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Composition series on (Rees) congruences
of S-acts

Roghaieh Khosravi∗ and Mohammad Roueentan

Abstract. In this paper, we study composition series of subacts or con-
gruences of S-acts. It is shown that composition series of subacts are exactly
those that are both Rees artinian and Rees noetherian, i.e. those satisfying
both ascending and descending chain conditions on subacts. But this is not
valid for the case of composition series of congruences in general. We prove
that the properties of having composition series of subacts or congruences
are inherited in Rees short exact sequences. Also, we discuss whenever two
composition series of subacts or congruences have the same length and they
are equivalent.

1 Introduction and Preliminaries

Chain conditions are classical finiteness conditions in algebra, see for exam-
ple [1, 14]. Related to the notion of chain conditions is that of composition
series and the Jordan-Holder Theorem. The importance of a composition
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series in abstract algebra is to provide a way to break up an algebraic struc-
ture into simple pieces. Motivated by this fact, we study the concept of
composition series in the category of S-acts.

Right noetherian semigroups were introduced in [6], and then further
studied in [8, 9, 13]. For S-acts, in [3] the descending and ascending chain
conditions on commutative monoids with zero as S-acts are investigated.
Then, as the dual concept of finitely generated S-acts, in [11] the concepts
of finitely (Rees) cogenerated S-acts are investigated. In [12], several basic
properties of (Rees) noetherian and artinian S-acts are studied. Using these
results, in Section 2, we study composition series of subacts as a strictly de-
creasing sequence of subacts in which no further subact can be inserted.
Then we prove that an S-act has a composition series of subacts if and
only if it is both Rees artinian and Rees noetherian. It is well known that
congruences play a fundamental role in the study of quotient structures of
S-acts. Moreover, unlike the case for module theory, not every congruence
on an S-act is associated with a subact. Subacts only determine Rees con-
gruences and Rees factor S-acts. So in Section 3, we introduce composition
series of congruences. Then we establish some connections between compo-
sition series of congruences with the notions related to chain condition on
congruences. The lattice of congruences is not generally modular. When
the lattice of congruences on an S-act is a modular, some of the main results
in the study of composition series of congruences are proved.

Throughout this paper, S will stand for a monoid and A is a right
S-act. Recall that a congruence ρ on an S-act A is an equivalence relation
on A such that a ρ a′ implies that as ρ a′s for each a, a′ ∈ A and s ∈ S.
The lattice of all congruences on A is denoted by (Con(A),⊆,∩,∨) which is
a complete lattice with greatest element ∇A = A×A and smallest element
∆A = 1A. An S-act is called congruence-free if it contains no congruences
other than ∆A and ∇A. Moreover, a simple S-act is an S-act with no
subacts other than itself, and a θ-simple S-act is an S-act which contains
no subacts other than itself and the one element subact Θ. For general
background on S-acts the reader can consult [7].

In the reminder of this section, we recall some results of [12] without
proof which will be needed in the sequel. As we mentioned earlier, an S-
act A is called artinian (noetherian) in case Con(A) satisfies the descending
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(ascending) chain condition, equivalently, the minimal (maximal) condition.
By [12, Theorems 5 and 6], artinian S-acts are those which all their factor
acts are finitely cogenerated, and noetherian S-acts are those which all their
congruences are finitely generated.

An S-act A is called Rees artinian (Rees noetherian) if it satisfies
the descending (ascending) chain condition on its Rees congruences, equiv-
alently, on its subacts (or, equivalently, the minimal (maximal) condition on
its subacts). By [12, Proposition 7], Rees artinian (Rees noetherian) S-acts
are those which all their factor acts (subacts) are finitely Rees cogenerated
(generated). The notions right (Rees) artinian (noetherian) monoids apply
for a monoid S with this property as a right S-act.

Let f : A −→ B and g : B −→ C be S-morphisms. Recall from [16]

that the sequence A
f−→ B

g−→ C is called a Rees short exact sequence if
f is one-to-one, g is onto, and ker g = KImf where KImf = (f(A)× f(A)) ∪
∆B. The following two results will serve as useful tools for our study of
composition series.

Theorem 1.1. ([12]) Let A −→ B −→ C be a Rees short exact sequence of
S-acts. Then, B is (Rees) artinian (noetherian) if and only if both A and
C are (Rees) artinian (noetherian).

Lemma 1.2. ([12]) Let A be an S-act, and A1 ⊆ A2 ⊆ · · · ⊆ An = A.
Then A is (Rees) artinian (noetherian) if and only if A1 and factor S-acts
Ai+1/Ai are (Rees) artinian (noetherian) for all 1 ≤ i ≤ n− 1.

2 Composition series of subacts

In this section we introduce composition series of subacts for S-acts, and
study the relation between such series and Rees artinian and noetherian
S-acts. Let us first define a composition series of subacts.

Definition 2.1. Let A be an S-act. Then,

(i) A finite chain of n+ 1 subacts of A

A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An,
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is called a composition series of subacts of length n for A provided that
Ai/Ai+1 is θ-simple, and An is a simple S-act, i.e., provided each term
in the chain is maximal in its predecessor. In addition, the θ-simple
S-acts Ai/Ai+1, 0 ≤ i ≤ n, where An/An+1 denotes An ∪ {θ}, are
called the composition factors of the series. We denote the minimum
length of such a series for A by ls(A).

(ii) Two composition series of subacts

A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An

and

A = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bm

of A are said to be equivalent in case n = m and there is a permutation
ι on{1, 2, . . . , n} such that

Ai/Ai+1
∼= Bι(i)/Bι(i+1)

for each i = 1, 2, . . . , n.

First we prove that the right S-acts that are both Rees artinian and
Rees noetherian are precisely those with a composition series of subacts.

Theorem 2.2. Let S be a monoid. An S-act A has a composition series
of subacts if and only if it is both Rees noetherian and Rees artinian.

Proof. Necessity. Suppose that A has a composition series of subacts

A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An.

Since each Ai/Ai+1 is θ-simple, then all factor acts Ai/Ai+1 and An are both
Rees artinian and Rees noetherian. By Lemma 1.2, A is both Rees artinian
and Rees noetherian.

Sufficiency. Suppose that A is Rees noetherian and Rees artinian.
Since A is Rees noetherian, A has a maximal proper subact A1. Now, A1

is Rees noetherian, so if A1 is not simple, then A1 has a maximal proper
subact A2. Similarly, either A2 is simple or it contains a maximal proper
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subact A3. Continuing in this way, we must eventually obtain a simple
subact An, for otherwise we would have a strictly descending chain

A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ,

contradicting the fact that A is Rees artinian. Moreover, each Ai/Ai+1 is
θ-simple, we have a composition series of subacts for A.

The following result is a consequence of Theorems 1.1 and 2.2.

Corollary 2.3. Let A −→ B −→ C be a Rees short exact sequence of S-
acts. Then, B has a composition series of subacts if and only if both A and
C have composition series of subacts.

Clearly, the above corollary implies that the property of having a
composition series of subacts is closed under subacts and factor acts.

The following theorem is the analogue for S-acts of the Jordon-Holder
Theorem for modules.

Theorem 2.4. (Jordan-Holder) If an S-act A has a composition series of
subacts, then every pair of composition series of subacts for A are equivalent.

Proof. Suppose that A has a composition series of subacts. We use induction
on ls(A). If ls(A) = 0, then A is simple, so obviously A has only one
composition series. Now suppose that ls(A) = n ≥ 1, and assume that for
any S-act with a composition series of subacts of smaller length, all of its
composition series are equivalent. Let

A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An (2.1)

be a composition series of subacts for A with the minimal length ls(A) = n.
Moreover, let

A = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bm, (2.2)

be another composition series of subacts for A. If A1 = B1, then by the
induction hypothesis, the pair of composition series

A1 ⊃ A2 ⊃ · · · ⊃ An and A1 = B1 ⊃ B2 ⊃ · · · ⊃ Bm
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are equivalent, and hence the composition series (1) and (2) are equivalent.
So we may assume that A1 ̸= B1. First suppose that n = 1. Since we have

A ⊇ A1 ∪B1 ⊇ A1 ⊇ A1 ∩B1,

and A1 and B1 are simple with A1 ̸= B1, it follows that A1 ∩ B1 = ∅ and
A = A1 ∪B1. Therefore, we have A/A1

∼= B1 ∪ {θ} and A/B1
∼= A1 ∪ {θ},

so that the composition series (1) and (2) are equivalent. Now suppose that
n > 1. Then since A1 is a maximal subact of A, we have A1∪B1 = A1∪B2 =
A which implies that A1 ∩ B1 ̸= ∅. In addition, A/A1 = (A1 ∪ B1)/A1

∼=
B1/(A1 ∩B1), and A/B1 = (A1 ∪ B1)/B1

∼= A1/(A1 ∩ B1). Since both
A/B1 and A/A1 are θ-simple, A1 ∩ B1 is maximal in both A1 and B1. By
Corollary 2.3, C = A1 ∩B1 has a composition series

C = C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck.

So

A1 ⊃ C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck

and

B1 ⊃ C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck

are composition series of subacts for A1 and B1, respectively. By the induc-
tion hypothesis, since ls(A1) < n, every two composition series of subacts
for A1 are equivalent. Thus, the composition series of subacts

A1 ⊃ A2 ⊃ · · · ⊃ An

and

A1 ⊃ C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck

are equivalent. So k = n − 1 implies that ls(B1)< n. Again, by induction
hypothesis, every two composition series of subacts for B1 are equivalent.
Then the two composition series

B1 ⊃ B2 ⊃ · · · ⊃ Bm

and

B1 ⊃ C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck
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are equivalent. It follows that n = m. Moreover, we mentioned that A/A1
∼=

B1/C0, and A/B1
∼= A1/C0. Now, we have A1/C0

∼= Aj/Aj+1 for some
j ∈ {1, . . . , n}, and there is a bijection

σ : {0, . . . , n− 2} → {1, . . . , n}\{j}

such that Ci/Ci+1
∼= Aσ(i)/Aσ(i+1). Similarly, B1/C0

∼= Bl/Bl+1 for some
l ∈ {1, . . . , n}, and there is a bijection

τ : {0, . . . , n− 2} → {1, . . . , n}\{l}

such that Ci/Ci+1
∼= Bτ(i)/Bτ(i+1). Now define a permutation ι on {0, . . . , n}

by ι(0) = l, ι(j) = 0 and ι(τ(i)) = σ(i). Then Ai/Ai+1
∼= Bι(i)/Bι(i+1) for

each i ∈ {0, . . . , n}. Therefore, the two composition series (2.3) and (2.4)
are equivalent, as desired.

The following result is an immediate consequence of the Jordan-Holder
Theorem which states that for any S-act having a composition series of
subacts, all composition series for that S-act have the same length. So such
S-acts are said to be of finite length of subacts.

Proposition 2.5. Suppose that A has a composition series of subacts of
length n. Then every composition series of subacts of A has length n, and
every chain in A can be extended to a composition series.

Corollary 2.6. Every finitely generated S-act A over Rees artinian com-
mutative monoid S is of finite length of subacts.

Proof. By [12, Theorem 20], S is Rees noetherian, hence [12, Proposition
11] implies that every finitely generated S-act A is both Rees artinian and
Rees noetherian. Consequently, A has finite length of subacts.

In the category S-Act0, the coproducts of θ-simple S-acts are called
semisimple. If an S-act A is a coproduct of finitely many θ-simple S-acts,
then A is of finite length of subacts. Conversely, if A is semisimple and of
finite length of subacts, then A is a finite coproduct of θ-simple subacts.

As a direct consequence of [12, Proposition 11], we obtain the follow-
ing corollary.
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Corollary 2.7. For a monoid S, the following statements are true.

(i) A is of finite length of subacts if and only if A
∐

Θ is of finite length
of subacts.

(ii) If A is of finite length of subacts, then
∐i=n

i=1 A is of finite length of
subacts for each n ∈ N.

(iii) If S contains a zero and A1, . . . , An are S-acts, then A =
∐i=n

i=1 Ai is
of finite length of subacts if and only if each Ai, 1 ≤ i ≤ n, is of finite
length of subacts.

3 Composition series of congruences

Given the importance of the role of congruences in the study of S-acts,
in this section we consider composition series of congruences. Then we
study the connections of composition series of congruences with artinian
and noetherian properties. First, we extend the definition of composition
series of subacts to composition series of congruences.

Definition 3.1. Let A be an S-act. Then,

(i) A finite chain of n+ 1 congruences of A

∇A = ρ0 ⊃ ρ1 ⊃ ρ2 ⊃ · · · ⊃ ρn = ∆A,

is called a composition series of congruences of length n for A provided
that ρi+1 is maximal congruence in ρi, in other words, ρi covers ρi+1,
which is denoted by ρi+1 ≤m ρi. We denote the minimum length of a
composition series of congruences on A by lc(A).

(ii) Two composition series of congruences

∇A = ρ0 ⊃ ρ1 ⊃ ρ2 ⊃ · · · ⊃ ρn = ∆A,

and
∇A = σ0 ⊃ σ1 ⊃ σ2 ⊃ · · · ⊃ σm = ∆A,

of A are said to be equivalent in case n = m, and there is a per-
mutation ι on {1, 2, . . . , n} such that ρi/ρi+1

∼= σι(i)/σι(i+1) for each
i = 1, 2, . . . , n.
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Recall that a lattice (Con(A),⊆,∩,∨) is modular if for each ρ, σ, δ ∈
Con(A), we have ρ ⊆ δ implies that ρ ∨ (δ ∩ σ) = δ ∩ (ρ ∨ σ). Before
proceeding to the explicit study of composition series of congruences, we
shall prove two following lemmas which will be needed subsequently.

Lemma 3.2. Let A be an S-act which the lattice Con(A) is modular. If
ρ1, ρ2, σ ∈ Con(A) and ρ2 ≤m ρ1, then

(i) ρ1 ∨ σ = ρ2 ∨ σ or ρ2 ∨ σ ≤m ρ1 ∨ σ;
(ii) ρ1 ∩ σ = ρ2 ∩ σ or ρ2 ∩ σ ≤m ρ1 ∩ σ.

Proof. (i) Let ρ1, ρ2, σ ∈ Con(A) and ρ2 ≤m ρ1. Clearly,

ρ2 ⊆ ρ1 ∩ (ρ2 ∨ σ) ⊆ ρ1,

and maximality of ρ2 in ρ1 implies that ρ2 = ρ1∩(ρ2∨σ) or ρ1 = ρ1∩(ρ2∨σ).
If ρ1 = ρ1 ∩ (ρ2 ∨ σ), then, using the fact that Con(A) is modular, we have

ρ1 ∨ σ = [ρ1 ∩ (ρ2 ∨ σ)] ∨ σ = [ρ2 ∨ (ρ1 ∩ σ)] ∨ σ = ρ2 ∨ σ.

Now, suppose that ρ2 = ρ1∩ (ρ2∨σ), and consider δ such that ρ2∨σ ⊆ δ ⊆
ρ1∨σ. Then ρ2 ⊆ ρ1∩ δ ⊆ ρ1, which implies that ρ2 = ρ1∩ δ or ρ1 = ρ1∩ δ.
If ρ2 = ρ1 ∩ δ, then

δ = δ ∩ (ρ1 ∨ σ) = (ρ1 ∩ δ) ∨ σ = ρ2 ∨ σ.

If ρ1 = ρ1 ∩ δ, then ρ1 ⊆ δ, and so ρ1 ∨ σ = δ since σ ⊆ δ. Therefore,
ρ2 ∨ σ ≤m ρ1 ∨ σ.

Part (ii) can be proved in an analogous way.

Lemma 3.3. Let A,B be S-acts which the lattices Con(A) and Con(B) are
modular, and f : A→ B be an S-morphism. The following hold.

(i) Let σ1, σ2 ∈ Con(A) with σ2 ≤m σ1. Letting

ρi = {(f(a), f(b))| (a, b) ∈ ρi ∨ ker f} ∪∆B,

we have ρi ∈ Con(B) and (ρ2 = ρ1 or ρ2 ≤m ρ1). Moreover, if f is a
monomorphism, ρ2 ≤m ρ1.
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(ii) Let γ1, γ2 ∈ Con(B) with γ2 ≤m γ1, Letting

δi = {(a, b)| (f(a), f(b)) ∈ γi},

we have δi ∈ Con(A) and (δ2 = δ1 or δ2 ≤m δ1). Moreover, if f is an
epimorphism, δ2 ≤m δ1.

Proof. (i) Let σ1, σ2 ∈ Con(A) and σ2 ≤m σ1. Let

ρi = {(f(a), f(b))| (a, b) ∈ σi ∨ ker f} ∪∆B.

If (c, d) ∈ ρi, then c = d or c = f(a), d = f(b) such that (a, b) ∈ σi ∨ ker f .
Clearly, for each s ∈ S, (as, bs) ∈ σi∨ker f and so (cs, ds) = (f(as), f(bs)) ∈
ρi which implies that ρi ∈ Con(B). By Lemma 3.2, σ1 ∨ ker f = σ2 ∨ ker f ,
or σ2 ∨ ker f ≤m σ1 ∨ ker f . In the first case, ρ1 = ρ2. Otherwise, suppose
that ρ2 ⊆ δ ⊆ ρ1. Take

ξ = {(a, b)| (f(a), f(b)) ∈ δ}.

Clearly, ξ ∈ Con(A) and σ2∨ker f ⊆ ξ ⊆ σ1∨ker f , and since σ2∨ker f ≤m

σ1∨ker f , we have σ2∨ker f = ξ or σ1∨ker f = ξ. Hence, δ = ρ2 or δ = ρ1,
and the result follows. The second part is clear.

(ii) Let γ1, γ2 ∈ Con(B) and γ2 ≤m γ1. Let

δi = {(a, b)| (f(a), f(b)) ∈ γi}.

Clearly, δi ∈ Con(A). By Lemma 3.2, σ1∩KImf = σ2∩KImf , or σ2∨KImf ≤m

σ1 ∨ KImf . Now, suppose that δ2 ⊆ φ ⊆ δ1. Take

ξ = {(f(a), f(b))| (a, b) ∈ φ ∨ ker f} ∪∆B.

Clearly, ξ ∈ Con(B) and γ2 ∩ KImf ⊆ ξ ⊆ γ1 ∩ KImf . Since γ2 ∩ KImf ≤m

γ1 ∩KImf , we have γ2 ∩KImf = ξ or γ1 ∩KImf = ξ. Hence, φ = δ2 or φ = δ1,
as desired. Now, suppose that f in epimorphism. Take (c, d) ∈ γ1\γ2. Since
f is an epimorphism, there exist a, b ∈ A such that c = f(a) and d = f(b).
Then (a, b) ∈ δ1 \ δ2, and so δ2 ̸= δ1.

We now prove that for an S-act whose congruence lattice is modular,
any two compositions series have the same length.
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Proposition 3.4. Suppose that A has a composition series of congruences
of length n, and the lattice Con(A) is modular. Then every composition
series of A has length n, and every chain of congruences in A can be extended
to a composition series of congruences.

Proof. Suppose that lattice Con(A) is modular, and

∇A = ρ0 ⊃ ρ1 ⊃ ρ2 ⊃ · · · ⊃ ρn = ∆A

is a composition series of congruences of A with the least length lc(A) = n.
First we show that lc(A/σ) < lc(A) for each σ ∈ Con(A), σ ̸= ∆A. We
have a series

∇A/σ = (ρ0 ∨ σ)/σ ⊇ (ρ1 ∨ σ)/σ ⊇ (ρ2 ∨ σ)/σ ⊇ · · · ⊇ (ρn ∨ σ)/σ = ∆A/σ.

Using Lemma 3.2, we deduce that (ρi ∨ σ)/σ = (ρi+1 ∨ σ)/σ or (ρi+1 ∨
σ)/σ ≤m (ρi ∨ σ)/σ. Hence, removing repeated terms, we obtain a compo-
sition series of congruences for A/σ, and so lc(A/σ) ≤ lc(A). If lc(A/σ) =
lc(A) = n, then ρi+1∨σ ≤m (ρi∨σ) for each i = 1, 2, . . . , n. From the proof
of Lemma 3.2, in this case ρi+1 = ρi ∩ (ρi+1 ∨ σ) for each i = 1, 2, . . . , n.
This implies that

ρi+1 ∩ σ = [ρi ∩ (ρi+1 ∨ σ)] ∩ σ = (ρi ∩ σ) ∨ (ρi+1 ∩ σ) = ρi ∩ σ,

for each i = 1, 2, . . . , n. But then,

σ = ρ0 ∩ σ = ρ1 ∩ σ = · · · = ρn ∩ σ = ∆A,

a contradiction. Hence lc(A/σ) < lc(A).

Now suppose that

∇A = σ0 ⊃ σ1 ⊃ σ2 ⊃ · · · ⊃ σm = ∆A

is another composition series of congruences for A of length m. So we have
a chain of epimorphisms

A
πm−→ A/σm−1

πm−1−→ A/σm−2
πm−2−→ · · · π1−→ A/σ0

where πi([a]σi) = [a]σi−1 . Then, we have

lc(A) > lc(A/σm−1) > · · · > lc(A/σm) = lc(Θ) = 0,
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and hence lc(A) ≥ m. So minimality of lc(A) implies that m = lc(A). Thus
all composition series have the same length lc(A). Finally, consider any
chain such that its length is less than lc(A). Since such a chain is not a
composition series for A, we can insert new terms until it can be refined to
a composition series. As all composition series have the same length lc(A),
new terms can be inserted until the length is lc(A).

The following example demonstrates that the condition of modularity
in Proposition 3.4 is necessary.

Example 3.5. Let S = {1, x} be the cyclic group of order 2, and let A be
the S-act A = {a, b, c, d} with action given by

ax = b, bx = a, cx = d, dx = c.

Let ρ be the congruence on A with classes {a, b} and {c, d}; let ρ′ be the
congruence on A with classes {a, b}, {c} and {d}; and let σ be the congruence
on A with classes {a, c} and {b, d}. Then A has the following composition
series of congruences:

∇A ⊃ ρ ⊃ ρ′ ⊃ ∆A and ∇A ⊃ σ ⊃ ∆A.

To see that Con(A) is not modular, observe that

σ ∨ (ρ ∩ ρ′) = σ ∨ (ρ′) = ∇A,

while
ρ ∩ (σ ∨ ρ′) = ρ ∩∇A = ρ.

If an S-act has a composition series of congruences, in addition, all
composition series of congruence for that S-act have the same length, then
the length of composition series denoted by lc(A). So such S-acts are said
to be of finite length of congruences. Clearly, every congruence-free S-act
is of finite length of congruences, artinian and noetherian.

The following is an example of an S-act of finite length of congru-
ences having a non-modular lattice of congruences. Indeed, the converse of
Proposition 3.4 is not valid. For X ⊆ A× A, we denote the congruence on
A generated by X by ρ(X).
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Example 3.6. Suppose that S = {1, a, b, c, d} where a, b, c, d are right zeros.
Consider the S-act A = {a, b, c, d}. To show that Con(A) is not modular,
let ρ1 = ρ(a, b), ρ2 = ρ((a, b), (a, d)), and σ = ρ(a, c). It is easily checked
that ρ1 ≤ ρ2, and ρ1 = ρ1 ∨ (ρ2 ∩ σ) ̸= ρ2 ∩ (ρ1 ∨ σ) = ρ2. On the other
hand,

Con(A) = {∆A, ρ(a, b), ρ(a, c), ρ(a, d), ρ(b, c), ρ(b, d), ρ(c, d),

ρ((a, b), (a, d)), ρ((a, b), (a, c)), ρ((a, c), (a, d)), ρ((b, c), (b, d)),

ρ{a,b,c}, ρ{a,b,d}, ρ{b,c,d},∇A}.
A has the composition series ∇A = ρ0 ⊃ ρ1 ⊃ ρ2 ⊃ ρ3 = ∆A. One can see
that all composition series of congruences in Con(A) have the length of 3.
Therefore, A is of finite length of congruences.

Theorem 3.7. Let S be a monoid and A an S-act. If A is both noetherian
and artinian, then A has a composition series of congruences. The converse
is valid when A is of finite length of congruences, in particular, when the
lattice Con(A) is modular.

Proof. Suppose that A is noetherian and artinian. Since A is artinian, if AS

is not congruence-free then it has a proper minimal congruence ρ1. Now,
A/ρ1 is artinian, so if A/ρ1 is not congruence-free, it has a proper minimal
congruence, σ2. Take

ρ2 = {(a, b) ∈ A×A| ([a]ρ1 , [b]ρ1) ∈ σ2},
then ρ1 ⊆ ρ2, and by Lemma 3.3, ρ1 ≤m ρ2. Continuing in this way, we
must eventually obtain a congruence ρn = ∇A, for otherwise we would have
a strictly descending chain

∆A = ρ0 ⊆ ρ1 ⊆ ρ2 ⊆ · · · ,
contradicting the fact that A is noetherian. Moreover, since each ρi is
maximal in ρi+1, we have a composition series of congruences for A.

For the converse, suppose that A has a composition series of congru-
ences of length n and all composition series of congruences have the length
n. (By Proposition 3.4, this holds in the case that Con(A) is modular.)
So all ascending and descending chains of congruences eventually stabilise.
Therefore, A is both noetherian and artinian.
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The following theorem considers the behavior of composition series of
congruences on Rees short exact sequences.

Theorem 3.8. Let A −→ B −→ C be a Rees short exact sequence of
S-acts where Con(A), Con(B) and Con(C) are modular. Then, B has a
composition series of congruences if and only if both A and C have compo-
sition series of congruences. Moreover, if A and C are of finite length of
congruences, then lc(B) = lc(A) + lc(C).

Proof. Necessity. Let

∇B = ρ0 ⊃ ρ1 ⊃ ρ2 ⊃ · · · ⊃ ρn = ∆B

be a composition series of congruences on B. Then,

σi = {(a, b)| (f(a), f(b)) ∈ ρi}

is a congruence on A for each i = 1, 2, . . . , n. Then

∇A = σ0 ⊃ σ1 ⊃ σ2 ⊃ · · · ⊃ σn = ∆A.

Using Lemma 3.3, we imply that σi+1 = σi or σi+1 ≤m σi. Hence, removing
repeated terms, we obtain a composition series of congruences on A. On
the other hand, take εi = ρi ∨ ker g and

γi = {(g(a), g(b))| (a, b) ∈ εi}

for each i = 1, 2, . . . , n. It is routine to check that γi ∈ Con(C). Moreover,

∇C = γ0 ⊃ γ1 ⊃ γ2 ⊃ · · · ⊃ γk = ∆C .

Using Lemma 3.3, γi+1 = γi or γi+1 ≤m γi. Again, removing repeated
terms, we obtain a composition series of congruences on C.

Sufficiency. Let

∇A = σ0 ⊃ σ1 ⊃ σ2 ⊃ · · · ⊃ σm = ∆A

be a composition series of congruences on A. Then,

ρi = {(f(a), f(b))| (a, b) ∈ σi} ∪∆B
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is a congruence on B for each i = 1, 2, . . . ,m. Then

KImf = ρ0 ⊃ ρ1 ⊃ ρ2 ⊃ · · · ⊃ ρm = ∆B

is a chain of congruences on B such that, by Lemma 3.3, ρi+1 ≤m ρi. On
the other hand, suppose that

∇C = γ0 ⊃ γ1 ⊃ γ2 ⊃ · · · ⊃ γk = ∆C

is a composition series of congruences on C. Let

ξi = {(a, b)| (g(a), g(b)) ∈ γi}

for each i = 1, 2, . . . , k. Thus

∇B = ξ0 ⊃ ξ1 ⊃ ξ2 ⊃ · · · ⊃ ξk = ker g

is a chain of congruences on B such that, by Lemma 3.3, ξi+1 ≤m ξi. There-
fore,

∇B = ξ0 ⊃ ξ1 ⊃ ξ2 ⊃ · · · ⊃ ξk = ker g

= KImf = ρ0 ⊃ ρ1 ⊃ ρ2 ⊃ · · · ⊃ ρm = ∆B

is a composition series of congruences on A. Consequently, we see that if
all composition series of congruences have the same length, then lc(B) =
m+ k = lc(A) + lc(C).

We remark that, without the assumption of modularity, the above
statement no longer holds. Indeed, consider the above example where S =
Z2 and A = {a, b, c, d}. Let B denote the subact {a, b}. It was shown above
that lc(A) = 3. On the other hand, since |B| = |A/B| = 2, it is clear that
lc(B) = lc(A/B) = 1.

From the previous theorem we deduce easily the following result.

Corollary 3.9. (The Dimension Theorem.) Let A be an S-act of finite
length of congruences, and let B and C be subacts of A such that B∩C ̸= ∅.
Then

lc(B ∪ C) + lc(B ∩ C) = lc(B) + lc(C).
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Proof. We apply Theorem 3.8 to the two Rees exact sequences
B −→ B ∪ C −→ (B ∪ C)/B and B ∩ C −→ C −→ C/(B ∩ C),

to get lc(B∪C) = lc(B)+lc((B∪C)/B) and lc(C) = lc(B∩C)+lc(C/(B∩C)).
Then, the fact that C/(B ∩ C) ∼= (B ∪ C)/B implies the result.

Corollary 3.10. Suppose that Ai are S-acts, 1 ≤ i ≤ n, of finite length of
congruences and each Ai contains a zero. Then A =

∐i=n
i=1 Ai (A =

∏i=n
i=1 Ai)

is of finite length of congruences and lc(A) =
∑i=n

i=1 lc(Ai).

Proof. Let A1, . . . , An be S-acts with have zeros 01, . . . , 0n, respectively. We
have a surjective homomorphism gk :

∐k
i=1Ai → Ak given by gk(a) = a if

a ∈ Ak and gk(a) = 0k otherwise. Using the following Rees short exact
sequences for k = 2, . . . , n:

i=k−1∐

i=1

Ai →
i=k∐

i=1

Ai → Ak,

we apply Theorem 3.8 to get the result.

We use a similar proof for the direct product case, by defining an
injective homomorphism

fk :

k−1∏

i=1

Ak →
k∏

i=1

Ai, (a1, . . . , ak−1) 7→ (a1, . . . , ak−1, 0k),

and a surjective homomorphism

gk :

k∏

i=1

Ai → Ak, (a1, . . . , ak) 7→ ak.

The above results are also valid for the length of composition series
of subacts. In fact, by similar arguments, if B ∩ C ̸= ∅ then

ls(B ∪ C) + ls(B ∩ C) = ls(B) + ls(C).

Moreover, for a Rees short exact sequence of S-acts A −→ B −→ C,

ls(B) = ls(A) + ls(C).
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In addition, if Ai contains a zero for each i = 1, . . . , n, then

ls(
i=n∐

i=1

Ai) =
i=n∑

i=1

ls(Ai) and ls(
i=n∏

i=1

Ai) =
i=n∑

i=1

ls(Ai).
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