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The Search for Universally Cancellable Exponents of Posets

Jonathan David Farley

Abstract. Let A, B, C, and D be posets. Assume C and D are finite with
a greatest element. Also assume that A¢ =~ BP.

Then there exist posets E, X, Y, and Z such that A~ EX, B~ EY,
C2Y xZ,and D2 X x Z. If C 2 D, then A~ B.

This generalizes a theorem of Jénsson and McKenzie, who proved it
when A and B were meet-semilattices.

1 Background

Bergman, McKenzie, and Nagy [1], building on the work of Jénsson, found
the first known class of universally cancellable exponents—non-empty chains—
meaning that if A and B are posets and C' a non-empty chain, then A¢ = B¢
implies A 2 B. Here, EX (E, X posets) is the set of order-preserving maps
from X to E, partially ordered pointwise: If f,g € EX, then f < g means
f(z) < g(x) for all z € X. See Figures 1 and 2 [7, page 54].
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Figure 1.1. EX where E is the 4-element crown and X the 2-element chain

1%

Figure 1.2. PP where P is the 4-element crown

Professor Garrett Birkhoff conjectured—and McKenzie proved—that
if A, B, and C are non-empty finite posets, then A¢ = B® implies A =
B, but this is not a universal cancellation result [2, p. 300], [13], [14].
Besides non-empty chains, no other universally cancellable exponent has
been found—until now.

Every finite poset with a least or greatest element is universally can-
cellable as an exponent (Theorem 5 of Section 5, below).

Not every poset is universally cancellable: 2%0 2 (2%0)Xo (since FX*Q =
(EX)Q [4, Exercise 1.26]), but 2 % 2%,

What is amusing is that our proof (inspired by Krebs and van der
Zypen [11]) is more or less the same as Jénsson and McKenzie’s proof of
the following result: If A and B are A-semilattices and C' a finite poset with
a greatest element, then A® = B¢ implies A = B (part of [10, Theorem
5.4]). They used an idea of Duffus, Jénsson, and Rival [8, Theorem (ii)],
and an idea of Dilworth and Freese, to take repeatedly the poset of filters of
a A-semilattice and then use a limiting construction [5, page 264]. What we
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mean above by “same” is that the same idea works to prove our universal
cancellation result, although we use ideas about algebraic posets of Erné [9].

2 Definition, notation, and terminology

Notation and definitions can be found in [4]. We denote the covering relation
in a poset by “<.”

Let A, B, P and Q be posets; P? is the dual of P; P¥ was defined in
Section 1; for p € P, (p) is the constant map, g — p (for all ¢ € Q).

Given f € B4, define amap f< from A9 to B? as follows: for g € A9,
feg)=foug.

FQCP, lQis{pe P|p<qforsomeqe Q}. Also, @ C Pis a
down-set if Q) = Q. Dually, we define 1Q; ({T¢ | ¢ € Q} is denoted Q™.

A subset D C P is directed if D # () and for all d,d’ € D, there exists
d” € D such that d,d’ < d”. An ideal is a directed down-set. The poset of
ideals of P ordered by inclusion is denoted P?.

If a directed subset D has a supremum \/ D, we sometimes denote
it | | D; the point is that the symbol | | in front of D indicates that D is
directed. A function f : P — @ is Scott-continuous if whenever a directed
subset D C P has a supremum, so does f[D] and f(| |D) =/ f[D].

An element k € P is compact if, whenever D C P is directed with
supremum | | D, k < | |D implies k& < d for some d € D. The poset of
compact elements of P is denoted k(P).

A poset is algebraic if every directed subset has a supremum and every
element is the supremum of a directed subset of compact elements. An
archetypal example is P?. In this example, x(P?) = {lp | p € P} = P and
the supremum of a directed subset of ideals of P is its union. Indeed, this
is up to isomorphism the only example of an algebraic poset [9, Proposition
3 and Corollary 2].

Let Poset be the category of posets together with order-preserving
maps. Let (Cj)ien, be a family of posets, where Ny is the set of non-negative
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integers, and let
(fij : Cj = Ci)ijeny

J<i

be a family of order-preserving maps with the following properties:

(1) fii =1idg, for all i € Ng;
(2) fijo fik = fu for all 4,5,k € Ny such that k < j < i.

Then

§ = ((Cilieno, (fi : Cj = Ciligeno)
I

is a filtered system in Poset.
Let 89 be
89 = ((CP)iery, (£ - C]Q — CP)i jery ).

J<i

Assume C' is a poset and (f; : C; = C)ien, is a family of order-
preserving maps such that, for ¢, j € Ng, j < ¢ implies f; o f;; = f;. Then

(C,(fi: Ci = Clieny,)

is compatible with S. It is a filtered limit of S if we assume further that,
whenever (C’, (f! : C; — C")ien,) is compatible with S, there is a unique
order-preserving map f : C' — C’ such that fo f; = f! for all i € Ny. As
usual, the object C in a filtered limit is unique up to order-isomorphism. A
reference for directed sets and limits is [18].

The following notation comes from [10, Section 3|. Let A, B,C, D be
posets such that C, D # (). Let ¢ : A® = BP.

A(¢) = {f € A° | ¢(f) is a constant map}
R(¢) ={z € A|(z) € A(9)}

A relation <y is defined on R(¢) as follows: x <4 y if and only if

(1) =,y € R(¢);
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(@) ¢ <yin A
(3) if f € AC and f[C] C {x,y}, then f € A(6)
Define a map ¢ from R(¢) to R(¢1) as follows: for 2 € R(¢), ()
is the element y such that ¢((z)) = (y).
By “(¢,1),” we mean: <, is a partial ordering on R(¢).

By “(¢,2),” we mean: qﬁ is a relation-preserving bijection from

to
(R(¢_1)7 S(jy*l )
and its inverse is relation-preserving.

By “(¢,3),” we mean that A(¢) is the set of all relation-preserving
maps from (C, <) to (R((b), <o )

By “(¢,4),” we mean that <4= {(z,y) € R(¢) x R(¢) | z < y}.
Ifa: A= A and §: B> B’ (A, B’ posets), then

¢'(f)=Bogla™of)

gives a map ¢/ : A'“ — B'P. Fori € {1,2,3,4}, (¢,i) implies (¢', 7).

Below are results from [10] that we use. (Jénsson and McKenzie
proved more than what we list.)

Theorem 2.1. (From [10, Theorem 3.2].) If C = D and (¢,1), (¢,2),
(¢,3), and (¢~1,3), then A= B.

Theorem 2.2. (From [10, Theorem 3.3].) If (¢,1), (¢,2), (¢,3), (¢71,3),
and (¢,4), then there exists a poset E such that A= EP and B = EC.

Lemma 2.3. (From [10, Lemma 4.1].) If D has a top or bottom element,
then (¢,1).

We do not need to know what Jénsson and McKenzie mean by “Prop-
erty (a)” [10, Definition 4.2]; we only need the following:
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Lemma 2.4. (From [10, Corollary 4.3].) If C has a top element, then A®
has Property (a).

Lemma 2.5. (From [10, Lemma 4.5].) If AY and B” have Property (a),
then (¢,2).

Jénsson and McKenzie call a poset atomic if, whenever p < ¢ in P,
there exists r € P such that p <r < ¢ [10, page 92]. We call a poset dually
atomic if its dual is atomic. A poset P is directly irreducible if |P| # 1 and
whenever P = E x X we have |E| =1or |X| = 1.

Lemma 2.6. (From [10, Lemma 4.10].) If A and B are atomic posets and
C and D are finite directly irreducible posets with a greatest element, then

(¢,3)-
Lemma 2.7. (From [10, Lemma 4.8].) If A is an atomic poset, if C' and

D have a top element and are directly irreducible, if BP has Property (a),
and if C 2 D, then (¢,4).
Lemma 2.8. (From [10, Lemma 5.3].) Let A’ and B’ be posets. Assume
AC A and B C B'. Assume ¢ : AC = BD and p : A° =~ B'P. Assume
¢ C .

Then fori € {1,2,3,4}, (1, 1) implies (¢,1).

3 Powers of algebraic posets and algebraic powers of posets

The main result of this section is that (P?)? = (P?)? when P and Q are
posets and @ is finite (Corollary 3). Duffus, Jénsson, and Rival had proven
a special case of this theorem for P a lattice (so an “ideal” is the usual
lattice ideal) [8, Theorem (ii)], with Jénsson and McKenzie noting that (a
dual version of) this result held for semilattices [10, page 103].

We start with a familiar result (see [9, page 74|, [19, Theorem 2.8],
and [4, Exercise 9.6)):
Lemma 3.1. Let A be an algebraic poset. Let Q be a poset such that every
directed subset has a supremum. Let f € Q5.

Then there exists a unique Scott-continuous map F : A — Q such that
F o= f. 1t is order-preserving.
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Proof. Let a € A. Let D C k(A) be any directed subset such that | | D = a.
Note that since f is order-preserving, f[D] is directed, so | | f[D] exists
by assumption. Define F'(a) to be | | f[D]. (We are forced to make this
definition, proving uniqueness.) We show that F' is well-defined: If Dy, Dy C
k(A) are directed and | |D; = || D2, then Dy = |Dy. Thus for any
dy € Dy, there exists do € Dy such that d; < da, so f(d1) < f(d2) and
hence f(d1) < || f[D2]. Therefore | | f[D1] < || f[D2] and by symmetry
LI fID1] = L f[D2]-

Clearly F'(k) = f(k) for k € k(A): let D = {k}. Note that F' is

order-preserving.

We show that I is Scott-continuous. Assume C C A is directed. Then
F[C] is directed, so | | F[C] exists.

For all c € C, let D. C k(A) be a directed subset such that | | D. = c.
Claim. The set D := J e D is directed.

Proof of claim. Let ¢,d € C and let d € D, and let d’ € D.. Then
there exists ¢’ € C such that ¢,/ < ¢”’. Since d < | |D.», there exists
e € Do such that d < e. Similarly, there exists ¢’ € D.» such that d’' < ¢’.

Let €” € D, be such that e, e’ < e”. Then d,d <" € D.

Hence | |D =V co(UDe) =V C,s0 F(VC) = U fID] = Veee(V fIDe]) =

\/CEC F(C)

Thus F' is Scott-continuous. O

Proposition 3.2. Let A and A’ be algebraic posets. Let ¢ : k(A) — k(A")
be an order-isomorphism. Then there exists a unique Scott-continuous map
®: A — A such that, for all k € k(A), ®(k) = ¢(k). The map ® is an
order-isomorphism.

Proof. Let ® be the map of Lemma 3.1. Let & : A’ — A be the map of
Lemma 3.1 given by ¢~!. Then, for all k € k(A), (®' o ®)(k) = k, so, by
Lemma 3.1, ® o ® = id4. By symmetry, ® o &' = id . O

Corollary 3.3. Let P and Q be posets; assume Q is finite. For f € P9
define a map f7 : Q — P? as follows: for all g € Q, f7(q) =1f(q).



8 J.D. Farley

Then there is a unique order-isomorphism from (P?)? to (P?)? send-
ing Lf to f7 for all f € PX. In particular, (P°)® is an algebraic poset and
PR is order-isomorphic to k[(P?)%].

Proof. First, we show that directed subsets have suprema in (P?)%?. Let
D C (P?)9 be directed. For all ¢ € Q, let D, = {d(q) | d € D}; it is a
directed subset of P?. Thus | | D, exists in P7?; we define e(q) to be | | D,.
The map e € (P?)? and e € D*. If f € D%, then e < f. Hence e = | | D.

Claim 1. Let f € P9. Then f7 € x[(P?)9].

Proof of claim. Let D C (P?)? be directed and assume f° < | |D.
Then, for all ¢ € Q, f7(q) = 1f(q) C || Dy, so there is a d, € D such that
1f(q) € dy(q). Since Q is finite, there exists a g € {d, | ¢ € Q}* N D. Thus
f7<g

Let G € (P?)?. Consider

H={¢°|g€ P? and 9(q) € G(q) for all g € Q}.

Claim 2. The set H is directed. Indeed, for all ¢ € Q, let d, €
G(q). There ezists g € P9 such that d, < g(q) for all ¢ € Q and g° € H.

Proof of claim. For r € @, we define ¢g(r) by induction on |{r|. If
l4r| = 1, let g(r) be d,. Now assume that ||| > 1 and that ¢(s) has been
defined for all s < r so that g(s) € G(s) and ds < g(s). As G(r) D G(s) for
all s < r, we know g(s) € G(r) for all s < r. Thus there exists g(r) € G(r)
such that g(s) < g(r) for all s < r and d, < g(r). We conclude that g € P?,
and g7 € M, and dy < g(q) for all ¢ € Q. Also, H # 0.

Now let h,k € PY be such that h?,k” € H. For ¢ € Q, pick d, €
G(q) N {h(q),k(q)}*. By the previous paragraph, there exists g € P% such
that ¢ € H and dy < g(q) for all ¢ € Q, so h?, k7 < ¢°.

Clearly | |H < G, but, in fact, for all ¢ € Q
)@=V loa= U l9(0.

geP® geP@
g’ €eH g°€EH

By Claim 2, for all ¢ € Q, G(¢) € (LJ#H)(¢g), and thus G < | |H. Hence
LH=G.
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This proves that (P?)? is an algebraic poset and that x[(P?)?] =
{97 1 g € PO}, O

One does not simply dispense with the condition @ is finite, as the
next two examples show.

Example 3.4. Let P = Ny = ) with the natural order. Then there is no
order-isomorphism from (P?)? to (P?)? sending, for each f € P%, |f to

f7.
Consider idy, € P?. Then (idy, ) should be compact.

For all n € Ny, let g, : @ — P be the map g¢,(m) = min{m,n}
(m € Np); then g, € PQ and g < g < g <---.

Claim. We have that | |y, g, = (idn,)7-

Proof of claim. Let m,n € No. If m < n, then ¢g7(m) = Ilm =
(idy, )7 (m). If n < m, then gZ(m) = {n C |m = (idy,)? (m).

Let h € (P?)? be such that h € {g2 | n € Ng}* in (P?)?. Then for
all n € Ny, ¢7(n) = {n C h(n), so (idy,)?(n) C h(n).

But if (idy,)? were compact, it would equal g7 for some n € Ny.
Example 3.5. Let D be a directed set and Q a poset such that D% is
not directed. (See [12], an example of someone with the username Emil
Jetabek.) Then (D7) 2 (D?)°.

Indeed, (D7) has a top element.

Claim. The poset (D?)? does not have a top element.

Proof of claim. Let f,g € D? be such that {f,g}* =0 in D?. Then
1f,1g € (DQ)?. Assume for a contradiction that (D%)? has a top element
K. Then |f,lg C K. Hence f,g € K. Therefore there is £ € K such that
f,9 <k, a contradiction.

4 Filtered limits of powers of posets of ideals

In order to get our universal cancellation result, we are going to use a result
of Jénsson and McKenzie for atomic posets. We get dually atomic posets
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by taking a poset P, successively forming posets of ideals P?, P%?, P°99,

.., and taking a limit. If we start with a power poset P9, we would like
the limit of P%, (P?)?, (P?7)Q, (P°??)?Q, .. to be the limit of P9, (PQ),
(PRYoo, (PR ...

It is possible that a theorem from category theory (e.g., in a place
like [3, Section 2.13] or [15]) implies our results, but the author would ask any
reader who knows of such a theorem to confirm that verifying the theorem
applies would take considerably less work than the proof we present below.

We give a concrete construction of a filtered limit and then show that
any filtered limit would have the same properties.

Proposition 4.1. Let

S = ((Ci)ier, (fij : Cj — Ci)i,jiNo)
YA
be a filtered system in Poset. Define a relation < on |J;cy, (Ci x {i}) as
follows: Let i,j € Ng. Let ¢; € Ci,¢c; € Cj. We say (ci,i) < (¢j,7) if there

exists h € No such that i,5 < h and fri(c;) < frj(cj) in Ch.

Then < is a preorder. Denote the equivalence class of (c;,1) by [(ci,1)]
and let C be the quotient poset.

Let h,i € Ng be such that i < h. Let ¢; € C;. Then [(¢,1)] =
[(fhi(ci), h)].

For all i € Ny, define f; : C; — C by ¢; — [(¢;,1)] (¢; € C;); then f; is
order-preserving.

Finally,
(Ca (fl : C’L — C)Z'GNo)
is a filtered limit of S.

Proof. Let i € Ny, ¢; € C;. Then ¢ < i and fi;(¢;) = ¢, so (¢;,1) < (¢4,1).
Now let j,k € Ny, ¢; € Cj, ¢ € Ck. Assume (¢;,1) < (¢j,7) and (¢j,j) <
(ck,k). Then there exist h',h” € Ny such that i,7 < b’ and j,k < A"
and fh/i(ci) < fh/j(Cj) and fh//j<Cj) < fh//k(ck). Let h € No be such that
W.h' < h. Then fri(ci)) = faw (fwilc)) < faw (Frrj(cs)) = failej) =
Suw (fr5(¢5)) < fanr (Fron(er)) = frrler) so (ci,i) < (ck, k).
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Thus < is a preorder.

Let h,i € Ny be such that ¢ < h. Let ¢; € C;. Then fr(c;) =
Sun (fri(ci)), so [(¢i,i)] = [(fri(ci), h)]. Thus fi(c;) = fr(fri(ci)).
Now let ¢ € Ny and let ¢;, ¢; € C; be such that ¢; < ¢,. Then (¢;,i) <
(cj,4) since fii(c;) = ¢; < ¢ = fiilc)), so fi(e:) = [(ci,9)] < [(¢},9)] = fi(c))
in C'. Thus f; is order-preserving. We conclude that
(C, (fl : CZ — C)iENo)
is compatible with S.

Let
(C',(ff : Ci = C)ieny)

be compatible with §. Define f : C — (' as follows: Given i € Ny,
ci € Cy, let f([(ci,i)]) = f!(ci). We are forced into this definition if we want
folfi=1f

We show f is well-defined. If i,j5 € No, ¢; € Cj, ¢; € Cj, and
[(ci,i)] = [cj,7)], then there exist h’,h"” € Ny such that i,j < A/, h” and
fwile)) < fwj(cj) and frri(cj) < fari(c). Let h € Ny be such that
W.W' < h. Then fri(ci) = fun (fwi(c)) < faw (frri(cs)) = faj(c;) and
frj(ei) = funr (farj(c;)) < fanr (fari(ei)) = fri(es) so fri(e) = fri(cj).

Now fi(c;) = (f; © fuj)(cj) = (f} © fui)(ci) = fi(ci). Hence f is
well-defined.

Now suppose i,j € No, ¢; € Cj, ¢; € Cj and [(¢; ,z)} < [(¢j, )] Then
there exists h € Ny such that 7,57 < h and f;n ¢i) < frjilc As [(ci, )] =

< ().
[(nalea), 1)) and (e )] = (s (e)o2)], £ ([(eni)]) = ([(fm )=
71 (e < £ (Fasles)) = f<[(fh](cg )) 7(I(e; ). s0 1 is order-

Il

preserving.
Proposition 4.2. Let
(C, (fi : Ci = Oieny)
be the filtered limit of the filtered system
S = ((Ci)ieny, (fij : Cj = Ci)ijeny)-

Jj<ti
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Then for all ¢ € C, there exist i € Ny and ¢; € C; such that fi(¢;) = c.
Forc,d € C, ¢ <d is equivalent to each of the following:

(1) ifi,5 € No, ¢; € Cy, ¢ € Cj, and fi(¢;) = ¢ and f;j(cj) = d, then there
exists h € No such that i,5 < h and fri(c;) < frj(cj);

(2) there exist h,i,j € No, ¢; € Cj, ¢j € C; such that i,j < h, fi(c;) =c,
filej) = d, and fri(ci) < fnj(c)).

For (1) or (2), any b/ € Ny such that h < h' also works.

Proof. Let
(C',(f] : Ci = C)ieny)

be the filtered limit for S constructed in Proposition 1. There exists an
order-isomorphism f : C — C’ such that fo f; = f/ and fi = f~!o f! for
all i € Ny.

Since f~! is onto, for every ¢ € C , there exists ¢ € C' such that
f7L(¢") = ¢, but there exist i € Ny, ¢; € C; such that ¢ = [(¢;,1)] = fl(c;)
so c= fH(fl(ei)) = files).

Now let ¢,d € C. Let ¢ = f(¢), d = f(d). Then ¢ < d if and
only if ¢ < d. If ¢ < d, then there exist h,i,j € Ny such that 7,5 < h,
¢ € Ci, ¢j € Cj, flle) =, f]‘(cj) = d and fpi(¢;) < frj(c;). Hence
filei) = (f o f)(e) = F7H) = ¢, filey) = (o f(eg) = fFH(d) =d.
We get (2).

Now assume (2) holds and assume 7,; € N, ¢ e G, G € C’;, and
f;(&) = cand f;(&) = d. Then f(&) = ¢ and f;’.(éj) = d'. That is,
[(¢i,4)] = [(&5,0)] and [(¢;, 7)] = (&5, )] Hence, as [(¢i,4)] < [(¢,)] by (2),
(1) follows.

Now assume (1). Since there exist ¢ and j and ¢; € Cj, ¢; € Cj such
that fi(c;) = c and fj(c;) = d, the h exists, and ¢ = fi(¢;) = fn(fni(ci)) <
Fn(fnj(cj)) = fi(cj) = d.

Let the situation be as in (1) or (2). Let A’ € Ny be such that b’ > h.
Then &' >4,j and fpi(¢i) = fron(fri(ci)) < fun(fri(c)) = furj(c)). O
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Lemma 4.3. Let
§ = ((Cidieno: (fig = Cj = Ciieo)
It

be a filtered system in Poset with filtered limit

(C, (fl :Cp — C)ieNo)-
Let

(O, (fi : Ci = C)ien,)
be compatible with S. Let f : C — C’ be an order-isomorphism such that
fofi=f forallieNy. Then

(C',(fi : Ci = C")ieny)
is a filtered limit of S.

Proof. Let

(" (ff": Ci = C")ieny)
be compatible with §. Then there exists a unique order-preserving map
g:C — C" such that go f; = f/' for all i € Ng. Then go f~1:C" — C" is
an order-preserving map such that, for all i € Ny, (gof~ Yo f/ =gof; = fI.
If h: C" — C" is an order-preserving map such that ho f/ = f/ for all i € Ny,
then ho fo f; = f/' for all i € Ny, so ho f = g and thus h = go f~ 1. O

Lemma 4.4. Let
(Oa (fl : C’L — C)Z'GN())
be a filtered limit of the filtered system
S = ((C)ieng, (fij : Cj = Ci)ijeny)-

Jj<i
(1) If fix1i is an order-embedding for all i € Ny, then f; is an order-
embedding for all i € Ny.
(2) Let
(Cla (fz/ : C’L — C,)iENo)
be compatible with S. Let f : C — C' be the order-preserving map

such that fo f; = f! for alli € No. If f is an order-embedding for all
1 € Ng, then f is an order-embedding.
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Remark: For something related, see [6].

Proof. (1) Fori,j € Ny such that j <1, then f;; = fi;i—10fi—1,-20---0fjt15,
so fij is an order-embedding. Let i € Ny, ¢;,¢; € C; be such that fi(¢;) <
fi(c). By Proposition 4. 2( ), there exists h € Np such that i < h and
fni(ci) < fri(cl), so ¢; < ¢. Thus f; is an order-embedding.

(2) Let i,j € No, ¢; € Cj, ¢; € C; be such that f(fZ c,) (] ¢j
Let h € Ny be such that i,j < h. Then f;(¢;) = fu(fni(ci)) and fj(c))
fh(fhj(cj))- Thus

)

f(fh(fhi(ci))> < f(fh(fhj(cj))>

50 fh(th(Cz)) < f (fhj(cj)) and fri(ci) < frj(cj). Therefore fi(c;) =
fh(fhz(cz)) = ( ) fj(Cj).

Hence f is an order—embedding. O
Lemma 4.5. Let C; be a poset for all it € No. Let fir1,: C; — Ciy1 be an
order-preserving map for all i € Ng. For alli,j € Ng such that j < i, define

Jij : C; = Cyas fiz—10 fic15-20---0 fiya 10 fir15 and let fj5: C; — Cj
be idcj.

Then
S = ((Ci)ien, (fij : Cj = Ci)ijeny)-

J<i
1s a filtered system in Poset.

Let C be a poset. Let f; : C; — C be an order-preserving map for all
1 € Ng. Then

(C, (fl : CZ — C)ZENO)
is compatible with S if and only if fit1 0 fit1, = fi for all i € Ny.

Lemma 4.6. Let A, B, and Q be posets. Then
(1) fQ € (BUY) for all f € BA;

(2) for all fi, f2 € BA, fi < fo implies fi < f3;
(3) if f € BA is an order-embedding, so is f9.
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Proof (1) Let g1,92 € A9 be such that g1 < ¢o. Let ¢ € Q. Then
(f%(9) (@) = f(91(0) < f(92(0)) = (f992)) (), 50 fQ<gl> 9(g2).

(2) Let g € A2, ¢ € Q. Then [(f{*)(9)](a) = (f1°9)(q) = f1(9(q)) <
f2(9(0) = (f209)(@) = [(f)(9)](a)-

Thus f{(g) < f5(g) and hence f{ < f;’.

(3) Let g1, g2 € AY be such that f?(g1) < f9(g2). Thus for all ¢ € Q,
[f2(g1))(a) < [f92)](q) or f(g1(a)) = (fog1)(a) < (foga)(a) = f(g2(a)),
so 91(q) < g2(q)-

Hence g1 < go. O

Proposition 4.7. Let

S = ((Cy)ien, (fij : Cj = Ci)ijeny) -

J<i
be a filtered system in Poset with filtered limit
(Ca (fl : CZ — C)iGNo)
Let Q be a finite poset. Then S@ is a filtered system with filtered limit

(C (7 OF = Cseny)-
Proof. Let i,7,k € Ny be such that £k < j < 4. Then for all g € CkQ
(£ 0 f3)(9) = fijo finog = fiu o g = (F)(9),
so [ o [ =[5
For all g € CF, f(g) = fuog=idc, 09 =g,s0 fi =
Hence S¥ is a filtered system. Observe that
(CO (2 CF = C%ieny)

is compatible with S@: for i, € Ny such that j < i and g € C’JQ,
(F2 0 f9) = fio fijog=fio9 = f(9) so fo [ = .
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Let (D, (g : CZQ — D);en,) be a filtered limit of S€.

Claim 1. For all i,j € No, v € C2, ~; € CJQ, gi(vi) < gi(v;)
if and only if there exists h € Ng such that i,5 < h and, for all ¢ € Q,
i (1i(@)) < g (13(0))-

Proof of claim. (=) By Proposition 4.2(1), there exists h € Ny such
that 4,j < h and f2(7;) < [y (v;)—that is, fu; 0% < frj ;. So for all
q€Q, fri(7i(9) < frj(vi(a).

(<) We have fz; 07 < frjon; so f}g(%) < f,g('yj) By Proposition
4.2(2), 9:(7i) < g;(75)-

Define a map ¥ : D — C9 as follows: for all i € Ny, v; € CZ-Q, and
q€Q,

(9 (9i(3))](a) = fi(vi(a))-

Claim 2. The map V is well-defined and order-preserving.

Proof of claim. Let i,j € Ny, v; € C’iQ, v € C]Q be such that g;(7;)
gj(7vj). By Claim 1 and Proposition 4.2(1), for all ¢ € Q, fz'(%‘(Q))
fi(vi(a))-

Claim 3. The map VU is an order-embedding.

INIA

Proof of claim. Let i,7 € Ng, v € C’Z-Q, vj € C]Q be such that
U(gi(i)) < P(gj(7y)). Hence, for all ¢ € Q, fi(vi(d) < f;(v;(a)-
Thus, by Proposition 4.2(1), there exists hy; € Ny such that 4,57 < h, and
thl-(’yi(q)) < thj(fyj(q)). Let h € Ny be such that hy < h for all ¢ € Q
and i,j < h. (Here we use the finiteness of ().) Then by Proposition 4.2,

fri(7i(9)) < fnj(7(@)) for all ¢ € Q. By Claim 1, g;(vi) < g;(v5)-
Claim 4. The map V¥ is onto.

Proof of claim. Start with an element of C?. For each g € Q, let g €
No, ¢;, € C;, be such that whenever ¢,r € Q and ¢ <, we have f; (c;,) <

fi,(ci.). Thus, whenever ¢,r € Q and ¢ < r, there exists (by Proposition
4.2(1)) hgyr € Ng such that iy, i, < hg, and fp, 4. (ci,) < fag,i,(ci,). Pick

h € Ng such that hy, < h for all ¢, € Q with ¢ < r. (Here we use

the finiteness of @).) By Proposition 4.2, for all ¢, € @ such that ¢ < r,
fhig(Cig) < fhi(ci)-
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Define 0 : Q — C}, as follows: for all ¢ € Q, d(q) = fri,(ci,). Then §

is order-preserving.

We will show that, for all ¢ € Q,
(@ (9n(9))1(q) = fi,(ciy)-

The left-hand side is fh(é(q)) = fh(fhiq(ciq)) = fi,(ci,)-

Let i € Ng, v € CZQ. Then, for all g € Q,

(#0660 ) (0= Hs(0)

= (fiovi)(a)
= [ (v))(@),
50 U(gi(1)) = 2 ().
By Lemma 4.3,
(C2 (7 CF = C%ieny)
is a filtered limit of S%.

Proposition 4.8. Let
S = ((Ci)ieny, (fij : Cj — Ci)i,jiNo)
ISt
and

S = ((C)ieny, (fi;: Ch— Cl)ijero)

J<i
be filtered systems in Poset with filtered limits
(C,(fi : Ci = Oieny)
and
(Cl7 (f’L/ : 07{ — CI)ZENO)J

respectively.

For all i € Ny, let ¢; : C; — C! be an order-isomorphism. Assume

that, for all i € Ny, fi’+17i °¢; = ¢iy10 fiy1-

Then there is a unique order-isomorphism f : C — C' such that, for

all i € Ny, fo fi=flog.
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Proof. We first show that
(CI7 (fz/ © ¢Z : C’L — C/)i€N0)7

is compatible with S, using Lemma 5: for i € No, fi,; o ¢ip10 fir1: =
fz'/+1 o fz‘/+1,i °Q; = fz/ o ;.

Thus there exists a unique order-preserving map f : C — C’ such
that, for all i € Ny, fo fi = fl o ¢;.

Now, for all ¢ € Ny, <l5;+11 o i/Jrl,i = fit140 qﬁ;l, so by symmetry there
is a unique order-preserving map f' : C' — C such that, for all i € Ny,
flofl=fiog; " hence f'o flog; = f;or f'ofofi=f;. Of course, ido
is such that id¢ o f; = f; for all i € Ny, so by uniqueness id¢ = f' o f. By
symmetry idcr = f o f’. O

Corollary 4.9. Let P and QQ be posets, Q finite. Fori € Ny, let C; = P79
and let D; = (PR)77 (i copies of “c”). Fori € Ny, let fiy1,;: C; — Ciy1 be
the order-embedding x — lx; let giv1,; : Di — Dit1 be the order-embedding
y—=ly.

Then for all i € Ny, there exists an order-isomorphism ¢; : CZ-Q — D;
such that, for all i € Ny,

Gi+1,i © Pi = Pit10 fﬁu-

Proof. Let ¢g = idpq. Now assume ¢; : CZ-Q — D, is defined. By Proposition
3.2, there exists an order-isomorphism ®; : (C’ZQ )? — D¢ such that, for all
fe CZ-Q , ©i(Lf) =) [¢i(f)]. By Corollary 3.3, there is an order-isomorphism
H; : (C7)Q = (C2)7 such that, for all f € C, H;y(f7) = Lf.

Let ¢j11 = ®; 0 H; : Cgu — Djy1. It is an order-isomorphism.

Let f € CZQ. Note that, for all ¢ € Q,
2L (NN@) = (firrio @) =L [£(q)]

50 gkl,i(f) =f.
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Thus
1 (80) = 0 (H(2,,1) )
= ®;(Hi(f7))
=®;(4f)
=1 ¢:i(f)
Also, git1,i(¢i(f)) =1 [¢i(f)]. Hence giy1,0 ¢ = diy10 ffil,i- O

Corollary 4.10. Let all be as in Corollary 4.9. Let

S = ((Ci)ieny, (fij : Cj = Ci)ijeny)

J<i
and
T = ((Di)ieny, (9i5 : Dj — Di)i,jiNo)
I
be filtered systems built as per Lemma 4.5. Let

(Ca (fl : C’L — C)’iGNO);
(CO(f2:CP = C9ien,), and

(D, (gi : Di = D)jeny,)

be the filtered limits of S, S9, and T, respectively (using Propositions 4.1
and 4.7).

Then there exists a unique order-isomorphism f : C9 — D such that,
for alli € N, fo f2 = gio ;.

Moreover, C is dually atomic.

Proof. We get f from Proposition 4.8.
We borrow from [5, page 264].

Claim 1. Let A be a poset. Let a,b € A be such that a < b. Then
there exists I € A® such that la C I < b in A°.
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Proof of claim. Let £ be the poset {J € A7 | la € J G b} ordered
by set-inclusion. Then Ja € £.

Now let C be a non-empty chain in £. We see that [ JC € £.
By Zorn’s Lemma, £ has a maximal member.
Claim 2. If a < b in a poset A, then la < b in A°.

Proof of claim. Assume for a contradiction that there exists C' € A”
such that la & C' G |b. Then a € C and there exists ¢ € C such that ¢ £ a.
Hence there exists d € C such that a,c < d. Therefore a < d.

As d < b, we conclude d = b. Thus b € C, so |b C C ; b, a

contradiction.

Let 4,5 € Ny, ¢; € Cy, ¢j € Cj be such that fi(c;) < fj(¢;). Then by
Proposition 4.2, there exists h € Ny such that i, 5 < h and fri(c;) < frj(c)).

If fhz(cl) - fh](c,])’ then fz(cz) - fh(fhz(cz)) - fh(fh](c])) fj( ]) a

contradiction. Thus fp;(c;) < fnj(cj)-

Now, there exists cp11 € Chyq such that fh+1’h(fhi(ci)) < cpa1 <
Jrnr1,n (frj(cj))—that is, fri1i(ci) < chpr < frr1i(c)).

Hence fi(ci) = far1(farri(c)) < fayilensn) < fro(Frrgley)) =
fj(cj), using Lemma 4.4(1).

Assume for a contradiction that, for some k € Ny and ¢, € Cj,
frhti(ens1) < fi(ew) < fi(cj). Let £ € Ny be such that h + 1,k < £
and fypt1(cnt1) < fer(er) and let m € Ny be such that j,k < m and
(k) < fm,j(cj). Pick n € Ny such that ¢,m < n; by Proposition 4.2,
we have

Frnri(enn) < funler) < faj(es) = Fapir (Frrs(es))-
By Claim 2, fyp+1(cnt1) < fanr1 (far,(cs)), so
far(cr) € {fapr1(cnir), frj(c;)}
and thus

Srler) = fa(far(cr)) € {fn(frnsr1(cnin))s fu(fri(ci))}
= {fh-i—l(ch-i-l)?fj(cj)}v



Cancel Culture 21

a contradiction.
Therefore fi(c;) < fat1(cnt1) < filcj). O

Lemma 4.11. Let P, P, Q,Q’ be posets such that Q and Q' are finate. Let
S be as in Corollary 10 and similarly define S'. Let Uy : P9 — P'? be an
order-isomorphism.

Then for all © € Ny, there exists an order-isomorphism W, : CZ-Q —

c'? | so that, for all i € Ny,

[

f,grl,i oW; =W;qo0 fﬁu-
Proof. Define T as in Corollary 4.10, and similarly define 7’. By Corol-
lary 4.9, fﬁlz[(}’?] = R[CgH] and, by Lemma 4.6(3), fle is an order-

embedding. Also, CSH is an algebraic poset (Corollary 3.3). By Proposi-
tion 3.2, there exists an order-isomorphism W, : Cgl — ' gl such that
Wit10 ffH,Z- = f/g1,i o ;. O

Proposition 4.12. Let all be as in Lemma 4.11. Then for all i € Ny, f,LQ

and f’?/ are order-embeddings.

Further, there exists a um’qz/te order-isomorphism ¥ : C9 — ' such
that, for all i € Ng, ¥ o fiQ = fi’Q o ;.

Proof. Use Proposition 4.8, Lemma 4.4(1), and Lemma 4.6(3). O

5 Dually atomic posets and the refinement of powers and
cancellation of exponents

In this section, we prove that finite posets C' with a top element can be
cancelled as exponents—A¢ = B implies A = B, even if A and B are
infinite.

Jénsson and McKenzie’s results are phrased in terms of atomic posets,
whereas we were working earlier with dually atomic posets, so we show we
can dualize the results of Jonsson and McKenzie.
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Lemma 5.1. Let A, B,C,D be posets such that C,D # 0. Let ¢ : A =
BP. Let @2 - (Aa)(cd) — (Ba)(D ) be given by ¢2(f) = ¢(f) for all f €
(A2)() (30 ¢ : (A7) = (BO)(P7)).

Then (¢,4) implies (¢°,1) fori € {1,2,3,4}.

Proof. Clearly A(¢°) = A(¢). Also R(¢?) = {z € A | (z) € A(¢?)} =
R(¢).
Let x,y € A%, Then
T §¢8 Yy

if and only if

2,y € R(¢?), z < yin A9, and for all f € (A9)(C") with f[C] C {z,y},
we have f € A(¢?)

if and only if

z,y € R(¢), >y in A, and for all f € A® with f[C] C {z,y}, we
have f € A(¢)

if and only if
T2y Y-

The map ¢? from R(¢?) to R(¢? ") is such that, for = € R(¢?), ¢(x)
is the element y such that ¢?((x)) = (y), so qﬁa is .

If (¢,1), then (¢?,1).
If (¢,2), then (¢7,2). (The set R(qﬁa_l) is R(¢—1‘9).)
Assume (¢, 3). Then

A(6%) = A(9)
={f:C— R(¢)| forallc,d € C, c < in C implies f(c) <4 f()}

={f:C— R(¢?)| forall ¢, € C, ¢ > ¢ in C? implies f(c) > 40 f(ch}

Thus (¢?,3) holds.
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Assume (¢, 4) holds. Then

240 =<¢
=<4 N(R(¢) x R(9))
=> 10 N(R(67) x R(¢7)),
so (¢?,4) holds. O

Lemma 5.2. Let A, B,C, D be posets. Assume A and B are dually atomic.

Assume C and D are finite, directly irreducible posets with a bottom element.
Assume ¢ : A© = BP.

Then (¢,1), (6,2), (¢,3), and (¢=1,3). If C 2 D, then (¢,4).
Proof. By Lemma 2.3, (¢,1) holds. By Lemma 2.4, (Aa)(ca) and (Ba)(Da)

have Property (a), so by Lemma 2.5, (¢?,2) holds, so by Lemma 5.1, (¢, 2)
holds.

By Lemma 2.6, (¢?,3) holds, so by Lemma 5.1, (¢,3) holds. By
symmetry, (¢!, 3) holds.

Now assume C' % D. Then (¢7,4) by Lemma 2.4 and Lemma 2.7. By
Lemma 5.1, (¢,4) holds. O

Now we eliminate the hypothesis of being dually atomic.

Lemma 5.3. Let A, B,C, D be posets such that C and D are finite, directly
irreducible posets with a bottom element. Assume ¢ : A® — BP is an
order-isomorphism. Then (¢,1), (¢,2), (¢,3), and (¢~1,3). If C 2 D,
then (¢,4).

Proof. By Lemma 4.4(1), Proposition 4.12 and Corollary 4.10, there exist
dually atomic posets A1 and B and order-embeddings f : A — Ay and
g: B — B; and (by Lemma 4.6(3)) f¢ : A® = 4,“ and ¢” : B? — B,”
and an order-isomorphism U : 4;¢ = B, P such that ¥ o f€ = ¢gP o ¢.

Claim. If “Im” denotes the image of a map, Im(f¢) = (Im f)°
and Im(g?) = (Im g)".
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Proof of claim. If o € (Im ), then for all ¢ € C, let a(c) = f(ac).
Define @ : C — A by ¢+ a, for all ¢ € C. This is order-preserving: if ¢ < ¢/
in C, then a(c) < a(d) so a. < ay, since f is an order-embedding. That is,
ae A Forall c € C, [fE@)(e) = (f om)(e) = F(a(0)) = Flae) = ale),
so f¢(@) = a.

Conversely, if o € A®, then for all ¢ € C, [f¢(a)](c) = (foa)(c) =
f(a(c)) €lmf.

By Lemma 5.2, (¥, 1), (¥,2), (¥,3), and (¢! 3), and, if C 2 D,
(U, 4).

By Proposition 4.12, the restriction of ¥ to Im(f) is essentially the

same as ¢; by the comment in Section 2 and Lemma 2.8, (¢, 1), (¢, 2), (¢, 3),
(¢_1a3)7anda lfC%D, (¢a4) O

Lemma 5.4. Let all be as in Lemma 5.3. If C = D, then A = B. If
C 2 D, then there is a poset E such that A= EP and B = E°.

Proof. This follows from Theorem 2.1 and Theorem 2.2. O

Theorem 5.5. Let A, B, C, and D be posets such that C and D are
finite and both have a least element (both have a greatest element). Assume
¢: A® =~ BD.

Then there are posets E, X, Y, and Z such that A= EX, B~ EY,
C2Y xZ,and D= X x Z.

IfC =D, then A= B.

Proof. The proof is identical to that of [10, Theorem 5.2]. We will not even
change the notation.

Let C 2 C1xCyx---xCpand D = Cy x Doy Xx- - -x D, where m,n € Ny,
C; is directly irreducible (i = 1,...,m), and Dj is directly irreducible (j =
1,...,n). Note that each C; has a bottom element (i = 1,...,m), as does

each D; (j =1,...,n). By Hashimoto’s Refinement Theorem [16, Theorem
10.4.4], m and n are uniquely determined.

We proceed by induction on m + n.

Ifm=0,let F=B, X=D,Y=1,and Z =1.
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Ifm=1=mn,use Lemmad. (If C =D, let E=A, X=Y =1, and
Z=0C.)

If m +n > 3, without loss of generality m > 2. Let C' = Cy x -+ x
Cr_1, SO (ACW)C, =~ BP and hence there exist posets Eq, X1, Y1, and Z;
such that

ACm = g5 B=FEN O =Y x Z1, D= Xy x Zy.

By Hashimoto’s Refinement Theorem, X7 has at most n directly irreducible
factors and C” has m — 1, so by induction there are posets Fy, Xo, Y5, and
Z5 such that

A= B2 B2 EY Cp XYy X Zy, X1 = Xy X Zo.

SoletE:Eg,X:Xg,Y:Yl><Yg,andZ:Zl><Z2.

If C = D, we have (A®)%m = (B¢")%m 5o A" = B and by induc-
tion A = B.

If C' and D have a greatest element, we have
(A7) = (49)? = (BP)? = (B) "),

where C? and D? have least elements. Thus there exist posets E, X, Y, and
7 such that A9 = (F9)X° BRI o (EY? (0 > yd x 70 DI =~ x0 x 79,
SO A EX B2EY C2Y xZ,and D= X x Z.

Also, if C 2 D, then €9 = D? so A2~ B9 and A~ B. O
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