General Algebraic Structures with Applications

Volume 17, Number 1, July 2022, 173-201. https://doi.org/10.52547/cgasa.17.1.173

On injective objects and existence of injective hulls in Q-TOP/ (Y, σ)

Harshita Tiwari* and Rekha Srivastava

Abstract. In this paper, motivated by Cagliari and Mantovani, we have obtained a characterization of injective objects (with respect to the class of embeddings in the category Q-TOP of Q-topological spaces) in the comma category Q-TOP/ (Y, σ) , when (Y, σ) is a stratified Q-topological space, with the help of their T_0 -reflection. Further, we have proved that for any Q-topological space (Y, σ) , the existence of an injective hull of $((X, \tau), f)$ in the comma category Q-**TOP** $/(Y, \sigma)$ is equivalent to the existence of an injective hull of its T_0 -reflection $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in the comma category Q-**TOP** $_0(\tilde{Y}, \tilde{\sigma})$ (and in the comma category Q-**TOP** $_0/(\tilde{Y}, \tilde{\sigma})$, where Q-**TOP** $_0$ denotes the category of T_0 -Q-topological spaces).

Introduction

Injectivity and projectivity are important concepts of mathematics and play a fundamental role in various fields of mathematics, in particular in commutative and homological algebra, algebraic geometry and topology. Injective objects and injective hulls have been investigated for a long time in various categories. There

Keywords: Injective objects, injective hull, T₀-reflection.

Mathematics Subject Classification [2010]: 54A40, 18Axx, 18G05.

Received: 8 December 2021, Accepted: 12 May 2022.

ISSN: Print 2345-5853, Online 2345-5861.

© Shahid Beheshti University

^{*} Corresponding author

are many results in this direction, even for more general case of \mathcal{H} -injectivity and \mathcal{H} -injective hulls, for \mathcal{H} an arbitrary class of morphisms. For example, in [3] there are results for \mathcal{H} -injective objects and \mathcal{H} -injective hulls in the category **Field** of field and their homomorphisms, for \mathcal{H} the class of algebraic extensions. In [2] we can find results related to \mathcal{H} -injective objects in the category **Pos** of partially ordered sets and isotone maps, for \mathcal{H} the class of embeddings. In [14], we have results related to \mathcal{H} -injectivity and \mathcal{H} -injective hulls in the category **TOP** of topological spaces, for \mathcal{H} the class of embeddings.

The importance of \mathcal{H} -injective objects and \mathcal{H} -injective hulls in the comma category \mathbb{C}/B for B in a given category \mathbb{C} has also been recognized as they are related with the weak factorization system in \mathbb{C} (cf. [2, 13]).

Cagliari and Mantovani studied injective objects and injective hulls in the comma category \mathbf{TOP}/B (cf. [4–6]). In particular, they gave a characterization of injective objects (with respect to the class of embeddings in the category \mathbf{TOP} of topological spaces) in the comma category \mathbf{TOP}/B (cf. [5]). In [6], they gave a result related to the existence of an injective hull of an object in the comma category \mathbf{TOP}_0/B ($B \in \mathbf{TOP}_0$ and \mathbf{TOP}_0 is the category of T_0 -topological spaces).

It is well known that the category \mathbf{TOP}_0 is a reflective subcategory of the category \mathbf{TOP} . In [5] (see also [14]), Cagliari and Mantovani considered the reflector $\pi: \mathbf{TOP} \to \mathbf{TOP}_0$ and they mentioned that for any topological space Y, by virtue of the reflector π , corresponding to each object (X, f) of the comma category \mathbf{TOP}/Y we have the object (X_0, f_0) , where $X_0 = \pi(X)$ and $f_0 = \pi(f)$, of the category \mathbf{TOP}_0/Y_0 , which is called as the T_0 -reflection of (X, f). Cagliari and Mantovani [5] gave a characterization of injective objects (with respect to the class of embeddings in \mathbf{TOP}) in the comma category \mathbf{TOP}/Y with the help of their T_0 -reflection. Cagliari and Mantovani [5] also proved that the existence of an injective hull of (X, f) in the comma category \mathbf{TOP}/Y is equivalent to the existence of an injective hull of its T_0 -reflection (X_0, f_0) in the comma category \mathbf{TOP}/Y_0 (and in the comma category \mathbf{TOP}_0/Y_0).

Solovyov [11] introduced the notion of Q-topological spaces and Q-continuous maps and studied the category Q-**TOP** of Q-topological spaces (where Q is a fixed member of a fixed variety of Ω -algebras). Many familiar categories such as the category **L-TOP** of lattice valued topological spaces of Goguen [8] (and hence the category **TOP** of topological spaces and the category **FTOP** of fuzzy topological spaces (in the sense of Chang [7])) are examples of the category Q-**TOP**. Solovyov [11] also introduced the concept of stratified Q-topological spaces and T_0 -

O-topological spaces. Singh and Srivastava [10] proved that the category Q-TOP₀ of T_0 -Q-topological spaces is a reflective subcategory of Q-**TOP**. In [10], for a given Q-topological space (X, τ) , Singh and Srivastava defined an equivalence relation \sim on X as, for every $x_1, x_2 \in X$, $x_1 \sim x_2$ if $\alpha(x_1) = \alpha(x_2)$, for every $\alpha \in \tau$. By taking $\tilde{X} = X/\sim$, the set of equivalence classes, and $\tilde{\tau}$ to be the corresponding quotient Q-topology on \tilde{X} induced by the quotient map $q_X: X \to \tilde{X}, q_X(x) = [x]$ (where [x] is the equivalence class of x), and τ , they proved that $q_X:(X,\tau)\to(\tilde{X},\tilde{\tau})$ is a Q-TOP $_0$ -reflection for (X, τ) and as a result of this Q-TOP $_0$ is a reflective subcategory of Q-TOP (cf. Theorem 4.1 in [10]). Consequently, we have the reflector (cf. Proposition 4.22 and Definition 4.23 in [1]) $R: Q\text{-}\mathbf{TOP} \rightarrow Q\text{-}\mathbf{TOP}_0$ give by $R((X,\tau)) = (\tilde{X},\tilde{\tau})$ and if $f:(X,\tau) \to (Y,\sigma)$ is a Q-continuous map, then $R(f) = \tilde{f}$, where $\tilde{f}: (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is the unique Q-continuous map such that $q_Y \circ f = \tilde{f} \circ q_X$. Thus for a given Q-topological space (Y, σ) , corresponding to each object $((X, \tau), f)$ of the comma category Q-**TOP** $/(Y, \sigma)$, we have the object $((\tilde{X}, \tilde{\tau}), \tilde{f})$ of the comma category O-**TOP**₀ $/(\tilde{Y}, \tilde{\sigma})$, which is called as the T_0 -reflection of $((X, \tau), f)$.

Thus keeping in the mind that in Q-topology, good, 'categorically correct', notions of 'To-ness' and ' T_0 -reflection' is already available, it is natural to try to know if the injective objects can be characterized in Q-TOP/ (Y, σ) in a similar fashion as in [5]. We do this investigation in this paper and in the process, we have obtained a characterization of injective objects (with respect to the class of embeddings in Q-TOP) in the comma category Q-TOP/ (Y, σ) , when (Y, σ) is a stratified Q-topological space, with the help of their T_0 -reflection, motivated by Cagliari and Mantovani [5]. Further, we have proved that for any Q-topological space (Y, σ) , the existence of an injective hull of $((X, \tau), f)$ in the comma category Q-TOP/ (Y, σ) is equivalent to the existence of an injective hull of its T_0 -reflection $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in the comma category Q-TOP/ $(\tilde{Y}, \tilde{\sigma})$ (and in the comma category Q-TOP $((\tilde{Y}, \tilde{\sigma}))$).

2 Preliminaries

For categorical notions and results used in this paper but not defined here, we refer to [1].

Definition 2.1. [1] Let \mathbb{C} be a category and B be an object of \mathbb{C} . Then objects of the *comma category* \mathbb{C}/B are pairs (X, f), where X is a \mathbb{C} -object and $f: X \to B$ is a \mathbb{C} -morphism. Given any two objects (X, f) and (Y, g) of \mathbb{C}/B , a \mathbb{C}/B -morphism

 $h: (X, f) \to (Y, g)$ is a C-morphism $h: X \to Y$ such that $g \circ h = f$.

Let \mathcal{H} be a class of morphisms in a category \mathbb{C} .

Definition 2.2. [5] An object I is \mathcal{H} -injective if for all $h: X \to Y$ in \mathcal{H} and a morphism $f: X \to I$, there exists a morphism $g: Y \to I$ such that $g \circ h = f$.

Definition 2.3. [5] A morphism $h: X \to I$ in \mathcal{H} is \mathcal{H} -essential if for every morphism $k: I \to Y$, the composite $k \circ h: X \to Y$ lies in \mathcal{H} only if $k: I \to Y$ does; if, in addition, I is \mathcal{H} -injective, then $h: X \to I$ is an \mathcal{H} -injective hull of X.

An object (X, f) of the comma category \mathbb{C}/B is \mathcal{H} -injective if for any commutative diagram in \mathbb{C}

$$\begin{array}{ccc}
U & \xrightarrow{u} & X \\
\downarrow h & & \downarrow f \\
V & \xrightarrow{v} & B
\end{array}$$
(2.1)

with $h: U \to V$ in \mathcal{H} , there exists a morphism $s: V \to X$ for which the following diagram commutes:

$$\begin{array}{ccc}
U & \xrightarrow{u} & X \\
\downarrow h & & \downarrow f \\
V & \xrightarrow{v} & B
\end{array} (2.2)$$

Furthermore, a \mathbb{C}/B -morphism $j:(Y,g)\to (X,f)$ with $j:Y\to X$ in \mathcal{H} is \mathcal{H} -essential if for any \mathbb{C}/B -morphism $k:(X,f)\to (Z,h)$ such that $k\circ j:Y\to Z$ is in \mathcal{H} , necessarily $k:X\to Z$ is in \mathcal{H} follows; if in addition (X,f) is \mathcal{H} -injective, then $j:(Y,g)\to (X,f)$ is an \mathcal{H} -injective hull of (Y,g) in \mathbb{C}/B .

The following definitions are from [11].

Definition 2.4. Let $\Omega = (n_{\lambda})_{{\lambda} \in K}$ be a class of cardinal numbers.

• A pair $(Z, (\omega_{\lambda}^Z)_{\lambda \in K})$, where Z is a set and $(\omega_{\lambda}^Z)_{\lambda \in K}$ is a family of maps $\omega_{\lambda}^Z: Z^{n_{\lambda}} \to Z$, is called an Ω -algebra. A subset M of Z is called a subalgebra of the Ω -algebra $(Z, (\omega_{\lambda}^Z)_{\lambda \in K})$ if $\omega_{\lambda}^Z((m_j)_{j \in n_{\lambda}}) \in M$, for every $\lambda \in K$ and for every $(m_j)_{j \in n_{\lambda}} \in M^{n_{\lambda}}$.

• Let $(Z, (\omega_{\lambda}^Z)_{\lambda \in K})$ and $(S, (\omega_{\lambda}^S)_{\lambda \in K})$ be Ω -algebras. A map $g: Z \to S$ is said to be an Ω -homomorphism if the diagram

$$Z^{n_{\lambda}} \xrightarrow{g^{n_{\lambda}}} S^{n_{\lambda}}$$

$$\omega_{\lambda}^{Z} \downarrow \qquad \qquad \downarrow \omega_{\lambda}^{S}$$

$$Z \xrightarrow{g} S$$

$$(2.3)$$

commutes for every $\lambda \in K$. Alg(Ω) will denote the category of Ω -algebras and Ω -homomorphisms.

• Let \mathcal{M} (resp. \mathcal{E}) be the class of Ω -homomorphisms with injective (resp. surjective) underlying maps. A *variety* of Ω -algebras is a full subcategory of $\mathbf{Alg}(\Omega)$, which is closed under the formation of products, \mathcal{M} -subobjects (subalgebras), and \mathcal{E} -quotients (homomorphic images).

From now onwards $(Q, (\omega_{\lambda}^Q)_{\lambda \in K})$ will denote a fixed member of a fixed variety of Ω -algebras.

Let Z be a set and Q^Z be the set of all functions from Z to Q. All operations on Q lift point-wise to Q^Z as:

$$(\omega_{\lambda}^{Q^Z}(\langle p_j\rangle_{j\in n_{\lambda}}))(z)=\omega_{\lambda}^Q(\langle p_j(z)\rangle_{j\in n_{\lambda}}), \text{ for every } \langle p_j\rangle_{j\in n_{\lambda}}\in (Q^Z)^{n_{\lambda}} \text{ and every } z\in Z \ .$$

In particular $(Q^Z,(\omega_\lambda^{Q^Z})_{\lambda\in K})$ is an Ω -algebra.

From now onwards, the Ω -algebra $(Q, (\omega_{\lambda}^Q)_{\lambda \in K})$ and its underlying set, both will be denoted by Q.

Definition 2.5. Let Z be a set. A subset η of Q^Z is called a Q-topology on Z if η is a subalgebra of the Ω -algebra $(Q^Z, (\omega_{\lambda}^{Q^Z})_{\lambda \in K})$. A pair (Z, η) , where Z is a set and η is a Q-topology on Z, is called a Q-topological space. Let (Z, η) and (X, τ) be Q-topological spaces and $h: Z \to X$ be a function. Then we say that $h: (Z, \eta) \to (X, \tau)$ is Q-continuous if $\alpha \circ h \in \eta$, for every $\alpha \in \tau$.

Q-**TOP** will denote the category of *Q*-topological spaces and *Q*-continuous maps. *Q*-**TOP** is a construct via the obvious forgetful functor |-|: Q-**TOP** \rightarrow **Set** (**Set** is the category of sets and maps).

We mention here that Q-**TOP** is a topological category over **Set** (cf. [9], Remark 2.2) and hence Q-**TOP** is complete and as a result of this the category Q-**TOP** has pullbacks (cf. [1]).

Definition 2.6. A *Q*-topological space (X, τ) is called T_0 if for every $x_1, x_2 \in X$ such that $x_1 \neq x_2$, there exists $\alpha \in \tau$ such that $\alpha(x_1) \neq \alpha(x_2)$.

Q-**TOP**₀ will denote the full subcategory of Q-**TOP** consisting of T_0 -Q-topological spaces. It can be easily seen that Q-**TOP**₀ is an isomorphism closed subcategory of Q-**TOP**.

Definition 2.7. A *Q*-topological space (X, τ) is said to be *stratified* if $\underline{q} \in \tau$, for every $q \in Q$, where $q: X \to Q$ is defined as q(x) = q, for every $x \in X$.

Definition 2.8. [1] Let C be a concrete category over X and $|-|: C \to X$ be the corresponding faithful functor.

- 1. A C-morphism $f:A\to B$ is called *initial* provided that for any C-object D, an X-morphism $g:|D|\to |A|$ is a C-morphism whenever $f\circ g:|D|\to |B|$ is a C-morphism.
- 2. An initial morphism $f: A \rightarrow B$ that has a monomorphic underlying X-morphism is called an *embedding*.
- 3. A C-morphism $f: A \to B$ is called *final* provided that for any C-object D, an X-morphism $g: |B| \to |D|$ is a C-morphism whenever $g \circ f: |A| \to |D|$ is a C-morphism.

Remark 2.9. Let (X, τ) and (Y, σ) be Q-topological spaces and let $f: (X, \tau) \to (Y, \sigma)$ be a Q-continuous map. Then

- 1. $f:(X,\tau)\to (Y,\sigma)$ is initial in *Q*-**TOP** if and only if $\tau=\{\beta\circ f\mid \beta\in\sigma\}$.
- 2. $f:(X,\tau)\to (Y,\sigma)$ is an embedding in Q-**TOP** if and only if $f:(X,\tau)\to (Y,\sigma)$ is initial and f is one-one.
- 3. $f:(X,\tau)\to (Y,\sigma)$ is final in Q-**TOP** if and only if $\sigma=\{v\in Q^Y\mid v\circ f\in \tau\}$.

From now onwards, injective, essential, injective hull in Q-**TOP** (Q-**TOP**₀) and in any comma category Q-**TOP**/ (Y, σ) (Q-**TOP**₀/ (Z, η)) will denote respectively \mathcal{H} -injective, \mathcal{H} -essential and \mathcal{H} -injective hull for \mathcal{H} the class of embeddings in Q-**TOP** (Q-**TOP**₀).

3 T_0 -reflection

Let (X, τ) be a Q-topological space. Singh and Srivastava [10] defined a relation \sim on X as, for every $x_1, x_2 \in X$, $x_1 \sim x_2$ if $\alpha(x_1) = \alpha(x_2)$, for every $\alpha \in \tau$. Then it can be easily proved that \sim is an equivalence relation on X. Let $\tilde{X} = X/\sim$, the set of equivalence classes, and let $q_X : X \to \tilde{X}$ be defined as, $q_X(x) = [x]$, for every $x \in X$, where [x] is the equivalence class of x. Let $\tilde{\tau} = \{\beta \in Q^{\tilde{X}} \mid \beta \circ q_X \in \tau\}$. Then $(\tilde{X}, \tilde{\tau})$ is a T_0 -Q-topological space. It can also be easily verified that for a given T_0 -Q-topological space (Z, η) and a Q-continuous map $f: (X, \tau) \to (Z, \eta)$, there exists a unique Q-continuous map $f': (\tilde{X}, \tilde{\tau}) \to (Z, \eta)$ such that $f' \circ q_X = f$. Hence $q_X: (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is a Q- \mathbf{TOP}_0 -reflection for (X, τ) and as a result of this Q- \mathbf{TOP}_0 is a reflective subcategory of Q- \mathbf{TOP} (cf. Theorem 4.1 in [10]). Consequently, we have the reflector (cf. Proposition 4.22 and Definition 4.23 in [1]) R: Q- $\mathbf{TOP} \to Q$ - \mathbf{TOP}_0 give by $R((X, \tau)) = (\tilde{X}, \tilde{\tau})$ and if $f: (X, \tau) \to (Y, \sigma)$ is a Q-continuous map, then $R(f) = \tilde{f}$, where $\tilde{f}: (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is the unique Q-continuous map such that the following diagram commutes:

$$(X,\tau) \xrightarrow{f} (Y,\sigma)$$

$$q_X \downarrow \qquad \qquad \downarrow q_Y$$

$$(\tilde{X},\tilde{\tau}) \xrightarrow{\tilde{f}} (\tilde{Y},\tilde{\sigma})$$

$$(3.1)$$

Thus corresponding to each object $((X, \tau), f)$ of the category Q-**TOP** $/(Y, \sigma)$, we have the object $((\tilde{X}, \tilde{\tau}), \tilde{f})$ of the category Q-**TOP** $_0/(\tilde{Y}, \tilde{\sigma})$. $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is called the T_0 -reflection of $((X, \tau), f)$.

We mention here that if (X, τ) is a T_0 -Q-topological space, then $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is an isomorphism in Q-**TOP**.

Proposition 3.1. Let (X, τ) be a Q-topological space. Then $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is initial and final in Q-TOP.

Proof. By the definition of $\tilde{\tau}$, it follows that $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is final. Now let $\alpha \in \tau$. Define $\beta : \tilde{X} \to Q$ as $\beta([x]) = \alpha(x)$. Then it can be easily proved that β is well defined and $\beta \circ q_X = \alpha$. Thus $\beta \circ q_X \in \tau$ and this implies that $\beta \in \tilde{\tau}$. Thus $\alpha = \beta \circ q_X$, where $\beta \in \tilde{\tau}$. Therefore $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ is initial in Q-**TOP**. \square

Proposition 3.2. Let (X, τ) and (Y, σ) be Q-topological spaces. A Q-continuous map $f: (X, \tau) \to (Y, \sigma)$ is an embedding in Q-**TOP** if and only if f is one-one and $\tilde{f}: (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is an embedding in Q-**TOP**.

Proof. Suppose first that the map $f:(X,\tau)\to (Y,\sigma)$ is an embedding in Q-**TOP**. Then f is one-one and $f:(X,\tau)\to (Y,\sigma)$ is initial in Q-**TOP**. Now we have to prove that $\tilde{f}:(\tilde{X},\tilde{\tau})\to (\tilde{Y},\tilde{\sigma})$ is an embedding in Q-**TOP**. Let $\tilde{f}([x_1])=\tilde{f}([x_2])\Rightarrow (\tilde{f}\circ q_X)(x_1)=(\tilde{f}\circ q_X)(x_2)\Rightarrow (q_Y\circ f)(x_1)=(q_Y\circ f)(x_2)\Rightarrow [f(x_1)]=[f(x_2)]\Rightarrow u(f(x_1))=u(f(x_2)),$ for every $u\in\sigma\Rightarrow (u\circ f)(x_1)=(u\circ f)(x_2),$ for every $u\in\sigma\Rightarrow [x_1]=[x_2]$ (as $f:(X,\tau)\to (Y,\sigma)$ is initial, so $\tau=\{u\circ f\mid u\in\sigma\})\Rightarrow \tilde{f}$ is one-one. Now let $\beta\in\tilde{\tau},$ then $\beta\circ q_X\in\tau$ and so $\beta\circ q_X=u\circ f,$ for some $u\in\sigma$. Also $u=v\circ q_Y,$ for some $v\in\tilde{\sigma}.$ Thus $\beta\circ q_X=u\circ f=v\circ q_Y\circ f=v\circ (q_Y\circ f)=v\circ (\tilde{f}\circ q_X)=(v\circ \tilde{f})\circ q_X\Rightarrow \beta=v\circ \tilde{f}$ (as q_X is onto). Hence $\tilde{f}:(\tilde{X},\tilde{\tau})\to (\tilde{Y},\tilde{\sigma})$ is initial in Q-**TOP**. Therefore $\tilde{f}:(\tilde{X},\tilde{\tau})\to (\tilde{Y},\tilde{\sigma})$ is an embedding in Q-**TOP**.

Conversely, suppose that f is one-one and $\tilde{f}:(\tilde{X},\tilde{\tau})\to (\tilde{Y},\tilde{\sigma})$ is an embedding in Q-**TOP**. We have to show that $f:(X,\tau)\to (Y,\sigma)$ is an embedding in Q-**TOP**. Since f is one-one, it is sufficient to show that $f:(X,\tau)\to (Y,\sigma)$ is initial. Let $\alpha\in\tau$, then $\alpha=\beta\circ q_X$, for some $\beta\in\tilde{\tau}$. Then since $\tilde{f}:(\tilde{X},\tilde{\tau})\to (\tilde{Y},\tilde{\sigma})$ is initial and $\beta\in\tilde{\tau},\,\beta=v\circ\tilde{f},\,$ for some $v\in\tilde{\sigma}.$ So $\alpha=\beta\circ q_X=v\circ\tilde{f}\circ q_X=v\circ(\tilde{f}\circ q_X)=v\circ(q_Y\circ f)=(v\circ q_Y)\circ f=u\circ f,\,$ where $u=v\circ q_Y\in\sigma.$ Thus $\alpha=u\circ f,\,$ where $u\in\sigma.$ Hence $f:(X,\tau)\to (Y,\sigma)$ is initial in Q-**TOP**. Therefore $f:(X,\tau)\to (Y,\sigma)$ is an embedding in Q-**TOP**.

In view of Proposition 8.14 in [1], we have the following result:

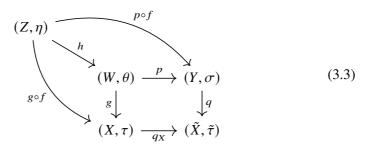
Proposition 3.3. Let (X,τ) and (Y,σ) be Q-topological spaces and let $f:(X,\tau) \to (Y,\sigma)$ be an initial map in Q-TOP such that f is bijective. Then $f:(X,\tau) \to (Y,\sigma)$ is an isomorphism in Q-TOP.

Proposition 3.4. [1] In any category, monomorphisms, regular monomorphisms and retractions are pullback stable.

Proposition 3.5. Let (X,τ) and (Y,σ) be Q-topological spaces and let $q:(Y,\sigma)\to (\tilde X,\tilde \tau)$ be a Q-continuous map. Let $p:(W,\theta)\to (Y,\sigma)$ be a pullback of $q_X:(X,\tau)\to (\tilde X,\tilde \tau)$ along $q:(Y,\sigma)\to (\tilde X,\tilde \tau)$ in the category Q-**TOP**

Then $\tilde{p}: (\tilde{W}, \tilde{\theta}) \to (\tilde{Y}, \tilde{\sigma})$ is an isomorphism in Q-**TOP**.

Proof. First we will prove that the map $p:(W,\theta)\to (Y,\sigma)$ is initial in Q-**TOP**. Let (Z,η) be a Q-topological space and let $f:Z\to W$ be a map such that $p\circ f:(Z,\eta)\to (Y,\sigma)$ is Q-continuous. Then, $q_X\circ (g\circ f)=q\circ (p\circ f)$. So $q_X\circ (g\circ f):(Z,\eta)\to (\tilde X,\tilde \tau)$ is Q-continuous, but since $q_X:(X,\tau)\to (\tilde X,\tilde \tau)$ is initial in Q-**TOP**, $g\circ f:(Z,\eta)\to (X,\tau)$ is Q-continuous. Now since the diagram 3.2 is a pullback, there exists a unique Q-continuous map $h:(Z,\eta)\to (W,\theta)$ such that the following diagram commutes:



Now if $h \neq f$, then if we consider the diagram 3.3 in the category **Set**, then in **Set** we have two maps $f, h : Z \to W$ for which the diagram 3.3 commutes, but this will be a contradiction because the diagram 3.2, if considered in the category **Set**, is a pullback square in **Set** also. Thus h = f and hence $f : (Z, \eta) \to (W, \theta)$ is Q-continuous. Therefore $p : (W, \theta) \to (Y, \sigma)$ is initial in Q-**TOP**. Now consider the following commutative diagram in Q-**TOP**:

$$(W,\theta) \xrightarrow{p} (Y,\sigma)$$

$$q_{W} \downarrow \qquad \qquad \downarrow q_{Y}$$

$$(\tilde{W},\tilde{\theta}) \xrightarrow{\tilde{p}} (\tilde{Y},\tilde{\sigma})$$

$$(3.4)$$

Since $p:(W,\theta)\to (Y,\sigma)$ is initial in Q-**TOP**, as in the proof of Proposition 3.2, we can prove that $\tilde{p}:(\tilde{W},\tilde{\theta})\to (\tilde{Y},\tilde{\sigma})$ is initial in Q-**TOP**. Now since q_X is onto, i.e. q_X is a retraction in **Set** and since the diagram 3.2, if considered in the category **Set**, is a pullback square in **Set** also, by Proposition 3.4, p is a retraction in **Set**, i.e. p is onto. Since $q_Y \circ p = \tilde{p} \circ q_W$ and both p and q_Y are onto, $\tilde{p} \circ q_W$ is onto. This implies that \tilde{p} is onto. Next, we will prove that \tilde{p} is one-one. Let $\tilde{p}([w_1]) = \tilde{p}([w_2]) \Rightarrow (\tilde{p} \circ q_W)(w_1) = (\tilde{p} \circ q_W)(w_2) \Rightarrow$

 $(q_Y \circ p)(w_1) = (q_Y \circ p)(w_2) \Rightarrow [p(w_1)] = [p(w_2)] \Rightarrow u(p(w_1)) = u(p(w_2)),$ for every $u \in \sigma \Rightarrow (u \circ p)(w_1) = (u \circ p)(w_2),$ for every $u \in \sigma \Rightarrow [w_1] = [w_2]$ (since $\theta = \{u \circ p \mid u \in \sigma\}$ as $p : (W, \theta) \to (Y, \sigma)$ is initial in Q-**TOP**). This implies that \tilde{p} is one-one. Thus $\tilde{p} : (\tilde{W}, \tilde{\theta}) \to (\tilde{Y}, \tilde{\sigma})$ is initial in Q-**TOP** and \tilde{p} is bijective. Therefore by Proposition 3.3, $\tilde{p} : (\tilde{W}, \tilde{\theta}) \to (\tilde{Y}, \tilde{\sigma})$ is an isomorphism in Q-**TOP**.

4 A characterization of injective objects in Q-TOP/ (Y, σ)

Proposition 4.1. Let (X,τ) and (Y,σ) be Q-topological spaces and let $f:(X,\tau)\to (Y,\sigma)$ be an initial map in Q-TOP such that f is onto, then $((X,\tau),f)$ is injective in Q-TOP $/(Y,\sigma)$.

Proof. Let following be a commutative square in *Q*-**TOP**:

$$(W,\theta) \xrightarrow{l} (X,\tau)$$

$$\downarrow f$$

$$(Z,\eta) \xrightarrow{g} (Y,\sigma)$$

$$(4.1)$$

where $h:(W,\theta)\to(Z,\eta)$ is an embedding in Q-**TOP**.

Now since in the category \mathbf{Set}/Y , injective objects are surjective maps over Y, there exists a function $k: Z \to X$ such that $k \circ h = l$ and $f \circ k = g$. Now let $\alpha \in \tau$, then $\alpha = \beta \circ f$, for some $\beta \in \sigma$ as $f: (X, \tau) \to (Y, \sigma)$ is initial in Q-**TOP**. Then $\alpha \circ k = \beta \circ f \circ k = \beta \circ (f \circ k) = \beta \circ g \in \eta$ as $g: (Z, \eta) \to (Y, \sigma)$ is Q-continuous. Thus $k: (Z, \eta) \to (X, \tau)$ is Q-continuous. Hence we have a Q-continuous map $k: (Z, \eta) \to (X, \tau)$ such that $k \circ h = l$ and $f \circ k = g$. Therefore $((X, \tau), f)$ is injective in Q-**TOP**/ (Y, σ) .

Corollary 4.2. Let (X, τ) be a Q-topological space, then $((X, \tau), q_X)$ is injective in Q-**TOP** $/(\tilde{X}, \tilde{\tau})$.

Proof. It immediately follows from Proposition 3.1 and Proposition 4.1. \Box

Proposition 4.3. Let $((X, \tau), f)$ be injective in Q-**TOP** $/(Y, \sigma)$ and $((Y, \sigma), g)$ be injective in Q-**TOP** $/(Z, \eta)$. Then $((X, \tau), g \circ f)$ is injective in Q-**TOP** $/(Z, \eta)$.

Proof. It easily follows from the definition of injective objects in comma categories.

The following Lemma 4.4 can be easily verified:

Lemma 4.4. Let (X, τ) and (Y, σ) be T_0 -Q-topological spaces and let $f: (X, \tau) \to (Y, \sigma)$ be a Q-continuous map. Then $f: (X, \tau) \to (Y, \sigma)$ is an embedding in Q-**TOP** if and only if it is an embedding in Q-**TOP**₀.

Proposition 4.5. Let (X, τ) and (Y, σ) be T_0 -Q-topological spaces and let $f: (X, \tau) \to (Y, \sigma)$ be a Q-continuous map. Then $((X, \tau), f)$ is injective in Q- $TOP/(Y, \sigma)$ if and only if it is injective in Q- $TOP_0/(Y, \sigma)$.

Proof. Suppose first that $((X, \tau), f)$ is injective in Q-**TOP** $/(Y, \sigma)$. Let following be a commutative diagram in Q-**TOP** $_0$:

$$(A, \tau_A) \xrightarrow{l} (X, \tau)$$

$$\downarrow f$$

$$(B, \tau_B) \xrightarrow{k} (Y, \sigma)$$

$$(4.2)$$

where $h:(A,\tau_A)\to (B,\tau_B)$ is an embedding in Q-**TOP**₀.

Then by Lemma 4.4, $h:(A, \tau_A) \to (B, \tau_B)$ is an embedding in Q-**TOP** and then since $((X, \tau), f)$ is injective in Q-**TOP** $/(Y, \sigma)$, there exists a Q-continuous map $s:(B, \tau_B) \to (X, \tau)$ such that $s \circ h = l$ and $f \circ s = k$. Therefore $((X, \tau), f)$ is injective in Q-**TOP** $_0/(Y, \sigma)$.

Conversely, assume that $((X, \tau), f)$ is injective in Q-**TOP**₀ $/(Y, \sigma)$. Let following be a commutative diagram in Q-**TOP**:

$$(W,\theta) \xrightarrow{g} (X,\tau)$$

$$\downarrow f$$

$$(Z,\eta) \xrightarrow{k} (Y,\sigma)$$

$$(4.3)$$

where $h:(W,\theta)\to (Z,\eta)$ is an embedding in Q-**TOP**.

We note that since (X, τ) and (Y, σ) are T_0 -Q-topological spaces, $q_X : (X, \tau) \to (\tilde{X}, \tilde{\tau})$ and $q_Y : (Y, \sigma) \to (\tilde{Y}, \tilde{\sigma})$ are isomorphisms in Q-**TOP**. Now we will first prove that $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP** $_0/(\tilde{Y}, \tilde{\sigma})$. Let following be a commutative diagram in Q-**TOP** $_0$:

$$(N, \tau_N) \xrightarrow{l} (\tilde{X}, \tilde{\tau})$$

$$\downarrow \tilde{f}$$

$$(M, \tau_M) \xrightarrow{n} (\tilde{Y}, \tilde{\sigma})$$

$$(4.4)$$

where $m:(M,\tau_M)\to (N,\tau_N)$ is an embedding in $Q ext{-}\mathbf{TOP}_0$. Now since $((X,\tau),f)$ is injective in $Q ext{-}\mathbf{TOP}_0/(Y,\sigma)$, there exists a $Q ext{-}$ continuous map $s:(M,\tau_M)\to (X,\tau)$ such that the following diagram commutes:

$$(N, \tau_N) \xrightarrow{l} (\tilde{X}, \tilde{\tau}) \xrightarrow{q_X^{-1}} (X, \tau)$$

$$\downarrow f$$

$$(M, \tau_M) \xrightarrow{n} (\tilde{Y}, \tilde{\sigma}) \xrightarrow{q_V^{-1}} (Y, \sigma)$$

$$(4.5)$$

Thus we have a *Q*-continuous map $q_X \circ s : (M, \tau_M) \to (\tilde{X}, \tilde{\tau})$ and it can be easily verified that the following is a commutative diagram in *Q*-**TOP**₀:

$$(N, \tau_N) \xrightarrow{l} (\tilde{X}, \tilde{\tau})$$

$$\downarrow \tilde{f}$$

$$(M, \tau_M) \xrightarrow{n} (\tilde{Y}, \tilde{\sigma})$$

$$(4.6)$$

Thus $((\tilde{X},\tilde{\tau}),\tilde{f})$ is injective in Q-**TOP** $_0/(\tilde{Y},\tilde{\sigma})$. Now since $h:(W,\theta)\to (Z,\eta)$ is an embedding in Q-**TOP**, by Proposition 3.2, $\tilde{h}:(\tilde{W},\tilde{\theta})\to (\tilde{Z},\tilde{\eta})$ is an embedding in Q-**TOP** and then by Lemma 4.4, $\tilde{h}:(\tilde{W},\tilde{\theta})\to (\tilde{Z},\tilde{\eta})$ is an embedding in Q-**TOP** $_0$. Then since $((\tilde{X},\tilde{\tau}),\tilde{f})$ is injective in Q-**TOP** $_0/(\tilde{Y},\tilde{\sigma})$, there exists a Q-continuous map $s':(\tilde{Z},\tilde{\eta})\to (\tilde{X},\tilde{\tau})$ such that the following diagram commutes:

$$(\tilde{W}, \tilde{\theta}) \xrightarrow{\tilde{g}} (\tilde{X}, \tilde{\tau})$$

$$\downarrow \tilde{h} \qquad \downarrow \tilde{f}$$

$$(\tilde{Z}, \tilde{\eta}) \xrightarrow{\tilde{k}} (\tilde{Y}, \tilde{\sigma})$$

$$(4.7)$$

Let $p=q_X^{-1}\circ s'\circ q_Z$. Then $p\circ h=q_X^{-1}\circ s'\circ q_Z\circ h=q_X^{-1}\circ s'\circ (q_Z\circ h)=q_X^{-1}\circ s'\circ (q_Z\circ h)=q_X^{-1}\circ s'\circ (\tilde{h}\circ q_W)=q_X^{-1}\circ (s'\circ \tilde{h})\circ q_W=q_X^{-1}\circ \tilde{g}\circ q_W=q_X^{-1}\circ (\tilde{g}\circ q_W)=q_X^{-1}\circ (q_X\circ g)=g$ and $f\circ p=f\circ q_X^{-1}\circ s'\circ q_Z=(f\circ q_X^{-1})\circ s'\circ q_Z=(q_Y^{-1}\circ \tilde{f})\circ s'\circ q_Z=(q_X^{-1}\circ q_Z)\circ q_Z=(q_X^{-1}\circ$

 $q_Y^{-1} \circ (\tilde{f} \circ s') \circ q_Z = q_Y^{-1} \circ \tilde{k} \circ q_Z = q_Y^{-1} \circ (\tilde{k} \circ q_Z) = q_Y^{-1} \circ (q_Y \circ k) = k$. Thus we have a Q-continuous map $p: (Z, \eta) \to (X, \tau)$ such that $p \circ h = g$ and $f \circ p = k$. Therefore $((X, \tau), f)$ is injective in Q-**TOP** $/(Y, \sigma)$.

Proposition 4.6. Let (X, τ) be a Q-topological space and (Y, σ) be a stratified Q-topological space. If $((X, \tau), f)$ is injective in Q- $TOP/(Y, \sigma)$, then $f: (X, \tau) \to (Y, \sigma)$ is a retraction in Q-TOP. In particular, for any $x \in X$ there exists a section $s_x: (Y, \sigma) \to (X, \tau)$ of $f: (X, \tau) \to (Y, \sigma)$ with $s_x(f(x)) = x$.

Proof. Consider the following commutative diagram in Q-TOP:

$$(\{x\}, \delta) \xrightarrow{i_x} (X, \tau)$$

$$f_x \downarrow \qquad \qquad \downarrow f$$

$$(Y, \sigma) \xrightarrow{id_Y} (Y, \sigma)$$

$$(4.8)$$

where $\delta = \{ \underline{q} \mid q \in Q \}$, $i_x : \{x\} \to X$ is the inclusion map and $f_x : \{x\} \to Y$ is defined as $f_x(x) = f(x)$.

It can be easily seen that $f_x: (\{x\}, \delta) \to (Y, \sigma)$ is an embedding in Q-**TOP**. Then since $((X, \tau), f)$ is injective in Q-**TOP** $/(Y, \sigma)$, there exists a Q-continuous map $s_x: (Y, \sigma) \to (X, \tau)$ such that $s_x \circ f_x = i_x$ and $f \circ s_x = id_Y$. Therefore $s_x(f(x)) = x$ and $f: (X, \tau) \to (Y, \sigma)$ is a retraction in Q-**TOP**.

Let (X, τ) be a Q-topological space and let $x \in X$. Consider the subset $\{x' \in X \mid x' \sim x\}$ of X (note that \sim is the equivalence relation on X defined in the starting of the section 3). Clearly this subset gives the equivalence class [x] of x. We will denote this subset of X by C_x where it is considered as a subset of X and it will be denoted by [x] where it is considered as an element of \tilde{X} , to avoid confusions.

Proposition 4.7. Let (X,τ) and (Y,σ) be Q-topological spaces and let $f:(X,\tau)\to (Y,\sigma)$ be a Q-continuous map. Then $f(C_x)\subseteq C_{f(x)}$, for every $x\in X$.

Proof. Let $y \in f(C_x)$, then y = f(x'), for some $x' \in C_x$. Now let $\beta \in \sigma$. Then since $f: (X,\tau) \to (Y,\sigma)$ is *Q*-continuous, $\beta \circ f \in \tau$ and then since $x' \sim x$, $(\beta \circ f)(x') = (\beta \circ f)(x) \Rightarrow \beta(f(x')) = \beta(f(x))$. Thus $f(x') \sim f(x)$. This implies that $y = f(x') \in C_{f(x)}$. Therefore $f(C_x) \subseteq C_{f(x)}$.

Proposition 4.8. [1] Every retract of an injective object is injective.

Proposition 4.9. Let (X, τ) and (Y, σ) be Q-topological spaces. If $((X, \tau), f)$ is injective in Q-TOP/ (Y, σ) , then $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-TOP₀/ $(\tilde{Y}, \tilde{\sigma})$.

Proof. We know that in the category **Set**, retractions are precisely onto maps and since q_X is onto, q_X is a retraction in **Set**. So there exists a map $g: \tilde{X} \to X$ such that $q_X \circ g = id_{\tilde{X}}$. This implies that $(q_X \circ g)([x]) = [x]$, for every $x \in X \Rightarrow [g([x])] = [x]$, for every $x \in X \Rightarrow \alpha(g[x]) = \alpha(x)$, for every $\alpha \in \tau$ and for every $x \in X$. Now we will show that $g: (\tilde{X}, \tilde{\tau}) \to (X, \tau)$ is Q-continuous. Let $\alpha \in \tau$. Then $((\alpha \circ g) \circ q_X)(x) = \alpha(g([x])) = \alpha(x)$, for every $x \in X$. Thus $(\alpha \circ g) \circ q_X = \alpha \in \tau$. Hence $\alpha \circ g \in \tilde{\tau}$. So $g: (\tilde{X}, \tilde{\tau}) \to (X, \tau)$ is Q-continuous. Now $q_Y \circ f \circ g = (q_Y \circ f) \circ g = (\tilde{f} \circ q_X) \circ g = \tilde{f} \circ (q_X \circ g) = \tilde{f} \circ id_{\tilde{X}} = \tilde{f}$. Thus we have morphisms $g: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((X, \tau), q_Y \circ f)$ and $q_X: ((X, \tau), q_Y \circ f) \to ((\tilde{X}, \tilde{\tau}), \tilde{f})$ in Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$ such that $q_X \circ g = id_{\tilde{X}}$. Thus $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is a retract of $((X, \tau), q_Y \circ f)$ in Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$. By Proposition 4.3 and Corollary 4.2, $((X, \tau), q_Y \circ f)$ is injective in Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$ and then by Proposition 4.8, $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$. Therefore by Proposition 4.5, $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP**/ $(\tilde{Y}, \tilde{\sigma})$.

The following Theorem 4.10 is concerned with the extension of Theorem 2.6 of [5], in the category Q-**TOP**/ (Y, σ) .

Theorem 4.10. Let (X, τ) be a Q-topological space and (Y, σ) be a stratified Q-topological space. Then $((X, \tau), f)$ is injective in Q-TOP/ (Y, σ) if and only if

- 1. $f(C_x) = C_{f(x)}$, for every $x \in X$.
- 2. Its T_0 -reflection $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q- $TOP_0/(\tilde{Y}, \tilde{\sigma})$.

Proof. Let $((X, \tau), f)$ be injective in Q-**TOP** $/(Y, \sigma)$.

- (1) Let $x \in X$. Then by Proposition 4.7, $f(C_x) \subseteq C_{f(x)}$. Now we have to show that $C_{f(x)} \subseteq f(C_x)$. By Proposition 4.6, there exists a section $s_x : (Y, \sigma) \to (X, \tau)$ of $f: (X, \tau) \to (Y, \sigma)$ such that $s_x(f(x)) = x$ and $f \circ s_x = id_Y$. Then since by Proposition 4.7, $s_x(C_{f(x)}) \subseteq C_{(s_x \circ f)(x)}$, $s_x(C_{f(x)}) \subseteq C_x$ (as $s_x(f(x)) = x$). Then $f(s_x(C_{f(x)})) \subseteq f(C_x) \Rightarrow (f \circ s_x)(C_{f(x)}) \subseteq f(C_x) \Rightarrow id_Y(C_{f(x)}) \subseteq f(C_x) \Rightarrow C_{f(x)} \subseteq f(C_x)$. Therefore $f(C_x) = C_{f(x)}$.
 - (2) Follows from Proposition 4.9.

Conversely, assume that (1) and (2) hold. Let following be a commutative diagram in Q-**TOP**:

$$(W,\theta) \xrightarrow{m} (X,\tau)$$

$$\downarrow f$$

$$(Z,\eta) \xrightarrow{n} (Y,\sigma)$$

$$(4.9)$$

where $h:(W,\theta)\to (Z,\eta)$ is an embedding in Q-TOP.

Now since $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP** $_0/(\tilde{Y}, \tilde{\sigma})$, by Proposition 4.5, $((\tilde{X}, \tilde{\tau}), \tilde{f})$ is injective in Q-**TOP** $_0/(\tilde{Y}, \tilde{\sigma})$. So there exists a Q-continuous map $g: (Z, \eta) \to (\tilde{X}, \tilde{f})$ such that the following diagram commutes:

$$(W,\theta) \xrightarrow{m} (X,\tau) \xrightarrow{q_X} (\tilde{X},\tilde{\tau})$$

$$\downarrow \tilde{f}$$

$$(Z,\eta) \xrightarrow{n} (Y,\sigma) \xrightarrow{q_Y} (\tilde{Y},\tilde{\sigma})$$

$$(4.10)$$

Let $\tilde{X} = \{[x_j] \mid j \in J\}$. Now let $w \in m^{-1}(C_{x_j})$, then $(s \circ h)(w) = (q_X \circ m)(w) = [m(w)] = [x_j]$ (as $m(w) \in C_{x_j}$, $[m(w)] = [x_j]$). So $h(w) \in s^{-1}(\{[x_j]\})$. Thus for each $j \in J$, we have a map $h_j : m^{-1}(C_{x_j}) \to s^{-1}(\{[x_j]\})$ defined as $h_j(w) = h(w)$, for every $w \in m^{-1}(C_{x_j})$. Next let $z \in s^{-1}(\{[x_j]\})$, then $(q_Y \circ n)(z) = (\tilde{f} \circ s)(z) = \tilde{f}(s(z)) = \tilde{f}([x_j]) = (\tilde{f} \circ q_X)(x_j) = (q_Y \circ f)(x_j)$. This implies that $[n(z)] = [f(x_j)]$. So $n(z) \sim f(x_j)$ and hence $n(z) \in C_{f(x_j)}$. Thus for each $j \in J$, we have a map $n_j : s^{-1}(\{[x_j]\}) \to C_{f(x_j)}$ defined as $n_j(z) = n(z)$, for every $z \in s^{-1}(\{[x_j]\})$. Now consider the following commutative diagram in category **Set**:

$$m^{-1}(C_{x_j}) \xrightarrow{m_j} C_{x_j}$$

$$h_j \downarrow \qquad \qquad \downarrow f_j$$

$$s^{-1}(\{[x_j]\}) \xrightarrow{n_j} C_{f(x_j)}$$

$$(4.11)$$

where $f_j: C_{x_j} \to C_{f(x_j)}$ is defined as $f_j(x) = f(x)$, for every $x \in C_{x_j}$ and $m_j: m^{-1}(C_{x_j}) \to C_{x_j}$ is defined as $m_j(w) = m(w)$, for every $w \in m^{-1}(C_{x_j})$. Now by (1), $f_j: C_{x_j} \to C_{f(x_j)}$ is onto and so (C_{x_j}, f_j) is injective in the category $\mathbf{Set}/C_{f(x_j)}$. Also since h is one-one, h_j is one-one. So there exists a map $g_j: s^{-1}(\{[x_j]\}) \to C_{x_j}$ such that $g_j \circ h_j = m_j$ and $f_j \circ g_j = n_j$. Thus for each $j \in J$, we have a map $g_j: s^{-1}(\{[x_j]\}) \to C_{x_j}$ such that $g_j \circ h_j = m_j$ and

 $f_i \circ g_i = n_i$. Note that since $\tilde{X} = \bigcup_{i \in J} \{[x_i]\}, Z = \bigcup_{i \in J} s^{-1}(\{[x_i]\})$. Thus we can define a map $g: Z \to X$ as $g(z) = g_i(z)$, if $z \in s^{-1}(\{[x_i]\})$. Now we have to prove that $f \circ g = n$, $g \circ h = m$ and $g : (Z, \eta) \to (X, \tau)$ is Q-continuous. Let $z \in Z$, then there exists a unique $j \in J$ such that $z \in s^{-1}(\{[x_i]\})$. Then $(f \circ g)(z) = f(g(z)) = f(g_j(z)) = f_i(g_j(z)) = (f_i \circ g_i)(z) = n_i(z) = n(z).$ This implies that $f \circ g = n$. Now consider $(g \circ h)(w) = g(h(w)) = g_i(h(w))$, if $h(w) \in s^{-1}(\{[x_i]\})$. Now if $h(w) \in s^{-1}(\{[x_i]\})$, then $(s \circ h)(w) = [x_j] \Rightarrow$ $(q_X \circ m)(w) = [x_j] \Rightarrow [m(w)] = [x_j] \Rightarrow m(w) \sim x_j \Rightarrow m(w) \in C_{x_j} \Rightarrow w \in$ $m^{-1}(C_{x_i})$ and so $h(w) = h_j(w)$. Thus if $h(w) \in s^{-1}(\{[x_j]\})$, then $(g \circ h)(w) = h_j(w)$ $g_{i}(h(w)) = g_{i}(h_{i}(w)) = (g_{i} \circ h_{i})(w) = m_{i}(w) = m(w)$. Thus $g \circ h = m$. Now we show that $g:(Z,\eta)\to (X,\tau)$ is Q-continuous. Let $\alpha\in\tau$, then $\alpha=\beta\circ q_X$, for some $\beta \in \tilde{\tau}$. Now let $z \in Z$, then there exists a unique $j \in J$ such that $z \in s^{-1}(\{[x_i]\})$. Now consider $(\alpha \circ g)(z) = (\beta \circ q_X \circ g)(z) = (\beta \circ q_X)(g(z)) =$ $(\beta \circ q_X)(g_i(z)) = \beta([g_i(z)]) = \beta([x_i])$ (since $g_i(z) \in C_{x_i}$, $[g_i(z)] = [x_i]$). Thus $(\alpha \circ g)(z) = \beta([x_i]) = \beta(s(z)) = (\beta \circ s)(z)$. Thus $\alpha \circ g = \beta \circ s \in \eta$ as $s:(Z,\eta)\to (\tilde{X},\tilde{\tau})$ is Q-continuous. Hence $g:(Z,\eta)\to (X,\tau)$ is Q-continuous. Therefore $((X, \tau), f)$ is injective in Q-**TOP**/ (Y, σ) .

5 Existence of injective hulls in Q-TOP/ (Y, σ)

Proposition 5.1. Let (X,τ) and (Y,σ) be T_0 -Q-topological spaces. Then $((X,\tau),f)$ has an injective hull in Q- $TOP_0/(Y,\sigma)$ if and only if it has an injective hull in Q- $TOP/(Y,\sigma)$ and in this case injective hulls coincide.

Proof. Suppose first that $((X,\tau),f)$ has an injective hull $j:((X,\tau),f) \to ((Z,\eta),g)$ in $Q\text{-}\mathbf{TOP}_0/(Y,\sigma)$. Then $((Z,\eta),g)$ is injective in $Q\text{-}\mathbf{TOP}_0/(Y,\sigma)$ and then by Proposition 4.5, $((Z,\eta),g)$ is injective in $Q\text{-}\mathbf{TOP}/(Y,\sigma)$. Furthermore, $j:(X,\tau)\to(Z,\eta)$ is an embedding in $Q\text{-}\mathbf{TOP}_0$ and then by Lemma 4.4, $j:(X,\tau)\to(Z,\eta)$ is an embedding in $Q\text{-}\mathbf{TOP}_0$. Now we have to prove that $j:((X,\tau),f)\to((Z,\eta),g)$ is essential in $Q\text{-}\mathbf{TOP}/(Y,\sigma)$. We note that since $j:(X,\tau)\to(Z,\eta)$ is an embedding in $Q\text{-}\mathbf{TOP}$, by Proposition 3.2, $\tilde{j}:(\tilde{X},\tilde{\tau})\to(\tilde{Z},\tilde{\eta})$ is an embedding in $Q\text{-}\mathbf{TOP}$ and hence $\tilde{j}:(\tilde{X},\tilde{\tau})\to(\tilde{Z},\tilde{\eta})$ is an embedding in $Q\text{-}\mathbf{TOP}_0$ by Lemma 4.4. Now we will first prove that $\tilde{j}:((\tilde{X},\tilde{\tau}),\tilde{f})\to((\tilde{Z},\tilde{\eta}),\tilde{g})$ is essential in $Q\text{-}\mathbf{TOP}_0/(\tilde{Y},\tilde{\sigma})$. Let $h:((\tilde{Z},\tilde{\eta}),\tilde{g})\to((A,\tau_A),m)$ be a morphism in $Q\text{-}\mathbf{TOP}_0/(\tilde{Y},\tilde{\sigma})$ such that $h\circ\tilde{j}:(\tilde{X},\tilde{\tau})\to(A,\tau_A)$ is an embedding in $Q\text{-}\mathbf{TOP}_0$. Since composition of embeddings is an embed-

ding, $h \circ \tilde{j} \circ q_X : (X, \tau) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀ and then since $h \circ \tilde{j} \circ q_X = (h \circ q_Z) \circ j, (h \circ q_Z) \circ j : (X, \tau) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀. Thus we have a morphism $h \circ q_Z : ((Z, \eta), g) \to ((A, \tau_A), q_Y^{-1} \circ m)$ in Q-**TOP**₀/ (Y, σ) such that $(h \circ q_Z) \circ j : (X, \tau) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀. Then since $j:((X,\tau),f)\to((Z,\eta),g)$ is essential in Q- $\mathbf{TOP}_0/(Y,\sigma), \ h \circ q_Z : (Z,\eta) \to (A,\tau_A)$ is an embedding in Q-TOP₀. Now since $(Z, \eta) \in Q$ -**TOP**₀, $q_Z : (Z, \eta) \to (\tilde{Z}, \tilde{\eta})$ is an isomorphism in Q-**TOP**₀ and so it is essential in Q-TOP₀ and then since $h \circ q_Z : (Z, \eta) \to (A, \tau_A)$ is an embedding in Q-TOP₀, $h: (\tilde{Z}, \tilde{\eta}) \to (A, \tau_A)$ is an embedding in Q-**TOP**₀. Thus $\tilde{j}:((\tilde{X},\tilde{\tau}),\tilde{f})\to((\tilde{Z},\tilde{\eta}),\tilde{g})$ is essential in Q-**TOP**₀/ $(\tilde{Y},\tilde{\sigma})$. Next let $k:((Z,\eta),g)\to((W,\theta),l)$ be a morphism in Q-**TOP** $/(Y,\sigma)$ such that $k \circ j : (X, \tau) \to (W, \theta)$ is an embedding in Q-TOP. Then by Proposition 3.2, $\tilde{k} \circ \tilde{i} : (\tilde{X}, \tilde{\tau}) \to (\tilde{W}, \tilde{\theta})$ is an embedding in Q-**TOP** and then by Lemma 4.4, it is an embedding in Q-**TOP**₀. Thus we have a morphism $\tilde{k}: ((\tilde{Z}, \tilde{\eta}), \tilde{g}) \to ((\tilde{W}, \tilde{\theta}), \tilde{l})$ in Q-**TOP**₀/($\tilde{Y}, \tilde{\sigma}$) such that $\tilde{k} \circ \tilde{j} : (\tilde{X}, \tilde{\tau}) \to (\tilde{W}, \tilde{\theta})$ is an embedding in Q-**TOP**₀. Then since $\tilde{j}:((\tilde{X},\tilde{\tau}),\tilde{f})\to((\tilde{Z},\tilde{\eta}),\tilde{g})$ is essential in Q-**TOP**₀ $/(\tilde{Y},\tilde{\sigma})$, $\tilde{k}: (\tilde{Z}, \tilde{\eta}) \to (\tilde{W}, \tilde{l})$ is an embedding in Q-TOP₀ and hence it is an embedding in O-TOP by Lemma 4.4. Now we will prove that k is one-one. Let $k(z_1)$ = $k(z_2) \Rightarrow (q_W \circ k)(z_1) = (q_W \circ k)(z_2) \Rightarrow (\tilde{k} \circ q_Z)(z_1) = (\tilde{k} \circ q_Z)(z_2) \Rightarrow z_1 = z_2$ (since $\tilde{k} \circ q_Z$ is one-one as both \tilde{k} and q_Z are one-one). Hence k is one-one. Thus by Proposition 3.2, $k:(Z,\eta)\to (W,\theta)$ is an embedding in Q-TOP. Hence $j:((X,\tau),f)\to((Z,\eta),g)$ is essential in Q-TOP/ (Y,σ) . Therefore $j:((X,\tau),f)\to((Z,\eta),g)$ is an injective hull of $((X,\tau),f)$ in Q-TOP/ (Y,σ) .

Conversely, let $((X,\tau),f)$ have an injective hull $j:((X,\tau),f)\to ((Z,\eta),g)$ in $Q\text{-TOP}/(Y,\sigma)$. Now since $(X,\tau)\in Q\text{-TOP}_0,\ q_X:(X,\tau)\to (\tilde X,\tilde \tau)$ is an isomorphism in Q-TOP and hence $q_X:(X,\tau)\to (\tilde X,\tilde \tau)$ is an embedding in Q-TOP. Also since $j:(X,\tau)\to (Z,\eta)$ is an embedding in Q-TOP, by Proposition 3.2, $\tilde j:(\tilde X,\tilde \tau)\to (\tilde Z,\tilde \eta)$ is an embedding in Q-TOP. Thus $\tilde j\circ q_X:(X,\tau)\to (\tilde Z,\tilde \eta)$ is an embedding in Q-TOP and since $\tilde j\circ q_X=q_Z\circ j,q_Z\circ j:(X,\tau)\to (\tilde Z,\tilde \eta)$ is an embedding in Q-TOP. Thus we have a morphism $q_Z:((Z,\eta),g)\to ((\tilde Z,\tilde \eta),q_Y^{-1}\circ \tilde g)$ in $Q\text{-TOP}/(Y,\sigma)$ such that $q_Z\circ j:(X,\tau)\to (\tilde Z,\tilde \eta)$ is an embedding in Q-TOP and then since $j:((X,\tau),f)\to ((Z,\eta),g)$ is essential in $Q\text{-TOP}/(Y,\sigma),q_Z:(Z,\eta)\to (\tilde Z,\tilde \eta)$ is an embedding in Q-TOP. Hence $q_Z:(Z,\eta)\to (\tilde Z,\tilde \eta)$ is initial in Q-TOP and q_Z is bijective and thus by Proposition 3.3, $q_Z:(Z,\eta)\to (\tilde Z,\tilde \eta)$ is an isomorphism in Q-TOP. Now since $Q\text{-TOP}_0$ is an isomorphism closed subcategory of $Q\text{-TOP},(Z,\eta)\in Q$ -

TOP₀. Thus $j:((X,\tau),f)\to ((Z,\eta),g)$ is a morphism in Q-**TOP**₀/ (Y,σ) . Now since $j:(X,\tau)\to (Z,\eta)$ is an embedding in Q-**TOP**, by Lemma 4.4, $j:(X,\tau)\to (Z,\eta)$ is an embedding in Q-**TOP**₀. It can also be easily verified that $j:((X,\tau),f)\to ((Z,\eta),g)$ is essential in Q-**TOP**₀/ (Y,σ) . We also note that since $((Z,\eta),g)$ is injective in Q-**TOP**/ (Y,σ) by Proposition 4.5, it is injective in Q-**TOP**₀/ (Y,σ) . Therefore $j:((X,\tau),f)\to ((Z,\eta),g)$ is an injective hull of $((X,\tau),f)$ in Q-**TOP**₀/ (Y,σ) .

Definition 5.2. [12] Let $m: U \to B$ and $e: A \to U$ be morphisms in a category \mathbb{C} . Then a *pullback complement* of the pair (m, e) in the category \mathbb{C} is a pullback diagram

$$\begin{array}{ccc}
A & \xrightarrow{e} & U \\
\downarrow \tilde{m} & & \downarrow m \\
P & \xrightarrow{\tilde{e}} & B
\end{array}$$
(5.1)

such that, given any pullback diagram

$$\begin{array}{ccc}
X & \xrightarrow{d} & U \\
\downarrow & & \downarrow m \\
Y & \xrightarrow{g} & B
\end{array}$$
(5.2)

and a morphism $h: X \to A$ with $e \circ h = d$, there is a unique morphism $h': Y \to P$ with $\bar{e} \circ h' = g$ and $h' \circ k = \bar{m} \circ h$.

In the category **Set**, pullback complement of the pair (m, e), where $m: Z \to Y$ is one-one and $e: X \to Z$ is a map, always exists and given by

$$\begin{array}{ccc}
X & \xrightarrow{e} & Z \\
\downarrow \bar{m} & & \downarrow m \\
(Y \setminus m(Z)) + X & \xrightarrow{\bar{e}} & Y
\end{array} (5.3)$$

where $(Y \setminus m(Z)) + X = \{(y,1) \mid y \in Y \setminus m(Z)\} \cup \{(x,2) \mid x \in X\}, \bar{m} : X \to (Y \setminus m(Z)) + X$ is defined as $\bar{m}(x) = (x,2)$ and $\bar{e} : (Y \setminus m(Z)) + X \to Y$ is defined as $\bar{e}(y,1) = y$, $\bar{e}(x,2) = (m \circ e)(x)$ (cf. [5, 12]). It can also be easily verified that if e is onto, then \bar{e} is onto.

Proposition 5.3. Let $m:(Z,\eta)\to (Y,\sigma)$ be an embedding in Q-**TOP** and let $e:(X,\tau)\to (Z,\eta)$ be initial in Q-**TOP**. Then there exists a pullback complement of (m,e) in Q-**TOP**:

$$(X,\tau) \xrightarrow{e} (Z,\eta)$$

$$\downarrow m \qquad \qquad \downarrow m \qquad (5.4)$$

$$(W,\theta) \xrightarrow{\bar{e}} (Y,\sigma)$$

where $\bar{e}:(W,\theta)\to (Y,\sigma)$ is initial in Q-**TOP**.

Proof. Let us consider the pullback complement of the pair (m, e) in **Set** given by the following:

$$\begin{array}{ccc}
X & \xrightarrow{e} & Z \\
\bar{m} \downarrow & & \downarrow m \\
W & \xrightarrow{\bar{e}} & Y
\end{array}$$
(5.5)

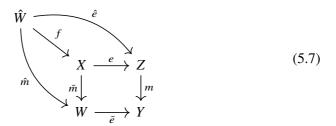
where $W = (Y \setminus m(Z)) + X$, $\bar{m} : X \to (Y \setminus m(Z)) + X$ is defined as $\bar{m}(x) = (x, 2)$ and $\bar{e} : (Y \setminus m(Z)) + X \to Y$ is defined as $\bar{e}(y, 1) = y$, $\bar{e}(x, 2) = (m \circ e)(x)$. Now let $\theta = \{\beta \circ \bar{e} \mid \beta \in \sigma\}$. Let $\beta \circ \bar{e} \in \theta$, where $\beta \in \sigma$. Then $\beta \circ \bar{e} \circ \bar{m} = \beta \circ m \circ e = \beta \circ (m \circ e) \in \tau$ (as $m \circ e : (X, \tau) \to (Y, \sigma)$ is Q-continuous). Thus $\bar{m} : (X, \tau) \to (W, \theta)$ is Q-continuous. Next let following be a commutative diagram in Q-**TOP**:

$$(\hat{W}, \hat{\theta}) \xrightarrow{\hat{e}} (Z, \eta)$$

$$\uparrow \qquad \qquad \downarrow m \qquad (5.6)$$

$$(W, \theta) \xrightarrow{\bar{e}} (Y, \sigma)$$

Since the diagram 5.5 is a pullback square in **Set**, there exists a unique map $f: \hat{W} \to X$ such that the following diagram commutes:



Now we will show that $f:(\hat{W},\hat{\theta})\to (X,\tau)$ is Q-continuous. Let $\beta\circ e\in \tau$, where $\beta\in \eta$. Then $\beta\circ e\circ f=\beta\circ \hat{e}\in \hat{\theta}$ (as $\hat{e}:(\hat{W},\hat{\theta})\to (Z,\eta)$ is Q-continuous). Thus $f:(\hat{W},\hat{\theta})\to (X,\tau)$ is Q-continuous. Hence the diagram 5.4 is a pullback square in Q-**TOP**. Now let following be a pullback square in Q-**TOP**:

$$(A, \tau_A) \xrightarrow{d} (Z, \eta)$$

$$\downarrow \downarrow m$$

$$(B, \tau_B) \xrightarrow{g} (Y, \sigma)$$

$$(5.8)$$

and let $h:(A,\tau_A)\to (X,\tau)$ be a Q-continuous map such that $e\circ h=d$. Then if we consider the diagram 5.8 in **Set**, then it is a pullback square in **Set** also and since the diagram 5.5 is a pullback complement diagram in **Set**, there exists a unique map $h':B\to W$ such that $\bar e\circ h'=g$ and $h'\circ k=\bar m\circ h$. So now it is sufficient to show that $h':(B,\tau_B)\to (W,\theta)$ is Q-continuous. Let $\beta\circ\bar e\in\theta$, where $\beta\in\sigma$. Then $\beta\circ\bar e\circ h'=\beta\circ g\in\tau_B$ (as $g:(B,\tau_B)\to (Y,\sigma)$ is Q-continuous). Thus $h':(B,\tau_B)\to (W,\theta)$ is Q-continuous. Therefore the diagram 5.4 gives a pullback complement of (m,e) in Q-**TOP**.

Proposition 5.4. [4] Let C be a category and let following be a pullback square in C

$$\begin{array}{ccc}
W & \stackrel{p}{\longrightarrow} X \\
q \downarrow & & \downarrow f \\
Z & \stackrel{g}{\longrightarrow} Y
\end{array} (5.9)$$

If (X, f) is injective in \mathbb{C}/Y , then (W, q) is injective in \mathbb{C}/Z .

The following Theorem 5.5 is concerned with the extension of Theorem 2.11 of [5], in the category O-**TOP**/ (Y, σ) .

Theorem 5.5. Let (X, τ) and (Y, σ) be Q-topological spaces and let $f: (X, \tau) \to (Y, \sigma)$ be a Q-continuous map. Then following statements are equivalent:

- 1. $((X, \tau), f)$ has an injective hull in Q-**TOP**/ (Y, σ) .
- 2. $((\tilde{X}, \tilde{\tau}), \tilde{f})$ has an injective hull in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$.
- 3. $((\tilde{X}, \tilde{\tau}), \tilde{f})$ has an injective hull in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$.

Proof. (1) \Rightarrow (2) Let $((X,\tau),f)$ have an injective hull $j:((X,\tau),f)\to$ $((Z, \eta), g)$ in Q-**TOP** $/(Y, \sigma)$. We will show that $\tilde{j}: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is an injective hull of $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in Q-**TOP**₀ $/(\tilde{Y}, \tilde{\sigma})$. Now since $((Z, \eta), g)$ is injective in Q-**TOP**/ (Y, σ) , by Proposition 4.9 $((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is injective in Q-**TOP**₀/ $(\tilde{Y}, \tilde{\sigma})$. Next since $j:(X,\tau)\to (Y,\sigma)$ is an embedding in Q-TOP, $\tilde{j}:(\tilde{X},\tilde{\tau})\to (\tilde{Z},\tilde{\eta})$ is an embedding in Q-TOP and then by Lemma 4.4, $\tilde{j}: (\tilde{X}, \tilde{\tau}) \to (\tilde{Z}, \tilde{\eta})$ is an embedding in Q-TOP₀. Next let $k:((\tilde{Z},\tilde{\eta}),\tilde{g})\to((W,\theta),l)$ be a morphism in Q-**TOP**₀/($\tilde{Y}, \tilde{\sigma}$) such that $k \circ \tilde{i} : (\tilde{X}, \tilde{\tau}) \to (W, \theta)$ is an embedding in Q-**TOP**₀. We have to prove that $k: (\tilde{Z}, \tilde{\eta}) \to (W, \theta)$ is an embedding in Q-**TOP**₀. Consider the Q-topology $\{\alpha \circ p_1 \mid \alpha \in \theta\}$ on $W \times Z$, where $p_1 : W \times Z \to W$ is the first projection map. Let $T = W \times Z$ and $\rho = \{\alpha \circ p_1 \mid \alpha \in \theta\}$. Now we will prove that $(\tilde{T}, \tilde{\rho})$ and (W, θ) are isomorphic. Define a map $h: \tilde{T} \to W$ as h([(w, z)]) = w. Let $[(w_1, z_1)] = [(w_2, z_2)] \Rightarrow (\alpha \circ p_1)(w_1, z_1) = (\alpha \circ p_1)(w_2, z_2)$, for every $\alpha \in \theta \Rightarrow \alpha(w_1) = \alpha(w_2)$, for every $\alpha \in \theta \Rightarrow w_1 = w_2$ (since $(W, \theta) \in Q$ -**TOP**₀ and if $w_1 \neq w_2$, then there exists $\alpha \in \theta$ such that $\alpha(w_1) \neq \alpha(w_2)$. Thus the map h is well-defined. Now let $h([(w_1, z_1)]) = h([(w_2, z_2)]) \Rightarrow w_1 = w_2 \Rightarrow$ $\alpha(w_1) = \alpha(w_2)$, for every $\alpha \in \theta \Rightarrow (\alpha \circ p_1)(w_1, z_1) = (\alpha \circ p_1)(w_2, z_2)$, for every $\alpha \in \theta \Rightarrow [(w_1, z_1)] = [(w_2, z_2)]$. Thus h is one-one and hence h is bijective. Now let $\alpha \in \theta$. Then $(\alpha \circ h \circ q_{W \times Z})(w, z) = \alpha(w) = (\alpha \circ p_1)(w, z) \Rightarrow \alpha \circ h \circ q_{W \times Z} = \alpha(w) =$ $\alpha \circ p_1 \in \rho \Rightarrow \alpha \circ h \in \tilde{\rho}$. Thus $h: (\tilde{T}, \tilde{\rho}) \to (W, \theta)$ is Q-continuous. Now let $\beta \in \tilde{\rho}$, then $\beta \circ q_{W \times Z} \in \rho$ and so $\beta \circ q_{W \times Z} = \alpha \circ p_1$, for some $\alpha \in \theta$. Then $(\beta \circ q_{W \times Z})(w, z) = (\alpha \circ p_1)(w, z) = \alpha(w) = \alpha(h([(w, z)])) = (\alpha \circ h)([(w, z)]) = \alpha(w)$ $(\alpha \circ h \circ q_{W \times Z})(w, z) \Rightarrow \beta \circ q_{W \times Z} = \alpha \circ h \circ q_{W \times Z}$ and so $\beta = \alpha \circ h$ (as $q_{W \times Z}$) is onto). Thus $h: (\tilde{T}, \tilde{\rho}) \to (W, \theta)$ is initial in Q-TOP and also h is bijective. Hence by Proposition 3.3, $h: (\tilde{T}, \tilde{\rho}) \to (W, \theta)$ is an isomorphism in Q-**TOP**. Now it can be easily verified that the map $k' = (k \circ q_Z, id_Z) : (Z, \eta) \to (W \times Z, \rho)$ is Q-continuous and the following diagram commutes:

$$(Z,\eta) \xrightarrow{k'} (W \times Z, \rho)$$

$$g \downarrow \qquad \qquad \downarrow_{l \circ h \circ q_{W \times Z}}$$

$$(Y,\sigma) \xrightarrow{q_{Y}} (\tilde{Y},\tilde{\sigma})$$

$$(5.10)$$

Now since q_Y is onto, (Y, q_Y) is injective in the category \mathbf{Set}/\tilde{Y} and since k' is one-one, there exists a map $m: W \times Z \to Y$ such that $m \circ k' = g$ and $q_Y \circ m = l \circ h \circ q_{W \times Z}$. Let $v \circ q_Y \in \sigma$, where $v \in \tilde{\sigma}$, then $v \circ q_Y \circ m = v \circ l \circ h \circ q_{W \times Z} \in \rho$ (as $l \circ h \circ q_{W \times Z} : (W \times Z, \rho) \to (\tilde{Y}, \tilde{\sigma})$ is Q-continuous). Thus $m: (W \times Z, \rho) \to (Y, \sigma)$ is Q-continuous. Hence $((W \times Z, \rho), m) \in Q$ - $\mathbf{TOP}/(Y, \sigma)$. Now it can be easily verified that the following diagram commutes:

$$(Z,\eta) \xrightarrow{k'} (W \times Z,\rho)$$

$$q_Z \downarrow \qquad \qquad \downarrow q_{W \times Z}$$

$$(\tilde{Z},\tilde{\eta}) \xrightarrow{h^{-1} \circ k} (\tilde{T},\tilde{\rho})$$

$$(5.11)$$

Thus $\tilde{K}' = h^{-1} \circ k$. Let $p = k' \circ j$. Then $\tilde{p} = \tilde{k}' \circ \tilde{j} = (h^{-1} \circ k) \circ \tilde{j} = h^{-1} \circ (k \circ \tilde{j})$. Now since $h^{-1}: (W, \theta) \to (\tilde{T}, \tilde{\rho})$ is an isomorphism in Q-**TOP**, it is an embedding in Q-**TOP**. We know that composition of embeddings is an embedding and since $\tilde{p} = h^{-1} \circ (k \circ \tilde{j})$, $\tilde{p}: (\tilde{X}, \tilde{\tau}) \to (\tilde{T}, \tilde{\rho})$ is an embedding in Q-**TOP**. Also $p = k' \circ j$ is one-one. Thus by Proposition 3.2, $p = k' \circ j: (X, \tau) \to (W \times Z, \rho)$ is an embedding in Q-**TOP**. Thus $k': ((Z, \eta), g) \to ((W \times Z, \rho), m)$ is a morphism in Q-**TOP**/ (Y, σ) such that $k' \circ j: (X, \tau) \to (W \times Z, \rho)$ is an embedding in Q-**TOP** and then since $j: ((X, \tau), f) \to ((Z, \eta), g)$ is essential in Q-**TOP**/ (Y, σ) , $k': (Z, \eta) \to (W \times Z, \rho)$ is an embedding in Q-**TOP**. Then by Proposition 3.2, $\tilde{k}': (\tilde{Z}, \tilde{\eta}) \to (\tilde{T}, \tilde{\rho})$ is an embedding in Q-**TOP**. Now since $\tilde{k}' = h^{-1} \circ k$, so $h^{-1} \circ k: (\tilde{Z}, \tilde{\eta}) \to (\tilde{T}, \tilde{\rho})$ is an embedding in Q-**TOP**. This implies that $k: (\tilde{Z}, \tilde{\eta}) \to (W, \theta)$ is an embedding in Q-**TOP** and then by Lemma 4.4, $k: (\tilde{Z}, \tilde{\eta}) \to (W, \theta)$ is an embedding in Q-**TOP**0. Thus $\tilde{j}: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is essential in Q-**TOP**0/ $(\tilde{Y}, \tilde{\sigma})$. Therefore $\tilde{j}: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{Z}, \tilde{\eta}), \tilde{g})$ is an injective hull of $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in Q-**TOP**0/ $(\tilde{Y}, \tilde{\sigma})$.

- $(2) \Rightarrow (3)$ Follows from Proposition 5.1.
- $(3) \Rightarrow (1)$ Let $j: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \rightarrow ((Z, \eta), g)$ be an injective hull of $((\tilde{X}, \tilde{\tau}), \tilde{f})$ in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$. Then by Proposition 5.1, $j: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \rightarrow ((Z, \eta), g)$ is an injective hull of $(\tilde{X}, \tilde{\tau}), \tilde{f})$ in Q-**TOP** $_0/(\tilde{Y}, \tilde{\sigma})$. Thus clearly $(Z, \eta) \in Q$ -**TOP** $_0$.

Now let $q:(W,\theta)\to (Z,\eta)$ be a pullback of $q_Y:(Y,\sigma)\to (\tilde Y,\tilde\sigma)$ along $g:(Z,\eta)\to (\tilde Y,\tilde\sigma)$ in Q-**TOP**:

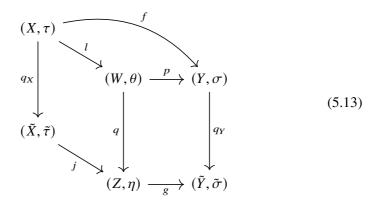
$$(W,\theta) \xrightarrow{q} (Z,\eta)$$

$$\downarrow g$$

$$(Y,\sigma) \xrightarrow{q_Y} (\tilde{Y},\tilde{\sigma})$$

$$(5.12)$$

We note that by Proposition 3.5, $\tilde{q}: (\tilde{W}, \tilde{\theta}) \to (\tilde{Z}, \tilde{\eta})$ is an isomorphism in Q-**TOP**. Now since $g \circ j \circ q_X = (g \circ j) \circ q_X = \tilde{f} \circ q_X = q_Y \circ f$ and the diagram 5.12 is a pullback, there exists a unique Q-continuous map $l: (X, \tau) \to (W, \theta)$ for which the following diagram commutes:



Now since $q_X:(X,\tau)\to (\tilde X,\tilde\tau)$ and $j:(\tilde X,\tilde\tau)\to (Z,\eta)$ both are initial in $Q extbf{-}\mathbf{TOP}$ and composition of initial maps is initial, $j\circ q_X:(X,\tau)\to (Z,\eta)$ is initial in $Q extbf{-}\mathbf{TOP}$ and since $j\circ q_X=q\circ l$, $q\circ l:(X,\tau)\to (Z,\eta)$ is initial in $Q extbf{-}\mathbf{TOP}$ and then it can be easily proved that $l:(X,\tau)\to (W,\theta)$ is initial in $Q extbf{-}\mathbf{TOP}$. Now let $e:X\to l(X)$ defined as e(x)=l(x) and let $m:l(X)\to W$ be the inclusion map. Next if we take the $Q extbf{-}\mathrm{topology}\ \theta'=\{\beta\circ m\mid \beta\in\theta\}\$ on l(X), then we have a factorization of $l:(X,\tau)\to (W,\theta)$ given by $l=m\circ e$ such that $e:(X,\tau)\to (l(X),\theta')$ is onto and $m:(l(X),\theta')\to (W,\theta)$ is an embedding in $Q extbf{-}\mathbf{TOP}$. Then since $l:(X,\tau)\to (W,\theta)$ is initial in $Q extbf{-}\mathbf{TOP}$ and $l=m\circ e$, $e:(X,\tau)\to (l(X),\theta')$ is initial in $Q extbf{-}\mathbf{TOP}$. Thus by Proposition 5.3, there exists a pullback complement of (m,e) in $Q extbf{-}\mathbf{TOP}$ given by:

$$(X,\tau) \xrightarrow{e} (l(X),\theta')$$

$$\downarrow^{m} \qquad \qquad \downarrow^{m}$$

$$(E,\tau_{E}) \xrightarrow{\bar{e}} (W,\theta)$$

$$(5.14)$$

where $E = (W \setminus m(l(X))) + X, \bar{m} : X \to E$ is defined as $\bar{m}(x) = (x, 2), \bar{e} : E \to W$ is defined as $\bar{e}(w,1) = w$, $\bar{e}(x,2) = (m \circ e)(x)$ and $\bar{e}: (E,\tau_E) \to (W,\theta)$ is initial in Q-TOP. Also since e is onto, \bar{e} is onto. Now since \bar{e} is onto and $\bar{e}:(E,\tau_E)\to$ (W,θ) is initial in Q-TOP, as in the proof of the Proposition 3.5, we can prove that \tilde{e} is bijective and $\tilde{e}: (\tilde{E}, \tilde{\tau_E}) \to (\tilde{W}, \tilde{\theta})$ is initial in Q-**TOP** and hence by Proposition 3.3, $\tilde{e}: (\tilde{E}, \tilde{\tau_E}) \to (\tilde{W}, \tilde{\theta})$ is an isomorphism in Q-**TOP**. Also by Proposition 4.1, $((E, \tau_E), \bar{e})$ is injective in Q-**TOP** $/(W, \theta)$. Now since $((Z, \eta), g)$ is injective in Q- $TOP/(\tilde{Y}, \tilde{\sigma})$ and the diagram 5.12 is a pullback, by Proposition 5.4, $((W, \theta), p)$ is injective in Q-TOP/ (Y, σ) . Thus by Proposition 4.3, $((E, \tau_E), p \circ \bar{e})$ is injective in O-TOP $/(Y, \sigma)$. Now since $p \circ \bar{e} \circ \bar{m} = p \circ l = f, \bar{m} : ((X, \tau), f) \to ((E, \tau_E), p \circ \bar{e})$ is a morphism in O-**TOP** $/(Y,\sigma)$. Now we will prove that $\bar{m}:((X,\tau),f)\to$ $((E, \tau_E), p \circ \bar{e})$ is an injective hull of $((X, \tau), f)$ in O-**TOP** $/(Y, \sigma)$. We know that regular monomorphisms in Q-TOP are precisely embeddings in Q-TOP and since the diagram 5.14 is a pullback and $m:(l(X),\theta')\to (W,\theta)$ is an embedding in Q-TOP, by Proposition 3.4, $\bar{m}:(X,\tau)\to(E,\tau_E)$ is an embedding in Q-TOP. Next let $k: ((E, \tau_E), p \circ \bar{e}) \to ((G, \tau_G), h)$ be a morphism in Q-**TOP**/ (Y, σ) such that $k \circ \bar{m}: (X, \tau) \to (G, \tau_G)$ is an embedding in Q-**TOP**. We have to show that $k:(E,\tau_E)\to (G,\tau_G)$ is an embedding in Q-TOP. To prove this, in view of Proposition 3.2 it is sufficient to prove that $\tilde{k}: (\tilde{E}, \tilde{\tau_E}) \to (\tilde{G}, \tilde{\tau_G})$ is an embedding in Q-TOP and k is one-one. Now since $k \circ \bar{m} : (X, \tau) \to (G, \tau_G)$ is an embedding in Q-TOP, by Proposition 3.2, $\tilde{k} \circ \tilde{m} : (\tilde{X}, \tilde{\tau}) \to (\tilde{G}, \tilde{\tau}_G)$ is an embedding in **Q-TOP.** Now $(\tilde{q})^{-1} \circ q_Z \circ j \circ q_X = (\tilde{q})^{-1} \circ q_Z \circ (j \circ q_X) = (\tilde{q})^{-1} \circ q_Z \circ (q \circ l) = (q \circ l)$ $(\tilde{q})^{-1} \circ (q_Z \circ q) \circ l = (\tilde{q})^{-1} \circ (\tilde{q} \circ q_W) \circ l = q_W \circ l$. Thus the following diagram commutes:

$$(X,\tau) \xrightarrow{l} (W,\theta)$$

$$\downarrow^{q_{X}} \qquad \qquad \downarrow^{q_{W}}$$

$$(\tilde{X},\tilde{\tau}) \xrightarrow[\tilde{q})^{-1} \circ q_{Z} \circ j]} (\tilde{W},\tilde{\theta})$$

$$(5.15)$$

and hence $\tilde{l}=(\tilde{q})^{-1}\circ q_Z\circ j$. We also have $g\circ q_Z^{-1}\circ \tilde{q}\circ q_W=g\circ q_Z^{-1}\circ (\tilde{q}\circ q_W)=g\circ q_Z^{-1}\circ (q_Z\circ q)=g\circ q=q_Y\circ p$. Thus the following diagram commutes:

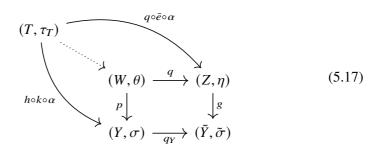
$$(W,\theta) \xrightarrow{p} (Y,\sigma)$$

$$q_{W} \downarrow \qquad \qquad \downarrow q_{Y}$$

$$(\tilde{W},\tilde{\theta}) \xrightarrow{g \circ q_{Z}^{-1} \circ \tilde{q}} (\tilde{Y},\tilde{\sigma})$$

$$(5.16)$$

and so $\tilde{p} = g \circ q_Z^{-1} \circ \tilde{q}$. Now since $(Z, \eta) \in Q$ -**TOP**₀, $q_Z : (Z, \eta) \to (\tilde{Z}, \tilde{\eta})$ is an isomorphism in Q-**TOP** and since $(\tilde{q})^{-1} : (\tilde{Z}, \tilde{\eta}) \to (\tilde{W}, \tilde{\theta})$ is also an isomorphism in Q-TOP, $(\tilde{q})^{-1} \circ q_Z : (Z, \eta) \to (\tilde{W}, \tilde{\theta})$ is an isomorphism in Q-TOP and so it is an essential embedding in Q-TOP and then it can be easily seen that $(\tilde{q})^{-1} \circ q_Z : ((Z, \eta), g) \to ((\tilde{W}, \tilde{\theta}), \tilde{p})$ is a morphism in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$ which is essential in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$. Thus $\tilde{l} = (\tilde{q})^{-1} \circ q_Z \circ j : ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to$ $((\tilde{W}, \tilde{\theta}), \tilde{p})$ is essential in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$. Now since $l = \bar{e} \circ \bar{m}$, $\tilde{l} = \tilde{e} \circ \tilde{m}$ and so $\tilde{m} = (\tilde{e})^{-1} \circ \tilde{l}$. Now since $(\tilde{e})^{-1} : (\tilde{W}, \tilde{\theta}) \to (\tilde{E}, \tilde{\tau_E})$ is an isomorphism in Q-TOP, it is an essential embedding in Q-TOP. Thus we have a morphism $(\tilde{e})^{-1}:((\tilde{W},\tilde{\theta}),\tilde{p})\to((\tilde{E},\tilde{\tau_E}),\tilde{p}\circ\tilde{e})$ in $Q\text{-}\mathbf{TOP}/(\tilde{Y},\tilde{\sigma})$ which is essential in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$. Then since $\tilde{m} = (\tilde{e})^{-1} \circ \tilde{l}, \tilde{m} : ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{E}, \tilde{\tau_E}), \tilde{p} \circ \tilde{e})$ is essential in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$. Now since $\tilde{k}: ((\tilde{E}, \tilde{\tau_E}), \tilde{p} \circ \tilde{e}) \to ((\tilde{G}, \tilde{\tau_G}), \tilde{h})$ is a morphism in Q-**TOP** $/(\tilde{Y}, \tilde{\sigma})$ such that $\tilde{k} \circ \tilde{m} : (\tilde{X}, \tilde{\tau}) \to (\tilde{G}, \tilde{\tau_G})$ is an embedding in Q-TOP, and $\tilde{m}: ((\tilde{X}, \tilde{\tau}), \tilde{f}) \to ((\tilde{E}, \tilde{\tau_E}), \tilde{p} \circ \tilde{e})$ is essential in Q-TOP/ $(\tilde{Y}, \tilde{\sigma})$, $\tilde{k}: (\tilde{E}, \tilde{\tau_E}) \to (\tilde{G}, \tilde{\tau_G})$ is an embedding in Q-TOP. Thus by Proposition 3.2, to prove that $k:(E,\tau_E)\to (G,\tau_G)$ is an embedding in Q-TOP, now it is sufficient to prove that k is one-one. Let (T, τ_T) be a Q-topological space and let $\alpha, \beta: (T, \tau_T) \to (E, \tau_E)$ be Q-continuous maps such that $k \circ \alpha = k \circ \beta$. This implies that $q_G \circ k \circ \alpha = q_G \circ k \circ \beta \Rightarrow (q_G \circ k) \circ \alpha = (q_G \circ k) \circ \beta \Rightarrow (\tilde{k} \circ q_E) \circ \alpha = (\tilde{k} \circ q_E) \circ$ $(\tilde{k} \circ q_E) \circ \beta \Rightarrow \tilde{k} \circ (q_E \circ \alpha) = \tilde{k} \circ (q_E \circ \beta)$ and since \tilde{k} is one-one, $q_E \circ \alpha = q_E \circ \beta$. Now since $g \circ q \circ \bar{e} \circ \alpha = q_Y \circ p \circ \bar{e} \circ \alpha = q_Y \circ h \circ k \circ \alpha$ and the diagram 5.12 is a pullback, there exists a unique Q-continuous map from (T, τ_T) to (W, θ) making the following diagram commutative



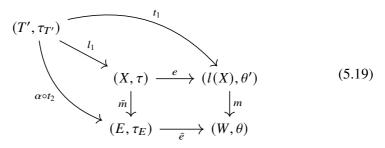
Now we have $p \circ \bar{e} \circ \beta = (p \circ \bar{e}) \circ \beta = (h \circ k) \circ \beta = h \circ (k \circ \beta) = h \circ k \circ \alpha$ and $q \circ \bar{e} \circ \beta = q_Z^{-1} \circ \tilde{q} \circ q_W \circ \bar{e} \circ \beta = q_Z^{-1} \circ \tilde{q} \circ (q_W \circ \bar{e}) \circ \beta = q_Z^{-1} \circ \tilde{q} \circ (\tilde{e} \circ q_E) \circ \beta = q_Z^{-1} \circ \tilde{q} \circ \tilde{e} \circ (q_E \circ \beta) = q_Z^{-1} \circ \tilde{q} \circ \tilde{e} \circ (q_E \circ \alpha) = q_Z^{-1} \circ \tilde{q} \circ (\tilde{e} \circ q_E) \circ \alpha = q_Z^{-1} \circ \tilde{q} \circ (q_W \circ \bar{e}) \circ \alpha = (q_Z^{-1} \circ \tilde{q} \circ q_W) \circ \bar{e} \circ \alpha = q \circ \bar{e} \circ \alpha$. Also we have $p \circ \bar{e} \circ \alpha = h \circ k \circ \alpha$. Thus here we have two Q-continuous maps $\bar{e} \circ \alpha$, $\bar{e} \circ \beta$: $(T, \tau_T) \to (W, \theta)$ making the diagram 5.17 commutative. So $\bar{e} \circ \alpha = \bar{e} \circ \beta$. Now consider a pullback of $\bar{e} \circ \alpha = \bar{e} \circ \beta$: $(T, \tau_T) \to (W, \theta)$ along m: $(l(X), \theta') \to (W, \theta)$ in Q-**TOP** given by the following:

$$(T', \tau_{T'}) \xrightarrow{t_1} (l(X), \theta')$$

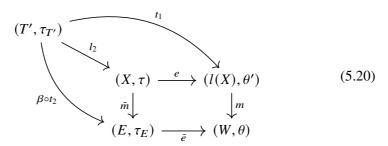
$$\downarrow_{t_2} \qquad \qquad \downarrow_{m} \qquad (5.18)$$

$$(T, \tau_T) \xrightarrow{\frac{\alpha}{\beta}} (E, \tau_E) \xrightarrow{\bar{e}} (W, \theta)$$

Now since the diagram 5.14 is a pullback square, there exists a unique Q-continuous map $l_1: (T', \tau_T') \to (X, \tau)$ for which the following diagram commutes:



Similarly we have a unique Q-continuous map $l_2: (T', \tau_T') \to (X, \tau)$ for which the following diagram commutes:



Then we have $\beta \circ t_2 = \bar{m} \circ l_2 \Rightarrow k \circ \beta \circ t_2 = k \circ \bar{m} \circ l_2 \Rightarrow k \circ \alpha \circ t_2 = k \circ \bar{m} \circ l_2$ and $\bar{m} \circ l_1 = \alpha \circ t_2 \Rightarrow k \circ \bar{m} \circ l_1 = k \circ \alpha \circ t_2$. Thus $k \circ \bar{m} \circ l_1 = k \circ \bar{m} \circ l_2$ and since $k \circ \bar{m}$ is one-one, $l_1 = l_2$. Let $l_1 = l_2 = l_0$. Thus the following diagram commutes:

$$(T', \tau_{T'}) \xrightarrow{l_0} (X, \tau) \xrightarrow{e} (l(X), \theta')$$

$$\downarrow t_2 \qquad \qquad \downarrow m \qquad \qquad \downarrow m$$

$$(T, \tau_T) \xrightarrow{\alpha} (E, \tau_E) \xrightarrow{\bar{e}} (W, \theta)$$

$$(5.21)$$

Now since the diagram 5.14 is a pullback complement diagram, with respect to the pullback diagram 5.18 and Q-continuous map $l_0: (T', \tau_{T'}) \to (X, \tau)$, there exists a unique Q-continuous map from (T, τ_T) to (E, τ_E) making the following diagram commutative

$$(T', \tau_{T'}) \xrightarrow{l_0} (X, \tau)$$

$$\downarrow_{t_2} \qquad \qquad \downarrow_{\bar{m}}$$

$$(T, \tau_T) \xrightarrow{\bar{e} \circ \alpha} \qquad \downarrow_{\bar{e}}$$

$$(W, \theta)$$

$$(5.22)$$

But here we have two *Q*-continuous maps $\alpha, \beta: (T, \tau_T) \to (E, \tau_E)$ making the diagram 5.22 commutative. So $\alpha = \beta$ and hence k is one-one. Therefore $\bar{m}: ((X,\tau),f) \to ((E,\tau_E),p\circ\bar{e})$ is an injective hull of $((X,\tau),f)$ in Q-**TOP** $/(Y,\sigma)$.

Acknowledgement

The first author Harshita Tiwari gratefully acknowledges the financial support in the form of INSPIRE fellowship (offer letter no. DST/INSPIRE Fellowship/2017/IF170407), given by Department of Science and Technology, New Delhi, India.

References

- [1] Adamek, J., Herrlich, H., and Strecker, G., "Abstract and Concrete Categories", Wiley-Interscience, 1990.
- [2] Adamek, J., Herrlich, H., Rosicky, J., and Tholen, W., Weak factorization systems and topological functors, Appl. Categ. Struct. 10 (2002), 237-249.
- [3] Adamek, J., Herrlich, H., Rosicky, J., and Tholen, W., *Injective hulls are not natural*, Appl. Categ. Struct. 48 (2002), 379-388.
- [4] Cagliari, F. and Mantovani, S., *Injective topological fibre spaces*, Topology Appl. 125 (2002), 525-532.
- [5] Cagliari, F. and Mantovani, S., *T*₀-reflection and injective hulls of fibre spaces, Topology Appl. 132 (2003), 129-138.
- [6] Cagliari, F. and Mantovani, S., *Injective hulls of T*₀*-topological fibre spaces*, Appl. Categ. Struct. 11 (2003), 377-390.
- [7] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [8] Goguen, J., The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973), 734-742.
- [9] Singh, S.K. and Srivastava, A.K., A characterization of the category *Q-TOP*, Fuzzy Sets Syst. 227 (2013), 46-50.
- [10] Singh, S.K. and Srivastava, A.K., On T₀-objects in Q-TOP, Ann. Fuzzy Math. Inform. 12 (2016), 597-604.
- [11] Solovyov, S.A., Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst. 159 (2008), 2567-2585.
- [12] Tholen, W., Exponentiable monomorphisms, Quaest. Math. 9 (1986), 443-458.
- [13] Tholen, W., Essential weak factorization systems, Contrib. Gen. Algebra 13 (2001), 321-333.
- [14] Wyler, O., *Injective spaces and essential extensions in TOP*, Gen. Topology Appl. 7 (1977), 247-249.

Harshita Tiwari Department of Mathematical Sciences, Indian Institute of Technology,

Banaras Hindu University, Varanasi-221005, India.

Email: harshitatiwari.rs.mat17@itbhu.ac.in

 $\textbf{\textit{Rekha Srivastava}} \ Department \ of \ Mathematical \ Sciences, \ Indian \ Institute \ of \ Technology,$

Banaras Hindu University, Varanasi-221005, India.

Email: rsrivastava.apm@itbhu.ac.in