0F

−1
0 ⊗ idF (Vi(r)))F

−1
2

= F2(F0 ⊗ idF (Vi(r)))(F
−1
0 F (hr)F0 ⊗ idF (Vi(r)))(F

−1
0 ⊗ idF (Vi(r)))F

−1
2

= F−1
0 F (hr)F0 ⊗ idF (Vi(r)).
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Where, the fourth equality holds by naturality of F2, whereas the last one
holds by the unitality constraint of F2 and F−1

2 .
hr being unique, F−1

0 F (hr)F0 is unique in KD and we have

ψ(F−1
0 F (hr)F0) = fr.

Hence, (F (Vi(r)))r is a family of simple objects. Moreover, we have

∑

i

F (µr)F (εr) = F (
∑

r

µrεr) = F (idV ) = idF (V ).

The following Theorem shows that the quantum determinants are
well-behaved under strong tensor functors.

Theorem 4.20. Let (C; {Vi}i∈J) be a semisimple pure category; D a pivotal
pure Ab−category; F = (F ;F0;F2) : C −→ D an additive strong tensor
equivalence and let V be an object of C dominated by a family (Vi(r); εr;µr)r
of cardinal n. Then

ldetnV (F (f)) = F−1
0 F (ldetnV (f))F0;

and
rdetnV (F (f)) = F−1

0 F (rdetnV (f))F0.

Proof. We have that left and right traces verify

Trl(F (f)) = F−1
0 F (Trl(f))F0,

for all f ∈ EndC(V ). Consider the same partition of J1, nK for the family
(F (Vi(r)))r as taken for (Vi(r))r, and F (W1), ..., F (Wm) as representatives
of their classes. On the other hand, using Lemma 4.19, we have

ldetnV (F (f)) = Trl(F
n(f) lΛn

F (V ))

= Trl(
∑

σ∈Sn1

ε(σ)(Trn1
l (idF (W1)))

−1Fn1(f)D1
σ ⊗ ...

⊗ ∑
σ∈Snm

ε(σ)(Trnm
l (idF (Wm)))

−1Fnm(f)Dm
σ )
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=
∑

σ∈Sn1

ε(σ)F−1
0 F ((Trn1

l (idW1))
−1)F0Trl(F

n1(f)D1
σ)⊗ ...

⊗ ∑
σ∈Snm

ε(σ)F−1
0 (Trnm

l (idWm)−1)F0Trl(F
nm(f)Dm

σ )

=
∑

σ∈Sn1

ε(σ)F−1
0 F ((Trn1

l (idW1))
−1)F0Trl(F (f)F (µs1

1
εσ(s1

1
))⊗...⊗F (f)F (µs1

n1
εσ(s1

n1
))) ...

∑
σ∈Snm

ε(σ)F−1
0 F ((Trnm

l (idWm))−1)F0Trl(F (f)F (µsm
1
εσ(sm

1
))⊗ ...⊗ F (f)F (µsm

nm
εσ(sm

nm
))

= F−1
0

∑
σ∈Sn1

ε(σ)F ((Trn1
l (idW1))

−1)F0Trl(F (fµs1
1
εσ(s1

1
)))...T rl(F (fµs1

n1
εσ(s1

n1
))) ...

F−1
0

∑
σ∈Snm

ε(σ)F ((Trnm
l (idWm))−1)F0Trl(F (fµsm

1
εσ(sm

1
)))...T rl(F (fµsm

nm
εσ(sm

nm
))

= F−1
0

∑
σ∈Sn1

ε(σ)F ((Trn1
l (idW1))

−1)F0Trl(F (fµs1
1
εσ(s1

1
)))...T rl(F (fµs1

n1
εσ(s1

n1
))) ...

F−1
0

∑
σ∈Snm

ε(σ)F ((Trnm
l (idWm))−1)F0Trl(F (fµsm

1
εσ(sm

1
)))...T rl(F (fµsm

nm
εσ(sm

nm
))

= F−1
0

∑
σ∈Sn1

ε(σ)F ((Trn1
l (idW1))

−1)F (Trl(fµs1
1
εσ(s1

1
)))F0...F

−1
0 F (Trl(fµs1

n1
εσ(s1

n1
)))F0 ...

F−1
0

∑
σ∈Snm

ε(σ)F ((Trnm
l (idWm))−1)F (Trl(fµsm

1
εσ(sm

1
)))F0...F

−1
0 F (Trl(fµsm

nm
εσ(sm

nm
)))F0

= F−1
0

∑
σ∈Sn1

ε(σ)F ((Trn1
l (idW1))

−1)F (Trl(fµs1
1
εσ(s1

1
)))...F (Trl(fµs1

n1
εσ(s1

n1
)))F0 ...

F−1
0

∑
σ∈Snm

ε(σ)F ((Trnm
l (idWm))−1)F (Trl(fµsm

1
εσ(sm

1
)))...F (Trl(fµsm

nm
εσ(sm

nm
)))F0

= F−1
0 F (ldetnV (f))F0.

The second claim for right quantum determinant holds with a similar pro-
cedure.

5 Quantum rank of endomorphisms in semisimple category

We discuss some facts which will be of our interest, about dominating fam-
ilies of simple objects.

Proposition 5.1. Let C be a semisimple category, V and W isomorphic
objects of C and F = (Vi(r); εr;µr)r a standard dominating family of V , of
cardinal n. Then

(a) Let F ′ = (V ′
i(s); ε

′
s;µ

′
s)s be another dominating family of V , such that

F ′ ∼ F . Then, the following are equivalent

(i) ε′kµ
′
l = δk,l idV ′

i(k)
, for all 1 ≤ k, l ≤ n.
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(ii) F ′ is standard.

(b) F∗ := (V ∗
i(r);µ

∗
r ; ε

∗
r)r is a standard dominating family of V ∗.

(c) F ′ := (Vi(r); εrf
−1; fµr)r is a standard dominating family of W ∈

Ob(C), for any isomorphism f : V →W in C.

(d) F∗∗ is a standard dominating family of V , and we have F∗∗ ∼ F ,
where F∗∗ = (F∗)∗.

(e) Let F ′ be a dominating family of V . Then F ∼ F ′ ⇔ F∗ ∼ F ′∗.

Proof. (a): In fact, F ′ ∼ F ensures that F ′ is minimal. The second condi-
tion: ε′kµ

′
l = δk,l idV ′

i(k)
, for all 1 ≤ k, l ≤ n is present in both assertions.

(b): (V ∗
i(r))r is a family of simple objects, and we have

∑
r
ε∗rµ

∗
r =

(
∑
r
µrεr)

∗ = idV ∗ . On the other hand, we have µ∗kε
∗
l = (εlµk)

∗ = δl,k idV ∗
i(k)

,

for all 1 ≤ k, l ≤ n.

(c): Straightforward.

(d): This holds from Proposition 5.1, (b) and the fact that V ∗∗
i(r)

∼=
Vi(r), for all 1 ≤ r ≤ n.

(e): In fact, duals of two isomorphic objects are also isomorphic.

Proposition 5.2. Let C be a semisimple spherical category and V an object
of C dominated by a family (Vi(r); εr;µr)r of cardinal n. Then, the map

φ : EndC(V ) −→Mn(KC), f 7→Mf

is a morphism of KC−algebras. If moreover, εrµs = δr,s idVi(r)
, for all

1 ≤ r, s ≤ n. Then, φ is an isomorphism of KC−algebras.

Proof. Let f, g ∈ EndC(V ) and k ∈ KC . Then
φ(f + k.g) =Mf+k.g =Mf + kMg = φ(f) + kφ(g). So, φ is a morphism of
KC−modules. Further, we have

φ(fg) :=Mfg =MfMg := φ(f)φ(g),

where the second equality is justified by Lemma 4.12. Hence, φ is a mor-
phism of KC−algebras.
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Now, assume that εrµs = δr,s idVi(r)
, for all 1 ≤ r, s ≤ n and let

M = (ar,s)1≤r,s≤n ∈Mn(KC). Put f =
∑
r,s
ar,s.µrεs. Then

φ(f) =
(
Tr(εl(

∑

r,s

ar,s.µrεs)µk)dim
−1(Wl,k)

)
1≤l,k≤n

=
(∑

r,s

ar,s Tr(εlµrεsµk)dim
−1(Wl,k)

)
1≤l,k≤n

=
(
Tr(idWl,k

)al,k dim
−1(Wl,k)

)
1≤l,k≤n

= (al,k)1≤l,k≤n

=M.

Thus, φ is surjective. For the injectivity, let f, g ∈ EndC(V ) such
that φ(f) = φ(g). Then

φ(f) = φ(g) ⇒ Tr(εrfµs) = Tr(εrgµs), for all 1 ≤ r, s ≤ n

⇒ Tr(εr(f − g)µs) = 0, for all 1 ≤ r, s ≤ n

⇒ kr,s dim(Wr,s) = 0, for all 1 ≤ i, j ≤ n

(for some unique kr,s ∈ KC , such that εr(f − g)µs = kr,s ⊗ idWr,s)

⇒ kr,s = 0, for all 1 ≤ r, s ≤ n

⇒ εr(f − g)µs = 0, for all 1 ≤ r, s ≤ n

⇒ f = g,

where, the last step is obtained by composing by µr on the left, then sum-
ming over r and composing by εs on the right, then summing over s.

Let C be a semisimple category and V an object of C dominated by
a family (Vi(r); εr;µr)r of simple objects, of cardinal n. Let J1, nK = I1 ∪
I2∪ ...∪ Im be a partition of J1, nK into classes of isomorphic simple objects.

For any f ∈ EndC(V ), we associate two matrices Mf
l = (lafr,s)1≤r,s≤n and

Mf
r = (rafr,s)1≤r,s≤n, where

lafr,s = Trl(εrfµs)dim
−1
l (Vi(r));

and
rafr,s = Trr(εrfµs)dim

−1
r (Vi(r)).
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Note that it is not to confuse the notations r, s that mean “left” and
“right”, with the indices meaning.

Definition 5.3. Let C be a semisimple category such that its commutative
ground ring KC is a field, and let V be an object of C dominated by a
standard family, and f ∈ EndC(V ). The left quantum rank of f , denote by
ranl(f), is defined as

ranl(f) = ran(Mf
l ).

Similarly, the right quantum rank of f , denote by ranr(f), is defined
as

ranr(f) = ran(Mf
r ),

where,Mf
l ,M

f
r are the square matrices ofMn(KC) associated to f as defined

above and ran(Mf
l ), ran(M

f
r ) are the ordinary (determinantal) ranks.

Remark 5.4. Note that some authors as in [13], impose KC in definition of
a semisimple category to be a field, by the axiom that a morphism between
simple objects is either zero or an isomorphism.

Remark 5.5. ranl(f) and ranr(f) are well defined and do not depend
on the choice of the repartition of the simple objects in the dominating
family by similar discussion as in Remark 4.6. We show in Proposition 5.7
that ranl(f) and ranr(f) are invariant under the choice of the standard
dominating family, until they are assumed to be equivalent (Definition 4.1).

Remark 5.6. For the rest of the paper, all the results for left quantum
rank hold in the same way for right quantum rank, it suffices to replace the
word “left” by “right” except when there is an interaction between the two
notions and this manifests mainly in presence of duality (for objects and
morphisms of C). For this reason, in such case, the involved rank is made
precise (Lemma 5.9, Theorem 5.12, (a) and Proposition 5.23). Otherwise,
we simply write “ran(−)” to designate “ranl(−)”, “ranr(−)” and Mf to

designate Mf
l , M

f
r . The two notions of rank coincide if C is spherical, and

the associated matrices to f are equal.

Proposition 5.7. Let C be a semisimple category and V an object of C
dominated by a standard family and let f ∈ EndC(V ). Then, ran(f) is
invariant under the choice of the equivalent dominating families.



72 K. Draoui, H. Choulli, H. Mouanis

Proof. Let F = (Vi(r); εr;µr)r be a standard dominating family of V and
F ′ = (V ′

i(s); ε
′
s;µ

′
s)s, such that F ′ ∼ F . By Proposition 4.13, we have

Mf
F ′ =Mh−1fh

F

and with the same arguments therein, we obtain that

ranF ′(f) : = ranF ′(Mf )

= ranF (Mh−1fh)

= ranF (Mh−1
MfMh)

= ranF (Mf )

: = ranF (f).

The fourth passage holds by the fact that the rank of a matrix mul-
tiplied by invertible matrices does not change.

Proposition 5.8. Let V be an object of C, dominated by a standard family

(Vi(r); εr;µr)1≤r≤n. For all 1 ≤ k ≤ n, let fk = µkεk and gk =
n∑

l=1

µlεl.

Then, ran(fk) = 1 and ran(gk) = k.

Proof. Straightforward.

The following Lemmas will serve for proof of some properties of the
very defined rank, similar to those of a square matrix rank, in the ordinary
case.

Lemma 5.9. Let C be a semisimple category; V an object of C dominated
by a family (Vi(r); εr;µr)r of cardinal n and f ∈ EndC(V ). Then

Mf∗
l = (Mf

r )
T and Mf∗

r = (Mf
l )

T

where, the right hand sides are the transpose matrices.

Proof. Vi(r) ≃ Vi(s) ⇔ V ∗
i(r) ≃ V ∗

i(s), and using Proposition 5.1, (2), we have:
If V ∗

i(r) ≃ V ∗
i(s), then

laf
∗

r,s = Trl(µ
∗
rf

∗ε∗s)dim
−1
l (V ∗

i(r))
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= Trl((εsfµr)
∗)dim−1

l (V ∗
i(s))

= Trr(εsfµr)dim
−1
r (Vi(s))

= rafs,r.

Otherwise, laf
∗

r,s = 0 = rafs,r (by Schur’s axiom). The second claim is
proved similarly.

Remark 5.10. (1) The following are equivalent

(a) lafs,r = 0 (resp. rafs,r = 0).

(b) raf
∗

r,s = 0 (resp. alf
∗

r,s = 0).

(2) Mf
l , M

f
r , M

f∗
l and Mf∗

r are block diagonal matrices.

(3) The domination rank of V is just the size of the largest sub-matrix in
the diagonal blocks.

Lemma 5.11. Let C be a semisimple category and V an object of C dom-
inated by a standard family. Then, Mf is invertible and (Mf )−1 = Mf−1

for every f ∈ AutC(V ).

Proof. Immediate from Proposition 5.2.

Theorem 5.12. Let C be a semisimple category; V an object of C domi-
nated by a standard family (Vi(r); εr;µr)r and f ∈ EndC(V ). Then

(a) ranl(f
∗) = ranr(f) and ranr(f

∗) = ranl(f).

(b) ran(idV ) = n.

(c) ran(f−1) = ran(f), when f is an isomorphism.

Proof. (a): Proposition 5.1, (b), (d) and (e), ensures that all standard dom-
inating families on V ∗ are equivalent whenever those on V are assumed to
be; i.e, whitout taking the assumption on V ∗. Hence, ranl(f∗) and ranr(f∗)
are well defined, and using Lemma 5.9, we have

ranl(f
∗) := ranl(M

f∗
l ) = ranr((M

f
r )

T ) = ranr(M
f
r ) := ranr(f).
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Similar proof holds for the second claim.

(b): By Proposition 5.2, ran(idV ) := ran(M idV ) = n.

(c): This holds by Lemma 3.3.

Remark 5.13. By Proposition 5.1, (d) and (e), we immediately see that

ranl(f
∗∗) = ranl(f) and ranr(f

∗∗) = ranr(f).

Theorem 5.14. Under the same hypotheses of Theorem 5.12, for all f, g ∈
EndC(V ), we have

(a) ran(f + g) ≤ ran(f) + ran(g).

(b) ran(fg) ≤ ran(f) and ran(fg) ≤ ran(g).

(c) ran(fg) = ran(gf) = ran(f), for every g ∈ AutC(V ).

Proof. (a): ran(f + g) := ran(Mf+g) = ran(Mf + Mg) ≤ ran(Mf ) +
ran(Mg) (:= ran(f) + ran(g)).

(b): ran(fg) := ran(Mfg) = ran(MfMg) ≤ ran(f).
Similarly, ran(fg) ≤ ran(g).

(c): Let g ∈ AutC(V ), by Proposition 5.2, Mg is invertible (with
inverse Mf where f is the inverse of g). Thus

ran(gf) := ran(MgMf ) = ran(f);

ran(fg) := ran(MfMg) = ran(f).

Remark 5.15. (a) ran(fg) ̸= ran(gf) in general.

(b) For all f ∈ AutC(V ), ran(f−1) = ran(f) = ran(idV ) = n by Theorem
5.12, (b), (c) and Theorem 5.14, (b).

Corollary 5.16. Under the same hypotheses of Theorem 5.12, f is an
isomorphism, if and only if, ran(f) = n.
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Proof. By Theorem 5.14, ran(f) = ran(fidV ) = ran(idV ) = n.

Conversely, if f is an endomorphism of V such that ran(f) = n, then
Mf is invertible. Hence, f is an isomorphism by Proposition 5.2.

Corollary 5.17. The set KV := {f ∈ EndC(V ), ran(f) = 0} is an ideal
of the ring (EndC(V ),+, ◦).

Proof. Let f ∈ KV , g ∈ EndC(V ). Then, ran(fg) ≤ ran(f) = 0, by
Theorem 5.14, (b).

Lemma 5.18. ran(k.f) = ran(f), for all k ∈ K×C , and f ∈ EndC(V ).

Proof. ran(k.f) := ran(Mk.f ) = ran(kMf ) = ran(f).

Corollary 5.19. Let f, g ∈ EndC(V ), such that ran(g) = 0. Then

ran(f + g) = ran(f).

Proof. By Theorem 5.14, (a), we have ran(f + g) ≤ ran(f). On the other
hand, by Lemma 5.18, we have ran(f) = ran(f + g − g) ≤ ran(f + g) +
ran(g).

Remark 5.20. Let mf := f + ...+ f︸ ︷︷ ︸
m−times

. Then, by Theorem 5.14, (a), we

have

ran(mf) ≤ m ran(f).

Remark 5.21. Let V be an object of C, dominated by a standard fam-
ily (Vi(r); εr;µr)r of cardinal n, of non isomorphic simple objects. Then,
ran(f) = |r|, for which Tr(εrfµr) ̸= 0. In fact, by Schur’s axiom, Tr(εrfµs)
= 0 for any r ̸= s.

Now, without assuming KC to be a field, we define a rank of f ∈
EndC(V ) using the McCoy rank of a matrix over a commutative ring [1] as
follows.
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Definition 5.22. Let C be a semisimple category, V an object of C domi-
nated by a standard family, and f ∈ EndC(V ). The rank of f , denoted by
rk(f), is the integer

rk(f) = rk(Mf )

where, rk(Mf ) is the McCoy rank of the associated matrix Mf .

Theorem 5.23. Let C be a spherical semisimple category; V an object of
C dominated by a standard family of cardinal n and f ∈ EndC(V ). Then,
rk(f) verifies

(a) rk(f∗) = rk(f).

(b) rk(fg) ≤ min{rk(f), rk(g)}.
(c) rk(f) = rk(fg) = rk(hf), for all g, h ∈ AutC(V ).

(d) If KC is an integral domain, then rk(f) = ran(f),
(the latter is computed over the quotient field of KC).

(e) rk(f) < n if and only if detnV (f) is a zero divisor.

(f) If detnV (f) is invertible, then rk(f) = n.

Proof. This holds from [1, pages 31-32] and with similar arguments as in
Theorems 5.12 and 5.14.

6 Quantum rank of morphisms in semisimple category

For this section, C is a spherical semisimple category, and KC is assumed to
be a field.

Let U and V be two objects of C, dominated by standard families F =
(Vi(s); εs;µs)s and F ′ = (V ′

i(r); ε
′
r;µ

′
r)r, of cardinalsm and n respectively. We

want to define a quantum rank for a morphism f : U −→ V in the same
way as we did in the previous section (3) for endomorphisms. Let then
ran(f) := ran(Mf ), where Mf = (ar,s)1≤r≤n, 1≤s≤m with

ar,s = Tr(ε′rfµs)dim
−1(Vi(s)).
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By Proposition 4.2, if F = (V i(s); εs;µs)s and F ′
= (V

′
i(r); εr

′;µr ′)r
are other equivalent dominating families of U and V respectively, then there
exist h ∈ AutC(U), t ∈ AutC(V ), suth that εs

′ = ε′sh
−1 and µr = tµr, hence

ar,s = Tr(εr
′fµs)dim−1(V i(s)) = Tr(ε′rh

−1ftµs)dim
−1(Vi(s)),

where, the ar,s’s are the entries of Mf , relatively to F and F ′
. Then

ranF ,F ′(f) : = ranF ,F ′(Mf )

= ranF ,F ′(Mh−1ft)

= ranF ,F ′(Mh−1
MfM t)

= ranF ,F ′(Mf )

: = ranF ,F ′(f).

The fourth passage is justified by the fact that Mh−1
and M t are

invertible matrices. Hence, ran(f) is well defined.

Remark 6.1. (a) If Vi(s) is not isomorphic to any V ′
i(r), for all 1 ≤ s ≤ m

and 1 ≤ r ≤ n. Then ran(f) = 0, for all f ∈ HomC(U, V ).
(b) For all f ∈ HomC(U, V ), ran(f) does not exceed the minimum of n and
m.

Proposition 6.2. Let C be a semisimple spherical category and U and V
be objects of C dominated by standard families of one same simple object,
and let f : U −→ V be a split monomorphism (resp. a split epimorphism).
Then

ran(f) = n, (resp. ran(f) = m).

Proof. f : U −→ V is a split monomorphism implies that there exists
g : V −→ U such that, gf = idU , hence, n = ran(idU ) = ran(gf) ≤ ran(f)
by Theorem 5.14, (b). Similarly for the second claim.

Remark 6.3. One can immediately see that for any isomorphism f : V −→
W in C, we have

ran(f) = ran(f−1).
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Remark 6.4. The above defines a morphism rank function on C as:

r : f ∈ HomC(U, V ) 7−→ r(f) := ran(f),

for all U, V ∈ Ob(C), satisfying:

(a) r(k) = 1, for every non zero endomorphism k of a simple object X of
C.

(b) r(f + g) ≤ r(f) + r(g), for all f, g ∈ EndC(V ).

(c) r(fg) ≤ min{r(f); r(g)}, for all f, g ∈ EndC(V ).

Remark 6.5. For every object V of C, let rV = r|EndC(V ) and define

ker(rV ) := {f ∈ EndC(V ), rV (f) = 0}.

Then, ker(rV ) is just the ideal KV of Corollary 5.17.

Example 6.6. The category vectK of finite dimensional vector spaces over a
field K is a semisimple category and the quantum rank of an endomorphism
f of a vector space is nothing but the rank of a representative matrix of f .

Example 6.7. Let C be a semisimple category such that all the simple
objects of C are isomorphic to the unit object I. Assume that KC is a
local ring and that there exists an object V of C dominated by a family
of cardinal n, where n = dim(HomC(V, I)). Then, V admits a standard
dominating family of cardinal n and rankd(V ) = n. In fact, KC being
local and HomC(V, I) a projective module over KC , then, HomC(V, I) is
free. Hence, rank(HomC(V, I)) is well defined. Picking a basis (µi)1≤i≤n

of HomC(V, I) and its dual basis (εi)1≤i≤n, we obtain that V is dominated
by (I; εi;µi)i, and εiµj = δi,j idI , for all 1 ≤ i, j ≤ n.

Acknowledgement

The authors would like to thank the anonymous editor and referee for the
careful reading, useful suggestions and constructive comments.



Quantum rank and determinant in pivotal categories 79

References

[1] Brown, W.C., “Matrices Over Commutative Rings”, Marcel Dekker, New York, NY,
USA, 1993.

[2] Choulli, H., Draoui, K., and Mouanis, H., Quantum determinants in ribbon category,
Categ. Gen. Algebr. Struct. Appl. 17(1) (2022), 203-232.

[3] Chuang, J. and Lazarev, A., Rank functions on triangulated categories, J. Reine
Angew. Math. 781 (2021), 127-164.

[4] Day, B. and Pastro, C., Note on Frobenius monoidal functors, New York J. Maths.
14 (2008), 733-742.

[5] Geer, N., Kujawa, J., and Patureau-Mirand, B., Generalized trace and modified
dimension functions on ribbon categories, Sel. Math. New Ser. 17 (2010), 453-504.

[6] Geer, N., Kujawa, J., and Patureau-Mirand, B., M-traces in (non unimodular) piv-
otal categories, Algebr. Represent. Theor. 25 (2021), 759–776.

[7] Geer, N., Patureau-Mirand, B., and Virelizer, A., Traces on ideals in pivotal cate-
gories. Quantum Topol. 4(1) (2013), 91-124.

[8] Karantha, M.P., Nandini, N., and Shenoy, D.P., Rank and dimension functions,
Electron. J. Linear Algebra, 29 (2015), 144-155.

[9] Kassel, C., “Quantum Groups”, Gradute Texts in Mathematics, 155, Springer-
verlag, 1995.

[10] Mac-Lane, S., “Categories for the Working Mathematician”, Graduate Texts in
Mathematics, 5, Springer-verlag, 2013.

[11] Ngoc Phu, H. and Huyen Trang, N., Generalization of traces in pivotal categories,
J. Sci Technol. 17(4) (2019), 20-29.

[12] Turaev, V.G., “Quantum Invariants of Knots and 3-manifolds”, Berlin, Boston: De
Gruyter, 2016.

[13] Turae, V.G. and Wenzl, H., Semisimple and modular categories from link invariants,
Math. Ann. 309 (1997), 411-461.

[14] Turaev, V.G. and Virelizier, A., “Monoidal Categories and Topological Field The-
ory”, Progress in Mathematics, 322, Birkhuser/Springer, 2017.



80 K. Draoui, H. Choulli, H. Mouanis

Khalid Draoui Mathematical Sciences and Applications Laboratory, Department of Mathemat-
ics, Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796, University Sidi Mohamed Ben Abdellah
Fez, Morocco.
Email: khalid.draoui@usmba.ac.ma

Hanan Choulli Mathematical Sciences and Applications Laboratory, Department of Mathemat-
ics, Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796, University Sidi Mohamed Ben Abdellah
Fez, Morocco.
Email: hanan.choulli@usmba.ac.ma

Hakima Mouanis Mathematical Sciences and Applications Laboratory, Department of Math-
ematics, Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796, University Sidi Mohamed Ben
Abdellah Fez, Morocco.
Email: hakima.mouanis@usmba.ac.ma


