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On free acts over semigroups and their
lattices of radical subacts

Mohammad Ali Naghipoor

Abstract. This study aims to investigate free objects in the category of
acts over an arbitrary semigroup S. We consider two generalizations of free
acts over arbitrary semigroups, namely acts with conditions (F1) and (F2),
and give some new results about (minimal) prime subacts and radical subacts
of any S-act with condition (F1). Furthermore, some lattice structures for
some collections of radical subacts of free S-acts are introduced. We also
obtain some results about the relationship between radical subacts of free S-
acts and radical ideals of S. Moreover, for any prime ideal P of a semigroup
S with a zero, we find a one-to-one correspondence between the collections
of P−prime subacts of any two free S-acts. Also, it is shown that all free
S-acts have isomorphic lattices of radical multiplication subacts.

1 Introduction

Let S be a semigroup. By a right S-act AS (or act A for short), we mean
a set A with an action A × S −→ A defined by (a, s) 7−→ as such that for
any a ∈ A and s, t ∈ S, (as)t = a(st). Also, here the action of a semigroup
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on the empty set is allowed. If S is a monoid with identity element 1S , this
action can be considered unitary in the sense that, a1S = a for each a ∈ A.
However, generally S-acts may not be unitary even if S is a monoid (see, for
instance, [2, Chapter 11]). Here, unless stated otherwise, we study the more
general case of all acts rather than unitary ones. As we will see, for non-
unitary acts, some structures of acts can be developed in different ways (see,
for instance, Definition 2.1). By an S-homomorphism (or a homomorphism
for short) from an S-act A into an S-act B, we mean a mapping f : A −→ B
which preserves the actions in the sense that, f(as) = f(a)s, for any a ∈ A
and s ∈ S. For an arbitrary semigroup S, we use the notation Act-S to
denote the category of all right S-acts in which the objects are all non-
empty right S-acts and the morphisms are all S-homomorphism between
right S-acts. Moreover, if we also consider the empty S-act as an object,
the category of all S-acts is denoted by Act-S. If a semigroup S contains
a zero, 0, we consider any right S-act A to have a unique fixed element,
denoted by θ, such that a0 = θ for any a ∈ A. Such an act is called a
centered act. The category of all centered S-acts and all S-homomorphisms
preserving the fixed element is denoted by Act0-S.

For any subact B of an S-act A, the set {s ∈ S|As ⊆ B}, denoted
by (B : A), is called the colon of B in A. It can easily be observed that
(B : A) is an ideal of S, whenever it is not empty. Moreover, for any subset
T (possibly empty) of S, the subset {at | a ∈ A and t ∈ T} of A is denoted
by AT.

A proper subact B of A is called prime, if for any a ∈ A and s ∈ S,
aSs ⊆ B implies that a ∈ B or s ∈ (B : A). The intersection of all prime
subacts of A containing B is called the prime radical of B. Also, B is said
to be a radical subact if it is equal to its radical. The set of all prime subacts
of A containing B is known as the prime variety of B.

The notions of prime ideals of rings and prime submodules in the
category of modules over rings (Mod-R) are remarkable subjects in the
study of rings and modules, first proposed for Mod-R by Dauns in [3]. In
the category of S-acts, [1] is known as the first paper on prime subacts in
which the notion of prime acts is introduced as a generalization of prime
modules. A great deal of work has been done on the concepts of prime
ideals in semigroups and prime subacts in Act-S since then. For instances,
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[1, 4, 8, 10, 12, 13] studied different problems on prime ideals and prime
subacts.

The notion of free act over a monoid S is defined as a free object in
the category of unitary S-acts by different approaches (see, for example, [6,
Section 1.5]). As an elementary approach, a unitary S-act F is free if it
has a basis X for which every element a ∈ F has a unique presentation in
the form a = xs, for the unique x ∈ X and s ∈ S. Equivalently, F is a
free unitary S-act if it is a coproduct of a non-empty family of right S- acts
each of which is isomorphic to S. These equivalent definitions for free S-acts
satisfy the “universal property of free objects” in the category of all unitary
S-acts ( [6, Theorem 1.5.15]). By [6, Remark 2.3.7], a similar argument
defines a free S-act in the category of unitary centered acts over a monoid
S with a zero. In this case, for any free S-act F, there exists an index set I
such that

F = (
⋃̇

i∈I
(Si \ {θi}))

⋃̇
{θ},

where each Si is isomorphic to S and θ is the fixed element of F. But, as
we see in Remark 2.3, the above descriptions of an S-act F do not give a
free object in the category of all (not only unitary) S-acts. Here, in Section
2 of this article, we consider an arbitrary semigroup S (possibly without
identity and zero) and study the notion of free S-acts. This consideration
gives different classes of objects in Act-S in Definition 2.1.

Similar to the prime subacts, some particular kinds of free acts are
defined by using the translations of semigroups in acts. Hence in a sense,
the study of prime subacts of these classes of objects in Act-S (and in
Act-S) can be more interesting than similar ones in Mod-R. In light of the
examination of this aspect of the objects in Act-S, a few results are given
in Section 2 to characterize radical subacts of new defined acts.

Recently, there has been considerable interest in prime and radical
ideals of semigroups (see, for instance, [10, 13]). However, studying these
notions in Act-S is a new subject in literature. This study aimed to explore
more about these issues in Act-S. In [8], some lattices of subacts of (free)
acts over monoids were studied. We consider new generalizations of free
acts, defined in Definition 2.1, and study generalizations of some results
in [8] for the bigger classes of acts over arbitrary semigroups. In Section
3, the notion of (prime) radical subacts for a generalization of free acts is
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investigated. We consider lattice structures on different posets of radical
subacts of this type of acts. In Theorem 3.7, it is proved that the algebraic
connections between these structures are not trivial in the sense that non-
isomorphic free acts may have isomorphic lattices of radical subacts.

For the preliminary results and definitions relating to semigroups and
acts in this paper, we refer the readers to [2] and [6], respectively.

2 Free acts and some results on prime subacts of them

The concept of free acts can be defined as free objects in the category of
acts over an arbitrary semigroup. However, the other approaches, defining
freeness in the category of acts over monoids, may lead to different (non-
equivalent) definitions for acts over arbitrary semigroups. We consider the
following notions.

Definition 2.1. Let Act-S be the category of right acts over a semigroup
S.

(1) In what follows, by a free act on a non-empty set X in Act-S, we
mean a free object in Act-S which satisfies the universal property as
follows.

There exists a mapping i : X −→ F such that for any right S-act
A in Act-S and any mapping ϕ : X −→ A there exists a unique
homomorphism φ̄ : F −→ A, such that φ̄i = φ (when S contains a
zero, homomorphisms of S-acts preserve zeros).

(2) A right S-act F in Act-S satisfies Condition (F1), if F has a gener-
ating set X such that every element a ∈ F, which is expressible in the
form a = xs for some x ∈ X and s ∈ S, has a unique representation
(when S contains a zero, 0, xs = θ if and only if s = 0).

(3) A right S-act F in Act-S satisfies Condition (F2), if F is a coproduct
of a non-empty family of subacts each of which is isomorphic to S or
S1 (if S contains a zero, any coproduct of S-acts has a unique adjoined
fixed element and is a subact of their products (see, [6, Proposition
2.1.15, Remark 2.1.16 ])).
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The following theorem gives some relationships between these notions
for different types of semigroups.

Theorem 2.2. Let S be a semigroup.

(1) If S is a monoid (possibly with a zero) the above definitions are equiv-
alent in the category of unitary right S-acts Act-S (Act0-S).

(2) Suppose that S has no identity element. There exists a free S-act
on a non-empty set X in Act-S. Moreover, every free S-act satisfies
Condition (F1). Furthermore, every act satisfying Condition (F1) also
satisfies Condition (F2).

(3) If S has no left identity element, then any S-act F satisfies Condition
(F1) if and only if F is free.

Proof. Part (1) is a summary of [6, Theroems 1.5.13, 1.5.15 and Remark
2.3.7].

For any non-empty set X, consider the right S-act X ×S1 defined by
(x, s)t = (x, st) for any x ∈ X, s ∈ S1 and t ∈ S. Let i : X −→ X × S1

with i(x) = (x, 1) and f : X −→ A be a mapping for an arbitrary S-act A.
Define f̄ : X × S1 −→ A by f̄(x, s) = f(x)s and f̄(x, 1) = f(x), for any
s ∈ S and x ∈ X. Since st ̸= 1, for any s ∈ S1 and t ∈ S, f̄ is a well-defined
homomorphism. Moreover, since (x, 1), x ∈ X, generate X × S1, it can be
checked that f̄ is unique with f̄(i(x)) = f(x). So, X × S1 is free on X.

To prove the second statement of (2), we show that if F is free on a
set X with i : X −→ F as in Definition 2.1 (1), then i(X) is a generating set
for F, satisfying Condition (F1). Consider mapping i′ : X −→ i(X)S∪i(X),
with i′(x) = i(x), for each x ∈ X, and the inclusion map j : i(X)S∪i(X) −→
F. Then there exists a unique homomorphism φ̄ : F −→ i(X)S ∪ i(X)
extending i′. So jφ̄ = idF , which implies that a = j(φ̄(a)) = φ̄(a) ∈ i(X)S∪
i(X), for any a ∈ F. Thus a = i(x)s or a = i(x) generated by an element
of i(X). To prove the uniqueness of this expression for a, assume that there
exist x, x′ ∈ X and s, t ∈ S such that a = i(x)s = i(x′)t. Consider the
right S-act X × S1 as above and a mapping f : X −→ i(X) × S1, by
f(x) = (i(x), 1) and f(x′) = (i(x′), 1). Then for the unique homomorphism
f̄ : F −→ i(X)× S1 we have,

(i(x), s) = (i(x), 1)s = f(x)s = f̄(i(x))s = f̄(i(x)s) = f̄(a)
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= f̄(i(x′)t) = f̄(i(x′))t = f(x′)t = (i(x′), 1)t = (i(x′), t).

Therefore, the representation of a = i(x)s ∈ F is unique.

To prove the last statement of (2), note that if F satisfies Condition
(F1) with a generating set X, then every element of F is of the form xi
or has a unique expression a = xis, for some xi ∈ X and s ∈ S. For such
xi put Si = xiS ∪ {xi}. We have two cases. If xi = xit, for some t ∈ S
then fi : Si −→ S defined by fi(xis) = s, for each s ∈ S is a well-defined
isomorphism of S-acts. In the second case, if xi ̸= xit, for each t ∈ S then
gi : Si −→ S1 defined by gi(xi) = 1 and gi(xis) = s, for each s ∈ S is a well-
defined isomorphism of S-acts. If xis = xj , for some s ∈ S and xi, xj ∈ X,
then xis

2 = xjs which implies that xi = xj , by the assumption of Condition
(F1). Hence for each xi, xj ∈ X as above, Si ∩ Sj = ∅. Therefore, F is a
coproduct of copies of S or S1, i.e., F satisfies Condition (F2).

The sufficiency part in (3) follows from (2). For the proof of the neces-
sity part in (3), suppose that F satisfies Condition (F1) with a generating
set X as in Definition 2.1 (2). We show that F is free on X in Act-S.
Consider the inclusion mapping i : X −→ F and a mapping f : X −→ A for
an arbitrary S-act A. Since S has no left identity, Condition (F1) implies
that x ̸= x′s, for any x, x′ ∈ X and s ∈ S. Thus, every element a ∈ F is
either an element of X or can be uniquely expressed in the form a = xs,
for elements x ∈ X and s ∈ S. Now, define f̄ : F −→ A by f̄(xs) = f(x)s
and f̄(x) = f(x), for any x ∈ X and s ∈ S. Then by above argument, f̄ is
a well-defined homomorphism and uniquely extends f.

Remark 2.3. (1) Note that Condition (F1) for an S-act F, may not lead
to freeness of F in general. For example, take multiplicative subsemigroups
F = {2, 4} ⊆ Z6, S = {4, 8} ⊆ Z12 and A = {0, 4} ⊆ Z8 as S-acts.
Consider the inclusion map i : {2} ↪→ F and the map f : {2} −→ A,
defined by f(2) = 4. Then, there is no S-homomorphism h : F −→ A with
hi = f. However, X = {2} generates F uniquely. Similar arguments for the
inclusion map {4} ↪→ F shows that F is not a free S-act. Note that in this
example, although S is a monoid, A is not a unitary S-act.

(2) A generating set for multiplicative semigroup S = 4Z as an S-
act should contains 4 and 12. But 48 = 4 × 12 = 12 × 4, has no unique
presentation. So, Condition (F2) may not imply Condition (F1) in general.
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There are different definitions in literature for the notion of primeness
in Act-S by using elements, subacts or relations on acts (see, for instance,
[1, 9, 12]). In the rest of this section, we shall investigate prime and radical
subacts based on the following standard definitions (from [1, 8]) for an
arbitrary semigroup S and acts over it.

Definition 2.4. (1) Let S be a semigroup, P a proper ideal of S and A
an S-act. P is called a prime ideal if, for any a, b ∈ S, aSb ⊆ P implies
that a ∈ P or b ∈ P. A proper subact B of A is called prime, if for any
a ∈ A and t ∈ S, aSt ⊆ B implies that a ∈ B or At ⊆ B (i.e., a ∈ B
or t ∈ (B : A)). Clearly, if S is commutative, B is a prime subact of A if
and only if at ∈ B implies that a ∈ B or At ⊆ B. Also, a centered S-act
A is called a prime act if the one element subact {θ} is a prime subact of
A. Obviously, the empty subact of any act is prime. By a P−prime subact
of A, we mean a prime subact of A with colon P (possibly, P = ∅). The
set of all P−prime subacts of A is called the P−prime spectrum of A and
denoted by SpecP (A). Moreover, Spec(A) denotes all prime subacts of A.

(2) For an arbitrary ideal I of S the prime radical of I is denoted by√
I and is defined to be the intersection of all prime ideals of S containing I.

Also, for any subact B of an S-act A, the intersection of all prime subacts of
A which contains B, is called the prime radical of B (radical of B for short)
and is denoted by radA(B) (or rad(B) where the acts are delineated). We
define rad(B) = A when there is no prime subact in A containing B. Also,
B is called a radical subact if rad(B) = B. The set of all radical subacts of
A is denoted by Rad(A).

Clearly, every prime subact is a radical subact and rad(rad(B)) =
rad(B), for any subact B of A. We can express similar assertions for radicals
of ideals in S.

The following proposition gives some of the useful properties of the
prime radical in Act-S.

Proposition 2.5. ([8, Proposition 2.2]) Let A and A′ and Aγ , for any
γ ∈ Γ be S-acts. Assume that Sub(A) is the lattice of subacts of A and
B,C ∈ Sub(A) and Bγ ∈ Sub(Aγ), for each γ ∈ Γ. The following assertions
hold.



88 M.A. Naghipoor

(i) For every prime subact P of A, B ⊆ P if and only if rad(B) ⊆ P.

(ii) rad(B) ⊆ rad(C) if and only if every prime subact P of A, which
contains C, also contains B.

(iii) If f : A −→ A′ be a homomorphism then f(rad(B)) ⊆ rad(f(B)).
In particular, if f is an isomorphism then f(rad(B)) = rad(f(B)).
Moreover, for any B′ ∈ Rad(A′), f−1(B′) ∈ Rad(A).

(iv) rad(
∏

γ∈ΓBγ) in
∏

γ∈ΓAγ is a subset of
∏

γ∈Γ rad(Bγ). In particu-
lar, if every prime subact of

∏
γ∈ΓAγ is also a product of subacts of

{Aγ}γ∈Γ, then the equality holds.

Note that by Theorem 2.2, any result for acts with Condition (F1)
can be trivially restated for free acts. So, in the following, some of the
results are stated for acts with Condition (F1). Some of these results were
studied in [8] for free acts over monoids. However, here we consider the
bigger classes of acts over arbitrary semigroups. Note that, as we have seen
in Remark 2.3 (1), even if S is a monoid then, an arbitrary S-act may not be
unitary. Therefore, it is reasonable to recheck the mentioned results of [8],
also for acts with Condition (F1).

Lemma 2.6. Let A be an S-act, F be an S-act satisfying Condition (F1)
and I, J and Ij for any j ∈ J be ideals of S. The following assertions hold.

(i) FI ⊆ FJ if and only if I ⊆ J.

(ii) (FI : F ) = I.

(iii) Let I be a proper ideal of S. Then, I is a prime ideal if and only if FI
is a prime subact of F. Moreover, FS is a prime subact provided that
FS ̸= F.

(iv) F (
⋂

j∈J Ij) =
⋂

j∈J FIj .

(v) Let B be a prime subact of A. If (B : A) is a non-empty proper subset
of S then it is a prime ideal of S.

Proof. The proofs of (i), (ii), (iii), and (v) are routine. To prove (iv),
suppose that X is a generating set with unique representations for elements
of F. Let x ∈ ⋂j∈J FIj . Then, for every k ∈ J , there exist xk ∈ X and
sk ∈ Ik such that x = xksk. Thus, for every k, l ∈ J , xksk = xlsl. Now,
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Condition (F1) for F implies that sk = sl for every k, l. So, sk ∈ ⋂j∈J Ij , for
each k ∈ J . Hence, x = xksk ∈ F (

⋂
j∈J Ij). Also, F (

⋂
j∈J Ij) ⊆

⋂
j∈J FIj

is clear. So, the equality in (iv) holds.

Lemma 2.7. ([8, Lemma 2.8]) Let A be a right S-act and P a proper subact
of A. Then, P is a prime subact of A if and only if for any (right) ideal I
of S and any subact B of A, BI ⊆ P implies that I ⊆ (P : A) or B ⊆ P.
Similarly, an ideal P of a semigroup S is prime if and only if for any ideals
I and J of S, IJ ⊆ P implies that I ⊆ P or J ⊆ P.

Remark 2.8. Let A be an S-act and B be a subact and P be a prime
subact of A. Let I be an ideal of S. If BI = A, then A = BI ⊆ B ⊆ A and
A = BI ⊆ AI ⊆ A. Also, if BI ̸= A, then by Lemma 2.7, BI ⊆ P if and
only if I ⊆ (P : A) or B ⊆ P. So,

rad(BI) = rad(AI) ∩ rad(B), (2.1)

and therefore,

rad(rad(B)I) = rad(AI) ∩ rad(rad(B)) = rad(AI) ∩ rad(B) = rad(BI).
(2.2)

The following proposition is proved in [8, Proposition 2.13] for acts
over monoids. We recall it for acts over arbitrary semigroups with more
explanations in the proof.

Proposition 2.9. Let S be a semigroup, {Bγ}γ∈Γ be a family of radical
subacts of an S-act A, I be any ideal of S and {Jλ}λ∈Λ be a finite family of
ideals of S such that

⋂
λ∈Λ Jλ ̸= ∅. The following assertions hold.

(i) rad(
⋂

γ∈ΓBγ) =
⋂

γ∈Γ rad(Bγ).

(ii) rad((
⋂

γ∈ΓBγ)I) =
⋂

γ∈Γ rad(BγI).

(iii) rad(A(
⋂

λ∈Λ Jλ)I) = rad(A(
⋂

λ∈Λ JλI)).

(iv) rad(rad(
⋃

γ∈ΓBγ)I) = rad(
⋃

γ∈Γ rad(BγI)).

Proof. The proof for (i) is clear.
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(ii) Part (i) and equation (2.1) imply that:

rad((
⋂

γ∈Γ
Bγ)I) =rad(AI) ∩ rad(

⋂

γ∈Γ
Bγ) = rad(AI) ∩ (

⋂

γ∈Γ
rad(Bγ))

=
⋂

γ∈Γ
(rad(AI) ∩ rad(Bγ)) =

⋂

γ∈Γ
rad(BγI).

(iii) Suppose that P is a prime subact of A containing A(
⋂

λ∈Λ Jλ)I.
Then, (P : A) is not empty. So, by Lemma 2.6 (v), (P : A) = S or it is a
prime ideal of S. Hence,

(P : A) ⊇ (A(
⋂

λ∈Λ
Jλ)I : A) ⊇ (

⋂

λ∈Λ
Jλ)I.

Thus, putting Λ = {1, 2, . . . , n}, for some positive integer n, we get by
Lemma 2.7 that I ⊆ (P : A) or

⋂n
λ=1 Jλ ⊆ (P : A). In the latter case,

J1J2 . . . Jn ⊆ ⋂n
λ=1 Jλ implies by Lemma 2.7 that Jλ ⊆ (P : A), for some

λ ∈ Λ. So,
⋂

λ∈Λ JλI ⊆ (P : A), which implies that A(
⋂

λ∈Λ JλI) ⊆ P.
Therefore, by Proposition 2.5 (ii), rad(A(

⋂
λ∈Λ Jλ)I) ⊇ rad(A(

⋂
λ∈Λ JλI)).

Also, clearly rad(A(
⋂

λ∈Λ Jλ)I) ⊆ rad(A(
⋂

λ∈Λ JλI)). So, we get the result.

(iv) First, note that if P is a prime subact of A containing
⋃

γ∈ΓBγI
then P ⊇ rad(BγI), for each γ ∈ Γ. Hence, P ⊇ ⋃

γ∈Γ rad(BγI) which
implies that:

rad(
⋃

γ∈Γ
rad(BγI)) ⊆ rad(

⋃

γ∈Γ
BγI).

Since for each γ ∈ Γ, BγI ⊆ rad(BγI), the reverse inclusion is clear. So, we
get that:

rad(
⋃

γ∈Γ
rad(BγI)) = rad(

⋃

γ∈Γ
BγI) = rad((

⋃

γ∈Γ
Bγ)I) = rad(rad(

⋃

γ∈Γ
Bγ)I),

where the last equality follows from equation (2.2).

Let P be a prime subact of an S-act A and B any subact of A. Then,
P is called a minimal prime over B if B ⊆ P and there is no prime subact
strictly between B and P. By a non-trivial minimal prime in A we mean a
non-empty prime subact of A which is minimal in the set of all non-empty
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prime subacts of A, with respect to ⊆ . If A is a centered act, any minimal
prime subact over {θ} is a minimal prime in A. The minimal prime ideals of
S are defined analogously. In the rest of this section, we obtain some results
on prime and radical subacts of acts with Condition (F1) as generalizations
of the results in [8, Section 2].

Lemma 2.10. Let I be a proper ideal of a semigroup S, F be an S-act
satisfying Condition (F1) and G be a minimal prime subact of F (over FI).
Then (G : F ) = S if and only if G = FS.

Proof. Let G be a minimal prime subact (over FI) with (G : F ) = S. Then,
FS ⊆ G, and hence FS ̸= F. By Lemma 2.6 (iii), FS is a prime subact
of F and FI ⊆ FS ⊆ G. The minimality of G implies that G = FS. The
converse is clear by Proposition 2.6 (ii).

Lemma 2.11. Let I be an ideal of a semigroup S and F be a right S-act
satisfying Condition (F1). Then, every minimal prime subact G in F with
(G : F ) ̸= ∅, is of the form G = FS or G = FP for a minimal prime ideal
P in S. Moreover, every minimal prime subact G over FI is of the form
G = FS or G = FP for a minimal prime ideal P over I.

Proof. We prove the last statement. The first one is proved by a similar
discussion for ∅ instead of I and FI.

By Lemma 2.10, if G ̸= FS then (G : F ) ̸= S. Let (G : F ) = P . Then,
P ⊇ I is a prime ideal of S and FI ⊆ FP ⊆ G, by Lemma 2.6 (i), (ii), and
(vi). Also, since FP is a prime subact, by Lemma 2.6 (iii), minimality of
G over FI implies that FP = G. Moreover, if there exists a prime ideal P ′

with I ⊆ P ′ ⊂ P then, by Lemma 2.6 (i), FI ⊆ FP ′ ⊂ FP, which is in
contrast of the minimality of FP. So, P is a minimal prime ideal over I.

The following theorem discusses an S-act with Condition (F1) which
has a finite number of minimal prime subacts.

Theorem 2.12. Let S be a semigroup and K be a proper ideal of S. Suppose
that the product of any finite number of minimal prime ideals over K is
finitely generated. If F is an S-act satisfying Condition (F1) then there are
finitely many minimal prime subacts of F over FK.
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Proof. First note that, minimal primeness of the subact FS of F does not
affect on the finiteness of the number of all prime subacts minimal over FK.
So, we show there are finitely many minimal prime subacts G ̸= FS over
FK in F. By Lemma 2.10, for every minimal prime subacts G ̸= FS of F
over FK, (G : F ) ̸= S. Assume that F has a minimal prime subact over
FK and put

Π = {FI|I = P1P2 . . . Pn, for some n ∈ N, and
Pi, 1 ≤ i ≤ n, are minimal prime ideals over K}.

Consider two possible cases as follows:

Case 1: There exists FI ∈ Π such that FI ⊆ FK.

Suppose that G ̸= FS is an arbitrary minimal prime subact over FK
and I = P1P2 . . . Pn for some n ∈ N and some minimal prime ideals Pi over
K. We show that G = FPi, for some i = 1, 2, . . . n. First, note that by the
assumption of Case 1 and Lemma 2.11, FI ⊆ FK ⊆ G = FP for a minimal
prime ideal P over K. Hence, P1P2 . . . Pn = I ⊆ P, by Lemma 2.6 (i). Thus,
by Lemma 2.7, Pi ⊆ P, for some i, 1 ≤ i ≤ n, and so P = Pi, by minimality
of P over K. Hence, G = FPi, for some i, 1 ≤ i ≤ n. Therefore, the number
of minimal prime subacts in F is finite in this case.

Case 2: For every FI ∈ Π, F I ̸⊆ FK.

We show that, case 2 leads to a contradiction. In this case the set

Σ = {FJ ⊇ FK | J is an ideal ofS andFI ̸⊆ FJ, for anyFI ∈ Π}

is non-empty, for FK ∈ Σ. Now, we show that any chain {FJλ}λ∈Λ in (Σ,⊆)
has the upper bound,

⋃
λ∈Λ FJλ in Σ. On the contrary, let

⋃
λ∈Λ FJλ ⊇ FI,

for some FI ∈ Π. It can easily be checked that
⋃

λ∈Λ FJλ = F (
⋃

λ∈Λ Jλ),
which implies that I ⊆ ⋃

λ∈Λ Jλ, by Lemma 2.6 (i). By assumption, I is
finitely generated for each FI ∈ Π. Thus, the finite generating set for I
should be contained in

⋃
λ∈Λ′ Jλ for a finite subset Λ′ of Λ. Since {FJλ}λ∈Λ′

is a chain, by using Lemma 2.6 (i), {Jλ}λ∈Λ′ is a chain of ideals in S.
Thus, there exists α ∈ Λ′ such that I ⊆ Jα. This contradicts FJα ∈ Σ.
So
⋃

λ∈Λ FJλ ̸⊇ FI. Hence, any chain {FJλ}λ∈Λ stops in
⋃

λ∈Λ FJλ =
F (
⋃

λ∈Λ Jλ) ∈ Σ. Therefore, by Zorn’s lemma Σ has a maximal element,
say, FQ ∈ Σ. Now, we show that Q is a prime ideal of S. Let MN ⊆ Q



Free acts and their radical subacts 93

for some ideals M and N of S. If M and N are not contained in Q then
F (Q ∪M) ⊃ FQ and F (Q ∪ N) ⊃ FQ. So, by maximality of FQ in Σ,
there exist FI, FI ′ ∈ Π such that FI ⊆ F (Q ∪M) and FI ′ ⊆ F (Q ∪ N).
By Lemma 2.6 (ii) and the assumption MN ⊆ Q,

F (II ′) ⊆ F ((Q ∪M)(Q ∪N)) ⊆ FQ.

On the other hand, since F (II ′) ∈ Π and FQ ∈ Σ, F (II ′) ̸⊆ FQ which
is a contradiction. So, M ⊆ Q or N ⊆ Q. Therefore, by Lemma 2.7, Q is
a prime ideal which contains K, by Lemma 2.6 (i). Now, we apply Zorn’s
lemma to show that Q contains a minimal prime ideal over K. Consider the
set

P = {P |K ⊆ P ⊆ Q is a prime ideal of S},

partially ordered by ⊇ . Then, Q ∈ P. Let {Pλ}λ∈Λ be a chain in P, and
aSb ⊆ ⋂λ∈Λ Pλ, for some a ∈ S \⋂λ∈Λ Pλ and b ∈ S. So, there exists α ∈ Λ
such that a /∈ Pα. Since Pα is prime, aSb ⊆ Pα implies that b ∈ Pα (and
similarly, b ∈ Pβ, for each β ∈ Λ with Pβ ⊆ Pα). Moreover, clearly b ∈ Pβ,
for any β ∈ Λ with Pα ⊆ Pβ. So, b ∈

⋂
λ∈Λ Pλ, which implies that,

⋂
λ∈Λ Pλ

is a prime ideal in P, larger than every Pλ, in the chain {Pλ}λ∈Λ, with
respect to relation ⊇ . So, by Zorn’s lemma P has a maximal element, say
P, with respect to ⊇ . Thus, K ⊆ P ⊆ Q is minimal between prime ideals
of S, with respect to ⊆ . So, FP ∈ Π and FQ ⊇ FP, which contradicts
FQ ∈ Σ. Hence, Case 2 is not true which completes the proof.

Proposition 2.13. Let I be an ideal of a semigroup S and F be a right
S-act satisfying Condition (F1). Then, F

√
I = rad(FI).

Proof. If there is no prime subact of F containing FI then FS = F and
there is no prime ideal of S containing I. Thus, in this case F

√
I = FS =

F = rad(FI). Also, if there is no prime ideal of S containing I then
√
I = S

and rad(FI) = FS, and so we get the result. Hence, assume that there
exist a prime subact P containing FI and a prime ideal J containing I.
Then, I ⊆ (FI : F ) ⊆ (P : F ). By Lemma 2.6 (v), (P : F ) is either S or
a prime ideal of S. Thus,

√
I ⊆ (P : F ). Hence, for every prime subact P

containing FI, we have F
√
I ⊆ P, which implies that, F

√
I ⊆ rad(FI). By

Lemma 2.6 (iii), FJ ⊇ FI is a prime subact of F. Thus, by Lemma 2.6 (iv)
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we have,

rad(FI) =
⋂

FI⊆P∈Spec(F )

P ⊆
⋂

I⊆J∈Spec(S)
FJ = F (

⋂

I⊆J∈Spec(S)
J) = F

√
I.

Corollary 2.14. Let I be an ideal of S and F be an S-act satisfying Con-
dition (F1). Then, I is a radical ideal if and only if FI is a radical subact.

Proof. The proof follows by Proposition 2.13 and Lemma 2.6 (i).

Recall from [2] that, a semigroup S is regular, if for any s ∈ S there
exists t ∈ S such that s = sts.

Theorem 2.15. Let S be a regular semigroup and F be an S-act satisfying
Condition (F1). Then, for every ideal I of S, FI is a radical subact.

Proof. We show that all ideals of S are radical. Let x ∈ S \ I. Put

Σ = {K|K is an ideal of S,K ⊇ I, x ̸∈ K}.

Then, I ∈ Σ. It can easily be checked by the Zorn’s lemma that (Σ,⊆) has
a maximal element, say P. We show that P is a prime ideal. Let J and K
be two ideals of S and JK ⊆ P. Let s ∈ J ∩ K. Since S is regular, there
exists t ∈ S such that s = sts. Since st ∈ J and s ∈ K, s = sts ∈ JK. Thus,
J ∩ K ⊆ JK ⊆ P. So, P = P ∪ (J ∩ K) = (P ∪ J) ∩ (P ∪ K). If J ̸⊆ P
and K ̸⊆ P then P ∪ J and P ∪ K are two ideals properly containing P
(and I). Hence, x ∈ (P ∪ J) ∩ (P ∪K) = P. But this contradicts P ∈ Σ.
Therefore, J ⊆ P or K ⊆ P, which implies by Lemma 2.7 that, P is a prime
ideal of S. So, there exists a prime ideal P containing I and x ̸∈ P, i.e.,
x ̸∈ ⋂P∈V (I) P =

√
I. Therefore, I =

√
I. Now, the proof is completed by

Corollary 2.14.
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3 On lattices of radical subacts of free acts

In this section, we will study lattice structures of the collection of radical
subacts of an S-act with Condition (F1) (in particular free acts). Some
of the results in this section are given in [8] for free acts over monoids.
Here, we generalize some results for acts with Condition (F1) over arbitrary
semigroups. As in [11], a complete lattice (Q,∨,∧) is called a quantale if
there is an associative binary operation · : Q × Q −→ Q such that for any
family {qi}i∈I of elements of Q and for any q ∈ Q,

q ·
∨

i∈I
qi =

∨

i∈I
(q · qi) and (

∨

i∈I
qi) · q =

∨

i∈I
(qi · q).

We start with the following definition which is introduced in [8].

Definition 3.1. Suppose that S is a semigroup, (I(S),∪,∩) is the quantale
of all ideals of S with the binary operation IJ = {ij|i ∈ I, j ∈ J} for every
I, J ∈ I(S), and (L,∨,∧) is a lattice of subacts of an S-act F. Then, L
is called a right I(S)−lattice (S-lattice, for short) if I(S) acts on L by an
operation denoted by “ ∗ ” with the following properties. For any subacts
G and H in L and any ideals I and J of S,

(1) G ∗ I ∈ L;
(2) G ∗ (IJ) = (G ∗ I) ∗ J ;
(3) (G ∨H) ∗ I = (G ∗ I) ∨ (H ∗ I);
(4) (G ∧H) ∗ I = (G ∗ I) ∧ (H ∗ I).

Moreover, if we have also

(5) G ∗ (I ∪ J) = (G ∗ I) ∨ (G ∗ J) and
(6) G ∗ (I ∩ J) = (G ∗ I) ∧ (G ∗ J),

we say L is a strong right S-lattice.

Also, L is called a complete right S-lattice if for any arbitrary family
{Gγ}γ∈Γ of S-acts in L, meet and join exist in L and (3) and (4) hold, that
is,
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(3′) (
∨

γ∈ΓGγ) ∗ I =
∨

γ∈Γ(Gγ ∗ I);
(4′) (

∧
γ∈ΓGγ) ∗ I =

∧
γ∈Γ(Gγ ∗ I).

By properties (1) and (2) in the definition, every S-lattice L is a
right I(S)−act which gives a representation of semigroup I(S) as well as of
lattice (I(S),∪,∩). Note that a strong S-lattice of unitary S-acts is indeed
an I(S)−lattice in the notation of [7].

The set of all radical subacts of an S-act F, partially ordered by inclu-
sion, forms an S-lattice and is denoted by Rad(F ). The following theorem
gives more details about Rad(F ).
Theorem 3.2. ([8, Theorem 3.3]) Suppose that S is a semigroup and F
is an S-act. Then, the poset (Rad(F ),⊆) of all radical subacts of F is a
strong complete S-lattice, with the following operations. For every radical
subacts G,H ∈ Rad(F ) and every ideal I of S,

G ∗ I = rad(GI) and G ∧H = G ∩H and G ∨H = rad(G ∪H).

By using Theorem 2.15, the following proposition gives an example of
a strong sublattice of Rad(F ) for an S-act F with Condition (F1).

Proposition 3.3. Let S be a regular semigroup and F be an S-act satisfying
Condition (F1). Then, ISub(F ) = {FI|I ∈ I(S)} is a strong S-sublattice
(I(S)−subact) of Sub(F ) and also of Rad(F ).

Proof. First, it can routinely be observed that Sub(F ) with the natural
operations (i.e., union and intersection and ideal multiplication) is an S-
lattice if and only if for any subacts G,H ∈ Sub(F ) and any ideal I ∈ I(S),
(G ∩ H)I = GI ∩ HI. But this equality holds, for if x ∈ GI ∩ HI, there
exist y ∈ G, z ∈ H and r, s ∈ I, such that x = yr = zs. Then, x ∈ G ∩H
and since S is regular, there exists r′ ∈ S such that r = rr′r. So x =
y(rr′r) = yr(r′r) = x(r′r) ∈ (G ∩ H)I. Thus, GI ∩ HI ⊆ (G ∩ H)I. The
reverse inclusion is clear. Therefore, Sub(F ) with the natural operations is
an S-lattice.

By Theorem 2.15, for any ideals I, J,K ∈ I(S) we have rad(FI) =
FI, which implies that ISub(F ) ⊆ Rad(F ) and (FI) ∗ J = rad((FI)J) =
F (IJ) ∈ ISub(F ).
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Also, it is clear that K(I ∪ J) = KI ∪ KJ. Furthermore, since S is
regular, any x ∈ KI∩KJ is of the form xyx for some y ∈ S. Also,KI∩KJ ⊆
I ∩ J ∩K. Thus, x = x(yx) ∈ K(I ∩ J). Hence, K(I ∩ J) = KI ∩KJ. Now,
it can easily be observed that (FK) ∗ (I ∪J) = ((FK) ∗ I)∨ ((FK) ∗J) and
(FK) ∗ (I ∩ J) = ((FK) ∗ I) ∧ ((FK) ∗ J).

Moreover, by Lemma 2.6 (iv), FI ∩FJ = F (I ∩ J) ∈ ISub(F ). Also,
clearly FI ∪ FJ = F (I ∪ J) ∈ ISub(F ). Hence, in Rad(F ),

F I ∨ FJ = rad(FI ∪ FJ) = rad(F (I ∪ J)) = F (I ∪ J) = FI ∪ FJ,

that is, the join of subacts in ISub(F ) coincides with the join of radical
subacts in Rad(F ). Furthermore,

(FI ∨ FJ) ∗K = ((FI) ∗K) ∨ ((FJ) ∗K)

and
(FI ∧ FJ) ∗K = ((FI) ∗K) ∧ ((FJ) ∗K).

Therefore, (1)-(6) in Definition 3.1 hold for ISub(F ) as a subset of Rad(F )
and Sub(F ).

In the following proposition we use multiplications of ideals of S by an
S-act F with Condition (F1) to define a lattice of radical (multiplication)
subacts, generalizing ISub(F ) in Proposition 3.3 for arbitrary semigroups.
In what follows, I(S) ∪ {∅} is denoted by I(S).
Proposition 3.4. Let F be an S-act with Condition (F1) and (IRad(F ),⊆)
be the poset of all radical subacts of F, of the form rad(FI), where I ∈ I(S).
Then, IRad(F ) is a bounded distributive strong S-lattice with the following
operations and bounds. For any I, J ∈ I(S) and any ideal K of S,

rad(FI) ∗K = rad((FI)K) and

rad(FI)∧rad(FJ) = rad(F (I∩J)) and rad(FI)∨rad(FJ) = rad(F (I∪J))
and 1IRad(F ) = rad(FS) = FS and 0IRad(F ) = ∅.

Proof. The proof can routinely be obtained by noting that for any ideals
I, J and K of S, rad(F (I ∩ J)K) = rad(F (IK ∩ JK)), by Proposition 2.9
(iii).
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Let L and L′ be two S-lattices (resp. complete S-lattices) of S-acts.
A mapping f : L −→ L′ is called a homomorphism (resp. a complete
homomorphism) if it preserves finite (resp. arbitrary) meets and joins and
also operations ∗ of ideals of S on S-acts.

Proposition 3.5. Every two isomorphic S-acts with Condition (F1) have
the isomorphic lattices of radical subacts.

Proof. The proof is routine and is omitted.

Corollary 3.6. Let S be a semigroup with a zero. Assume that F and F ′

are two S-acts satisfying Condition (F1) such that Rad(F ) and Rad(F ′)
are isomorphic S-lattices. Then for any arbitrary prime ideal P of S, there
exists a one-to-one correspondence between P−prime subacts of F and F ′.

Proof. Let f : Rad(F ) −→ Rad(F ′) be a lattice isomorphism of Rad(F )
and Rad(F ′) and π be the restriction of f to SpecP (F ), i.e., π(B) = f(B)
for each prime subact B of F with (B : F ) = P. It suffices to show that π
is a mapping onto SpecP (F ′).

If F ′ = π(B), for a P−prime subact B of F then,

F ′ = π(B) = f(B) = f(B ∧ F ) = f(B) ∧ f(F ) ⊆ f(F ) ⊆ F ′,

i.e., f(B) = f(F ) = F ′. Hence, B = F, for f is an isomorphism. It contra-
dicts the assumption that B is prime. Thus, for any P−prime subact B of
F , π(B) is a proper subact of F ′. A similar argument shows that f(F ) = F ′.

Let G′I ⊆ π(B) = f(B), for a subact G′ of F ′ and an ideal I
of S. Assume that I ̸⊆ (π(B) : F ′). We claim that G′ ⊆ π(B). First,
note that rad(G′I) ⊆ rad(π(B)) = π(B). Thus, by (2.2) in Remark 2.8,
rad(rad(G′)I) ⊆ π(B). Let G ∈ Rad(F ) for which f(G) = rad(G′) ∈
Rad(F ′). Therefore,

rad(rad(G′)I) = rad(f(G)I) = f(G) ∗ I = f(G ∗ I) = f(rad(GI)).

So, f(rad(GI)) = rad(rad(G′)I) ⊆ π(B) = f(B). Since f preserves finite
meets (and order of elements) in Rad(F ), it can easily be checked that
GI ⊆ rad(GI) ⊆ B. Hence, by Lemma 2.7, G ⊆ B or I ⊆ (B : F ) = P. The
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first case proves the claim, as one can easily observe that G′ ⊆ rad(G′) =
f(G) ⊆ f(B) = π(B). However, I ⊆ (B : F ) = P leads to a contradiction.
Because it follows that rad(FI) ⊆ B and rad(FI) ∧ B = rad(FI). So,
f(rad(FI)) ∧ f(B) = f(rad(FI) ∧ B) = f(rad(FI)). Also, F ′ = f(F ), as
we explained in the first part of the proof. Thus,

F ′I = f(F )I ⊆ rad(f(F )I) = f(F ) ∗ I = f(F ∗ I) =

f(rad(FI)) = f(rad(FI)) ∧ f(B) ⊆ f(B) = π(B).

Therefore, contrary to the assumption of I ̸⊆ (π(B) : F ′), we obtain F ′I ⊆
π(B). Thus, π(B) is prime. Now, we show that (π(B) : F ′) = P, i.e.,
π(B) ∈ SpecP (F ′). By assumption of Condition (F1) for F and Lemma
2.6 (iii) we have, FP ⊆ B and FP ∈ SpecP (F ) and F ′P ∈ SpecP (F ′).
So, F ′P = F ′ ∗ P = f(F ) ∗ P = f(F ∗ P ) = f(FP ) ⊆ f(B) = π(B), for
f is a lattice isomorphism preserving order of Rad(F ) (inclusion). Thus,
P ⊆ (π(B) : F ′). Moreover, since f(B) is prime, F ′ = f(F ) ̸⊆ f(B). If
(π(B) : F ′) = J, then F ′J ⊆ π(B) = f(B) and we have,

f(rad(FJ)) = f(F ∗ J) = f(F ) ∗ J = F ′ ∗ J = rad(F ′J) ⊆ f(B).

So, FJ ⊆ rad(FJ) ⊆ B, for f is an isomorphism. Hence, J ⊆ (B : F ) = P.
Thus, (π(B) : F ′) = P.

Now, we show that π is onto. Let G′ ∈ SpecP (F ′). Since f is an
isomorphism, there exists F ̸= G ∈ Rad(F ) for which f(G) = G′. We prove
that G ∈ SpecP (F ), which implies that π(G) = f(G) = G′. The proof is
similar to the previous part. First, since F ′P ⊆ G′ and f preserves inclusion,

f(rad(FP )) = f(F ∗ P ) = f(F ) ∗ P = F ′ ∗ P = rad(F ′P ) ⊆ G′ = f(G).

So, it can easily be observed that, rad(FP ) ⊆ G, and hence, FP ⊆ G, i.e.,
P ⊆ (G : F ). Let HI ⊆ G for a subact H of F and an ideal I of S. If for any
such ideal I, I ⊆ P ⊆ (G : F ), then by Lemma 2.7, G is prime. Assume that
for such an ideal I, I ̸⊆ P = (G′ : F ′). We have rad(HI) ⊆ rad(G) = G.
Then, (2.2) in Remark 2.8 implies that,

f(rad(H))I ⊆ f(rad(H)) ∗ I = f(rad(H) ∗ I) = f(rad(rad(H)I))

= f(rad(HI)) ⊆ f(G) = G′.
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Thus, f(rad(H))I ⊆ f(G) = G′. But, G′ ∈ SpecP (F ′) and I ̸⊆ P = (G′ :
F ′). So, by Lemma 2.7, f(rad(H)) ⊆ G′ = f(G). Thus, H ⊆ rad(H) ⊆ G.
Hence, G is also prime in this case. Furthermore,

F ′(G : F ) ⊆ rad(F ′(G : F )) = F ′ ∗ (G : F ) = f(F ) ∗ (G : F ) =

f(F ∗ (G : F )) = f(rad(F (G : F ))) ⊆ f(rad(G)) = f(G) = G′.

Hence, F ′(G : F ) ⊆ G′. Since F ′ satisfies Condition (F1), by Lemma 2.6 (ii)
we have, (G : F ) = (F ′(G : F ) : F ′) ⊆ (G′ : F ′) = P. So, G ∈ SpecP (F ),
and the proof is completed.

The following result shows that non-isomorphic acts with Condition
(F1) (in particular free acts) may have the isomorphic lattices of radical
subacts.

Theorem 3.7. For any two (possibly non-isomorphic) S-acts F and F ′

with Condition (F1), IRad(F ) and IRad(F ′) are isomorphic S-lattices. In
particular, if S is a commutative semigroup, IRad(F ) ∼= Rad(S), for any
S-act F with Condition (F1).

Proof. Define f : IRad(F ) −→ IRad(F ′) by f(rad(FI)) = rad(F ′I),
where I ∈ I(S). By Proposition 2.13 and Lemma 2.6, f is a well-defined
one-to-one mapping. Also, clearly f is onto and for any ideal J of S,

f(rad(FI) ∗ J) = f(rad(FIJ)) = rad(F ′IJ) = rad(F ′I) ∗ J

and

f(rad(FI) ∧ rad(FJ)) = f(rad(F (I ∩ J))) = rad(F ′(I ∩ J))

= rad(F ′I) ∧ rad(F ′J) = f(rad(FI)) ∧ f(rad(FJ)).

Similar assertion shows that f preserves joins and so f is an isomorphism
of S-lattices. The last statement can be verified by a similar argument to
that of above, by noting that for any ideal I of a commutative semigroup
S, rad(SI) = rad(I) =

√
I.
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