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On some properties of the space of minimal
prime ideals of 𝐶𝑐 (𝑋)

Z. Keshtkar, R. Mohamadian∗, M. Namdari, and M. Zeinali

Communicated by Themba Dube

Abstract. In this article we consider some relations between the topological proper-
ties of the spaces 𝑋 and 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) with algebraic properties of 𝐶𝑐 (𝑋). We observe
that the compactness of 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is equivalent to the von-Neumann regularity
of 𝑞𝑐 (𝑋), the classical ring of quotients of 𝐶𝑐 (𝑋). Furthermore, we show that if
𝑋 is a strongly zero-dimensional space, then each contraction of a minimal prime
ideal of 𝐶 (𝑋) is a minimal prime ideal of 𝐶𝑐 (𝑋) and in this case 𝑀𝑖𝑛(𝐶 (𝑋)) and
𝑀𝑖𝑛(𝐶𝑐 (𝑋)) are homeomorphic spaces. We also observe that if 𝑋 is an 𝐹𝑐-space,
then 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact if and only if 𝑋 is countably basically disconnected if and
only if 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is homeomorphic with 𝛽0𝑋 . Finally, by introducing 𝑧◦𝑐-ideals,
countably cozero complemented spaces, we obtain some conditions on 𝑋 for which
𝑀𝑖𝑛(𝐶𝑐 (𝑋)) becomes compact, basically disconnected and extremally disconnected.
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1 Introduction

As usual all rings are commutative with unity and all topological spaces are
Hausdorff completely regular (i.e., Tychonoff) and𝐶 (𝑋) is a ring of all real valued
continuous functions on a space 𝑋 . We denote by 𝐶𝑐 (𝑋) the subring of 𝐶 (𝑋)
consisting of those functions with countable image. The subring 𝐶∗

𝑐 (𝑋) of 𝐶 (𝑋)
consists of bounded elements of 𝐶𝑐 (𝑋), i.e., 𝐶∗

𝑐 (𝑋) = 𝐶∗(𝑋) ∩ 𝐶𝑐 (𝑋). For more
results about 𝐶𝑐 (𝑋) and 𝐶∗

𝑐 (𝑋), the reader is referred to [5, 10, 11, 17, 20–23].
We recall that a zero-dimensional space is a Hausdorff space with a base con-

sisting of clopen sets. It is known that for any topological space 𝑋 , there exists a
zero-dimensional space 𝑌 in which 𝐶𝑐 (𝑋) � 𝐶𝑐 (𝑌 ), see [11]. Furthermore, 𝑋 is
called a strongly zero-dimensional space if each pair of disjoint zero-sets are con-
tained in disjoint clopen sets. 𝛽𝑋 is used for the Stone-𝐶̌ech compactification of
𝑋 , see [12]. Also, every zero-dimensional space 𝑋 has a unique zero-dimensional
compactification denoted by 𝛽0𝑋 , the Banaschewski compactification of 𝑋 , such
that each continuous function from 𝑋 into a compact and zero-dimensional space
𝑇 , has a continuous extension from 𝛽0𝑋 into 𝑇 . It is known that 𝛽𝑋 = 𝛽0𝑋 if and
only if 𝑋 is a strongly zero-dimensional space, for more results, see [5].

The prime spectrum of a ring 𝑅, which is denoted by 𝑆𝑝𝑒𝑐(𝑅), is a space
of prime ideals of 𝑅 with Zariski topology, for which the closed sets are the sets
𝑉 (𝐼) = {𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅) : 𝐼 ⊆ 𝑃} where 𝐼 is an ideal of 𝑅 and the open sets are
𝐷 (𝐼) = 𝑆𝑝𝑒𝑐(𝑅) \ 𝑉 (𝐼), where 𝐼 is an ideal of 𝑅. Also, 𝑀𝑖𝑛(𝑅) as a dense sub-
space of 𝑆𝑝𝑒𝑐(𝑅), is the space of minimal prime ideals of 𝑅. The space 𝑆𝑝𝑒𝑐(𝑅)
is a compact and 𝑇0-space whereas 𝑀𝑖𝑛(𝑅) is a Hausdorff and zero-dimensional
space but not necessarily compact, also the properties of 𝑀𝑖𝑛(𝐶 (𝑋)) are studied.
For more results about the space of prime ideals, see [7, 13, 19]. It is shown
that both 𝐶𝑐 (𝑋) and 𝐶∗

𝑐 (𝑋) are clean rings, see [5]. By a similar proof to that
of [13, Corollary 5.2], we observe that 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) and 𝑀𝑖𝑛(𝐶∗

𝑐 (𝑋)) are homeo-
morphic spaces.

A reduced ring 𝑅 satisfies the annihilator condition (or a.c.) if for each 𝑎, 𝑏 ∈ 𝑅,
there exists 𝑐 ∈ 𝑅 such that 𝐴𝑛𝑛(𝑐) = 𝐴𝑛𝑛(𝑎) ∩ 𝐴𝑛𝑛(𝑏). For each 𝑓 ∈ 𝐶𝑐 (𝑋), the
annihilator of 𝑓 is denoted by 𝐴𝑛𝑛𝑐 ( 𝑓 ). It is easy to show that𝐶𝑐 (𝑋) has a.c.. Fur-
thermore, a reduced ring 𝑅 satisfies countable annihilator condition (or c.a.c.) if for
every sequence {𝑟𝑛}𝑛∈N in 𝑅, there exists 𝑠 ∈ 𝑅 such that 𝐴𝑛𝑛(𝑠) = ∩𝑛∈N𝐴𝑛𝑛(𝑟𝑛).
𝐶 (𝑋) has c.a.c, see [13]. The set of all zero divisors of a ring 𝑅 is denoted by
𝑍𝑑 (𝑅). Also, 𝑅 has property 𝐴 if for every finitely generated ideal 𝐼 in 𝑅 such
that 𝐼 ⊆ 𝑍𝑑 (𝑅), we have 𝐴𝑛𝑛(𝐼) ≠ (0). The ring 𝐶𝐹 (𝑋), the subring of 𝐶𝑐 (𝑋)



On some Properties of Min(𝐶𝑐 (𝑋)) 87

consisting of those functions with finite image, has c.a.c. and property A, so its
classical ring of quotients is von-Neumann regular. Thus, 𝑀𝑖𝑛(𝐶𝐹 (𝑋)) is always
compact, see [15, Theorem B]. A ring 𝑅 is called a disconnected ring if it has a
nontrivial idempotent. If 𝑅 is a disconnected ring, there exists 𝑒 ∈ 𝑅 such that
𝑒2 = 𝑒 , 0 ≠ 𝑒 ≠ 1, so 𝑆𝑝𝑒𝑐(𝑅) = 𝐷 (𝑒) ∪ 𝐷 (1 − 𝑒) where 𝐷 (𝑒) ∩ 𝐷 (1 − 𝑒) = ∅.
The classical ring of quotients of 𝐶𝑐 (𝑋) is denoted by 𝑞𝑐 (𝑋) and some properties
of 𝑞𝑐 (𝑋) are studied; see also [6, 20, 21].

A space 𝑋 is a 𝑃-space (resp., 𝐶𝑃-space) if 𝐶 (𝑋) (resp., 𝐶𝑐 (𝑋)) is a von-
Neumann regular ring. Every 𝑃-space is a 𝐶𝑃-space, but the converse is not
necessarily true. For instance let 𝑋 = [0, 1] ∪ N, then 𝑋 is a 𝐶𝑃-space but not
a 𝑃-space. It is known that 𝑃-spaces and 𝐶𝑃-spaces coincide when 𝑋 is zero-
dimensional. For more results, see [11].

For each 𝑓 ∈ 𝐶𝑐 (𝑋), the zero-set (cozero-set) of 𝑓 is denoted by 𝑍 ( 𝑓 ) (𝑐𝑜𝑧( 𝑓 ))
and S( 𝑓 ) = cl(𝑐𝑜𝑧( 𝑓 )) is the support of 𝑓 . The set of all zero-sets of members
of 𝐶𝑐 (𝑋) is denoted by 𝑍𝑐 (𝑋). Also, 𝑍𝑐 (𝑋) is closed under countable intersec-
tion property. Furthermore, 𝑍𝑐 (𝑋) = 𝑍 (𝑋) if and only if 𝑋 is strongly zero-
dimensional, see [5, Proposition 2.4]. A space 𝑋 is an almost 𝑃-space if and only
if every nonempty zero-set has nonempty interior. It is shown that if 𝑋 is an almost
𝑃-space, then it is a basically disconnected space if and only if 𝑋 is a 𝑃-space,
equivalently 𝑀𝑖𝑛(𝐶 (𝑋)) is a compact space, see [1, Proposition 2.8].

We recall that an ideal 𝐼 in 𝐶 (𝑋) (resp., 𝐶𝑐 (𝑋)) is a 𝑧-ideal (resp., 𝑧𝑐-ideal) if
for each 𝑓 ∈ 𝐼, 𝑔 ∈ 𝐶 (𝑋) (resp., 𝑔 ∈ 𝐶𝑐 (𝑋)) and 𝑍 ( 𝑓 ) = 𝑍 (𝑔) we have 𝑔 ∈ 𝐼. If
𝐼 is a 𝑧-ideal, then 𝐼𝑐 = 𝐼 ∩ 𝐶𝑐 (𝑋) is a 𝑧𝑐-ideal. Also, if 𝐼 is a 𝑧𝑐-ideal and 𝑃 is a
prime ideal minimal over 𝐼, i.e., 𝑃 ∈ 𝑀𝑖𝑛(𝐼) (the set prime ideals minimal over 𝐼),
then 𝑃 is a 𝑧𝑐-ideal. For more results of 𝑧𝑐-ideals, see [11]. Similar to the concept
of 𝑀𝑝 in 𝐶 (𝑋), the fixed maximal ideals in 𝐶𝑐 (𝑋) is denoted by 𝑀𝑐𝑝 (𝑝 ∈ 𝑋).
By [5] we have:

𝑀𝑐𝑝 = { 𝑓 ∈ 𝐶𝑐 (𝑋) : 𝑝 ∈ 𝑍 ( 𝑓 )} = 𝑀𝑝 ∩ 𝐶𝑐 (𝑋).

Also, if 𝑋 is a zero-dimensional space, the set of all maximal ideals in 𝐶𝑐 (𝑋) is
denoted by 𝑀 𝑝

𝑐 (𝑝 ∈ 𝛽0𝑋), which is defined as follows:

𝑀 𝑝
𝑐 = { 𝑓 ∈ 𝐶𝑐 (𝑋) : 𝑝 ∈ cl𝛽0𝑋𝑍 ( 𝑓 )}.

Moreover, 𝑀 𝑝
𝑐 = 𝑀𝑐𝑝 if 𝑝 ∈ 𝑋 . For more details see [5].

As in𝐶 (𝑋), similar to the concept of the ideal𝑂 𝑝, 𝑝 ∈ 𝛽𝑋 , for a zero-dimensional
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space 𝑋 , we have the ideal 𝑂 𝑝
𝑐 in 𝐶𝑐 (𝑋):

𝑂 𝑝
𝑐 = { 𝑓 ∈ 𝐶𝑐 (𝑋) : 𝑝 ∈ int𝛽0𝑋cl𝛽0𝑋𝑍 ( 𝑓 )}, (𝑝 ∈ 𝛽0𝑋).

Furthermore, 𝑂 𝑝
𝑐 = 𝑂𝑐𝑝 = { 𝑓 ∈ 𝐶𝑐 (𝑋) : 𝑝 ∈ 𝑖𝑛𝑡𝑋𝑍 ( 𝑓 )} if 𝑝 ∈ 𝑋 . For a

zero-dimensional space 𝑋 , the ideal 𝑂 𝑝
𝑐 is a 𝑧𝑐-ideal. Moreover, if 𝑋 is a strongly

zero-dimensional space, then for each 𝑝 ∈ 𝛽0𝑋 we have 𝑂 𝑝
𝑐 = 𝑂 𝑝 ∩ 𝐶𝑐 (𝑋). We

recall from [5] that for every zero-dimensional space 𝑋 , the spaces 𝛽0𝑋 and𝔐𝑐 (𝑋)
are homeomorphic in which 𝔐𝑐 (𝑋) = {𝑀 𝑝

𝑐 : 𝑝 ∈ 𝛽0𝑋}, with Zariski topology.
It is known that every prime ideal 𝑃 in 𝐶𝑐 (𝑋) contains 𝑂 𝑝

𝑐 for a unique 𝑝 ∈ 𝛽0𝑋 ,
and 𝑀 𝑝

𝑐 is the only maximal ideal containing 𝑃, see [5, Lemma 4.11]. Similar
to the definition of 𝐹-spaces that is considered in [12], a zero-dimensional space
𝑋 is said to be an 𝐹𝑐-space if 𝑂 𝑝

𝑐 is a prime ideal in 𝐶𝑐 (𝑋), for each 𝑝 ∈ 𝛽0𝑋 .
Every 𝐹-space is an 𝐹𝑐-space whereas R is an 𝐹𝑐-space but it is not an 𝐹-space.
However the converse is true if 𝑋 is strongly zero-dimensional. Furthermore, 𝑋 is
an 𝐹𝑐-space if and only if 𝛽0𝑋 is an 𝐹𝑐-space. For more results about 𝐹𝑐-spaces,
see [5].

We recall that 𝑋 is a basically disconnected (resp., extremally disconnected)
space if every cozero-set (resp., open set) has an open closure. Every basically
disconnected space is strongly zero-dimensional, see [12, 14O.3]. Also, a zero-
dimensional space 𝑋 is extremally disconnected if and only if 𝛽0𝑋 is extremally
disconnected, see [17]. It is shown that every basically disconnected space is an
𝐹𝑐-space. The converse is not generally true; for example 𝛽N \ N is an 𝐹𝑐-space
which is not basically disconnected, see [5, Remark 6.7].

In this paper, we consider some topological properties of 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) as a
dense subspace of 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)). In Section 2, we consider some special prop-
erties of 𝑀𝑖𝑛(𝐶𝑐 (𝑋)), also its relations with algebraic properties of 𝐶𝑐 (𝑋) and
topological properties of 𝑋 . The properties of 𝑀𝑖𝑛(𝐶 (𝑋)) is studied in some arti-
cles, see [7, 13]. We show that 𝑀𝑖𝑛(𝐶 (𝑋)) and 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) are homeomorphic
when 𝑋 is a strongly zero-dimensional space. It is proved that 𝑋 is an 𝐹𝑐-space
and 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact if and only if 𝑋 is a 𝑐-basically disconnected space.
Section 3 is devoted to the compactness of the space 𝑀𝑖𝑛(𝐶𝑐 (𝑋)). We introduce
𝑧◦𝑐-ideals in 𝐶𝑐 (𝑋) and observe that 𝑋 is strongly zero-dimensional if and only if
every prime 𝑧◦𝑐-ideal in 𝐶𝑐 (𝑋) is a contraction of a unique 𝑧◦-ideal of 𝐶 (𝑋). Also,
we show that whenever 𝑋 is an almost 𝐶𝑃-space then 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is a compact
space if and only if every prime 𝑧◦𝑐-ideal in 𝐶𝑐 (𝑋) is a minimal prime ideal. We
introduce some special spaces 𝑋 for which 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) becomes a compact, ba-
sically disconnected and extremally disconnected space. Similar to the concept of
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cozero complemented spaces or 𝑐.𝑐-spaces which is first introduced in [14], we
introduce countably cozero complemented spaces or 𝑐.𝑐.𝑐-spaces which is equiva-
lent to the compactness of 𝑀𝑖𝑛(𝐶𝑐 (𝑋)). We compare 𝑐.𝑐-spaces and 𝑐.𝑐.𝑐-spaces
and give some examples. Also, according to the definition of perfectly normal
spaces in which 𝑀𝑖𝑛(𝐶 (𝑋)) is compact and extremally disconnected, see [13], we
introduce countably perfectly normal spaces for which 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact
and extremally disconnected.

2 The space 𝑀𝑖𝑛(𝐶𝑐 (𝑋))
For each 𝑓 ∈ 𝐶𝑐 (𝑋), the set 𝑉𝑐 ( 𝑓 ) = 𝑉𝑐 (( 𝑓 )) = {𝑃 ∈ 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)) : 𝑓 ∈
𝑃} (resp., 𝐷𝑐 ( 𝑓 ) = 𝐷𝑐 (( 𝑓 )) = {𝑃 ∈ 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)) : 𝑓 ∉ 𝑃}) contains closed
(resp., open) set for the Zariski topology on 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)). We denote 𝑉𝑐𝑚( 𝑓 ) =
𝑉𝑐 ( 𝑓 ) ∩ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) (resp., 𝐷𝑐𝑚( 𝑓 ) = 𝐷𝑐 ( 𝑓 ) ∩ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) and 𝑉𝑀 ( 𝑓 ) =
𝑉𝑐 ( 𝑓 ) ∩𝔐𝑐 (𝑋) (resp., 𝐷𝑀 ( 𝑓 ) = 𝐷𝑐 ( 𝑓 ) ∩𝔐𝑐 (𝑋)). Clearly, the set {𝐷𝑐𝑚( 𝑓 ) :
𝑓 ∈ 𝐶𝑐 (𝑋)} (resp., {𝐷𝑀 ( 𝑓 ) : 𝑓 ∈ 𝐶𝑐 (𝑋)}) is also a base for open subsets of
the subspace 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) (resp., 𝔐𝑐 (𝑋)) of 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)). Since 𝐶𝑐 (𝑋) is a
clean ring, then 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)) is strongly zero-dimensional, see [5, 18]. Also,
similar to [12, 1B], ‌𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)) is a disconnected space if and only if 𝐶𝑐 (𝑋) is a
disconnected ring (has a nontrivial idempotent) if and only if 𝑋 is a disconnected
space.

Proposition 2.1. Let 𝑋 is a 𝐶𝑃-space, then for each 𝑓 , 𝑔 ∈ 𝐶𝑐 (𝑋), 𝑍 ( 𝑓 ) = 𝑍 (𝑔)
if and only if 𝑉𝑐𝑚( 𝑓 ) = 𝑉𝑐𝑚(𝑔).

Proof. It is clear.

Proposition 2.2. A space 𝑋 is a 𝐶𝑃-space if and only if for each 𝑓 ∈ 𝐶𝑐 (𝑋),
𝑉𝑐 ( 𝑓 ) is open.

Proof. First let 𝑍 ( 𝑓 ) = int𝑋𝑍 ( 𝑓 ), so 𝑍 ( 𝑓 2) = int𝑋𝑍 ( 𝑓 ). By [12, Exercise 1D.1],
there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that 𝑓 = 𝑓 2𝑔, so the set 𝐷𝑐 ( 𝑓 ) = 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)) \
𝐷𝑐 (1 − 𝑓 𝑔) is closed. Conversely, let 𝑝 ∈ 𝑍 ( 𝑓 ), so we have 𝑓 ∈ 𝑀𝑐𝑝, i.e.,
𝑀𝑐𝑝 ∉ 𝐷𝑐 ( 𝑓 ). Since 𝐷𝑐 ( 𝑓 ) is a closed set, there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that:

𝑀𝑐𝑝 ∈ 𝐷𝑐 (𝑔) ⊆ 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)) \ 𝐷𝑐 ( 𝑓 ) = 𝑉𝑐 ( 𝑓 ).

Thus, 𝑝 ∈ 𝑐𝑜𝑧(𝑔) ⊆ 𝑍 ( 𝑓 ), so 𝑝 ∈ int𝑋𝑍 ( 𝑓 ).
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Definition 2.3. A space 𝑋 is an almost 𝐶𝑃-space if for each nonempty 𝑍 ( 𝑓 ) ∈
𝑍𝑐 (𝑋), we have int𝑋𝑍 ( 𝑓 ) ≠ ∅ or equivalently, 𝑍 ( 𝑓 ) is a regular closed set, that is
𝑍 ( 𝑓 ) = cl𝑋int𝑋𝑍 ( 𝑓 ).

Clearly, every almost 𝑃-space is an almost 𝐶𝑃-space. The converse is true if 𝑋
is zero-dimensional. The space R of real numbers with usual topology is an almost
𝐶𝑃-space but not almost 𝑃-space.

Proposition 2.4. Let 𝑋 be a zero-dimensional space and 𝑓 ∈ 𝐶𝑐 (𝑋). Then
int𝑋𝑍 ( 𝑓 ) ≠ ∅ if and only if 𝑉𝑐 ( 𝑓 ) has a non-empty interior.

Proof. Let 𝑥 ∈ int𝑋𝑍 ( 𝑓 ). Then 𝑓 ∈ 𝑂𝑐𝑥 and hence there is 𝑔 ∉ 𝑀𝑐𝑥 such that
𝑓 𝑔 = 0 by Lemma 4.11 in [5]. Now 𝐷𝑐 (𝑔) ⊆ 𝑉𝑐 ( 𝑓 ) for if 𝑄 ∈ 𝐷𝑐 (𝑔), then
𝑔 ∉ 𝑄 implies that 𝑓 ∈ 𝑄, i.e., 𝑄 ∈ 𝑉𝑐 ( 𝑓 ). This means that 𝑉𝑐 ( 𝑓 ) has a non-
empty interior. For the converse, let int𝑋𝑉𝑐 ( 𝑓 ) ≠ ∅ and 𝑃 ∈ int𝑋𝑉𝑐 ( 𝑓 ). Then
𝑃 ∈ 𝐷𝑐 (𝑔) ⊆ 𝑉𝑐 ( 𝑓 ) for some 𝑔 ∈ 𝐶𝑐 (𝑋). Take a minimal prime ideal 𝑃◦ contained
in 𝑃. Thus 𝑃◦ ∈ 𝐷𝑐 (𝑔) ⊆ 𝑉𝑐 ( 𝑓 ) implies that 𝑓 ∈ 𝑃◦, whence 𝑓 is a zero-divisor
and hence int𝑋𝑍 ( 𝑓 ) ≠ ∅.

Corollary 2.5. Let 𝑋 be a zero-dimensional space. Then every member of the base
𝑍𝑐 (𝑋) of 𝑋 is regular closed if and only if every member of the base {𝑉𝑐 ( 𝑓 ) : 𝑓 ∈
𝐶𝑐 (𝑋)} of Spec(𝑋) is.

Proposition 2.6. Let 𝑋 be a strongly zero-dimensional space. If 𝑃 ∈ 𝑀𝑖𝑛(𝐶 (𝑋)),
then 𝑃 ∩ 𝐶𝑐 (𝑋) ∈ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)).
Proof. Clearly, 𝑃 ∩ 𝐶𝑐 (𝑋) ∈ 𝑆𝑝𝑒𝑐(𝐶𝑐 (𝑋)). Let 𝑓 ∈ 𝑃 ∩ 𝐶𝑐 (𝑋), we show there
exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that 𝑔 ∉ 𝑃∩𝐶𝑐 (𝑋), 𝑓 𝑔 = 0. Since 𝑓 ∈ 𝑃, 𝑃 ∈ 𝑀𝑖𝑛(𝐶 (𝑋)),
there exists ℎ ∈ 𝐶 (𝑋) such that ℎ ∉ 𝑃, 𝑓 ℎ = 0. Since 𝑋 is strongly zero-
dimensional, there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that 𝑍 (𝑔) = 𝑍 (ℎ), by Proposition 2.4 in
[5]. Clearly, 𝑓 𝑔 = 0, 𝑔 ∉ 𝑃 ∩ 𝐶𝑐 (𝑋) and we are done.

Remark 2.7. The converse of Proposition 2.5 is not necessarily true, in the sense
that if the contraction of each minimal prime ideal of 𝐶 (𝑋) to 𝐶𝑐 (𝑋) is mini-
mal prime, then 𝑋 is not necessarily a strongly zero-dimensional (even a zero-
dimentional) space. For example, let 𝑋 = R and 𝑃 ∈ 𝑀𝑖𝑛(𝐶 (R)). Since R is
connected, then 𝐶𝑐 (R) = R, so 𝑃 ∩ 𝐶𝑐 (R) = {0}. Moreover, 𝑀𝑖𝑛(𝐶𝑐 (R)) =
𝑀𝑖𝑛(R) = {0}. Thus, 𝑃 ∈ 𝑀𝑖𝑛(𝐶 (R)) and 𝑃 ∩𝐶𝑐 (R) ∈ 𝑀𝑖𝑛(𝐶𝑐 (R)) but R is not
a strongly zero-dimensional space, see [8].
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Let us note that if 𝑄 ∈ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)), then there exists 𝑃𝑄 ∈ 𝑀𝑖𝑛(𝐶 (𝑋)) such
that 𝑄 = 𝑃𝑄 ∩ 𝐶𝑐 (𝑋), see [11, comment preceding Corollarly 3.4]. Furthermore,
if 𝑋 is strongly zero-dimensional and 𝑄 ∈ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)), then there is a unique
𝑃𝑄 ∈ 𝑀𝑖𝑛(𝐶 (𝑋)) such that 𝑄 = 𝑃𝑄 ∩𝐶𝑐 (𝑋), see [16, Theorem 5.19]. Moreover,
an ideal 𝐽 in 𝐶𝑐 (𝑋) is a 𝑧𝑐-ideal if and only if it is a contraction of a 𝑧-ideal in
𝐶 (𝑋), see [5, Proposition 4.3].

In the next theorem using the argument of Remark 2.7, we show that the
spaces 𝑀𝑖𝑛(𝐶 (𝑋)) and 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) are homeomorphic, in case 𝑋 is strongly
zero-dimensional.

Theorem 2.8. Let 𝑋 be a strongly zero-dimensional space, then 𝑀𝑖𝑛(𝐶 (𝑋)) and
𝑀𝑖𝑛(𝐶𝑐 (𝑋)) are homeomorphic spaces.

Proof. We define the mapping 𝜑 : 𝑀𝑖𝑛(𝐶 (𝑋)) −→ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) where 𝜑(𝑃) =
𝑃 ∩𝐶𝑐 (𝑋). We show 𝜑 is a homeomorphism. Obviously, 𝜑 is a bijective function.
Also, 𝜑 is open. To see this let 𝐷𝑚( 𝑓 ) be a member of the base of 𝑀𝑖𝑛(𝐶 (𝑋)),
where 𝑓 ∈ 𝐶 (𝑋). We show that 𝜑(𝐷𝑚( 𝑓 )) is open in 𝑀𝑖𝑛(𝐶𝑐 (𝑋)). Since
𝑋 is strongly zero-dimensional, there is 𝑔 ∈ 𝐶𝑐 (𝑋) such that 𝑍 ( 𝑓 ) = 𝑍 (𝑔) by
Proposition 2.4 in [6] and it is enough to prove that 𝜑(𝐷𝑚( 𝑓 )) = 𝐷𝑐𝑚(𝑔). First
suppose that 𝑃 ∈ 𝜑(𝐷𝑚( 𝑓 )). Then 𝑃 = 𝜑(𝑄) for some 𝑄 ∈ 𝐷𝑚( 𝑓 ). Hence
𝑓 ∉ 𝑄 and since 𝑍 (𝑔) = 𝑍 ( 𝑓 ) and 𝑄 is a 𝑧-ideal, we have 𝑔 ∉ 𝑄. This follows
that 𝑄 ∩ 𝐶𝑐 (𝑋) ∈ 𝐷𝑐𝑚(𝑔). Thus 𝑃 = 𝜑(𝑄) = 𝑄 ∩ 𝐶𝑐 (𝑋) ∈ 𝐷𝑐𝑚(𝑔) implies
that 𝜑(𝐷𝑚( 𝑓 )) ⊆ 𝐷𝑐𝑚(𝑔). Next suppose that 𝑇 ∈ 𝐷𝑐𝑚(𝑔). Then there exists
𝑃 ∈ 𝑀𝑖𝑛(𝐶 (𝑋)) such that 𝑇 = 𝑃 ∩ 𝐶𝑐 (𝑋). Since 𝑔 ∉ 𝑇 we have 𝑔 ∉ 𝑃. But 𝑃
is a 𝑧-ideal and 𝑍 ( 𝑓 ) = 𝑍 (𝑔), so 𝑓 ∉ 𝑃 and this follows that 𝑃 ∈ 𝐷𝑚( 𝑓 ). Now
𝑇 = 𝑃 ∩ 𝐶𝑐 (𝑋) = 𝜑(𝑃) ∈ 𝜑(𝐷𝑚( 𝑓 )), i.e., 𝐷𝑐𝑚(𝑔) ⊆ 𝜑(𝐷𝑚( 𝑓 )) and we are
done.

The following proposition and its Corollary 2.10 are immediate consequence
of Lemma 5.7 and Corollary 5.8 in [5] which are counterparts of the fact that
𝑀𝑖𝑛(𝐶 (𝑋)) = {𝑂 𝑝 : 𝑝 ∈ 𝛽𝑋}, where 𝑋 is a completely regular Hausdorff 𝐹-
space.

Proposition 2.9. Let 𝑋 be a zero-dimensional 𝐹𝑐-space, then

𝑀𝑖𝑛(𝐶𝑐 (𝑋)) = {𝑂 𝑝
𝑐 : 𝑝 ∈ 𝛽0𝑋}.

Corollary 2.10. Let 𝑋 be a compact 𝐹𝑐-space, then

𝑀𝑖𝑛(𝐶𝑐 (𝑋)) = {𝑂𝑐𝑝 : 𝑝 ∈ 𝑋}.
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From [17], a space 𝑋 is countably basically disconnected or briefly 𝑐-basically
disconnected if for each 𝑓 ∈ 𝐶𝑐 (𝑋), int𝑋𝑍 ( 𝑓 ) is closed. Every basically discon-
nected space is 𝑐-basically disconnected. The converse is not necessarily true, for
example the space of real numbers with usual topology is a 𝑐-basically discon-
nected space which is not basically disconnected. In view of [17] every 𝑐-basically
disconnected space is an 𝐹𝑐-space. Furthermore, if 𝑋 is a 𝑐-basically disconnected
and strongly zero-dimensional space, then 𝑋 is basically disconnected. Moreover,
if 𝑋 is a zero-dimensional space, then 𝑋 is 𝑐-basically disconnected if and only if
𝛽0𝑋 is 𝑐-basically disconnected, see [17].

Remark 2.11. Let 𝑋 be a zero-dimensional space. If 𝑃 ∈ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)), then there
exists a unique 𝑝 ∈ 𝛽0𝑋 for which𝑂 𝑝

𝑐 ⊆ 𝑃 ⊆ 𝑀 𝑝
𝑐 , see [5, Lemma 4.11]. Thus, the

mapping 𝜑 from 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) into 𝛽0𝑋 defined by 𝜑(𝑃) = 𝑝 is well-defined.
The next theorem is the counterpart of [13, Theorem 5.3].

Theorem 2.12. Let 𝑋 be a zero-dimensional space and 𝜑 be a mapping from
𝑀𝑖𝑛(𝐶𝑐 (𝑋)) into 𝛽0𝑋 by 𝜑(𝑃) = 𝑝, where 𝑃 is contained in 𝑀 𝑝

𝑐 . Then the
following statements hold.

(1) 𝜑 is a continuous mapping of 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) onto 𝛽0𝑋 .

(2) 𝜑 is one-to-one if and only if 𝑂 𝑝
𝑐 is a prime ideal for each 𝑝 ∈ 𝛽0𝑋 .

(3) 𝜑 is a homeomorphism if and only if 𝑋 is 𝑐-basically disconnected.

(4) 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact and 𝑋 is an 𝐹𝑐-space if and only if 𝑋 is a 𝑐-basically
disconnected space.

Proof. (1) Since 𝛽0𝑋 is zero-dimensional, it has a base B consisting clopen sets.
Let 𝑉 ∈ B, and define 𝐹 : 𝛽0𝑋 −→ R, such that 𝐹 (𝛽0𝑋 \ 𝑉) = 0, 𝐹 (𝑉) = 1.
Put 𝑓 = 𝐹 |𝑋. Clearly, 𝐹 ∈ 𝐶𝑐 (𝛽0𝑋), and therefore 𝑓 ∈ 𝐶𝑐 (𝑋). We show that
𝜑−1(𝑉) = 𝐷𝑐𝑚( 𝑓 ). To see this let 𝑃 ∈ 𝜑−1(𝑉), so 𝜑(𝑃) = 𝑝 ∈ 𝑉 . Since
𝑉 ∩ 𝑍 ( 𝑓 ) = ∅, we infer that 𝑝 ∉ cl𝛽0𝑋𝑍 ( 𝑓 ), so 𝑝 ∉ 𝑀 𝑝

𝑐 . Therefore 𝑝 ∉ 𝑃, i.e.,
𝑓 ∉ 𝑃 which implies that 𝑃 ∈ 𝐷𝑐𝑚( 𝑓 ). Hence 𝜑−1(𝑉) ⊆ 𝐷𝑐𝑚( 𝑓 ). Conversely,
let 𝑄 ∈ 𝐷𝑐𝑚( 𝑓 ), hence 𝑓 ∉ 𝑄. On the other hand we have 𝑂𝑞𝑐 ⊆ 𝑄 ⊆ 𝑀𝑞

𝑐 ,
for some 𝑞 ∈ 𝛽0𝑋 . Hence 𝑓 ∉ 𝑂𝑞𝑐 , i.e., 𝑞 ∉ int𝛽0𝑋cl𝛽0𝑋𝑍 ( 𝑓 ). It is easy to
see that 𝛽0𝑋 \ 𝑉 ⊆ cl𝛽0𝑋𝑍 ( 𝑓 ) and consequently, 𝛽0𝑋 \ 𝑉 ⊆ int𝛽0𝑋cl𝛽0𝑋𝑍 ( 𝑓 ).
Therefore 𝑞 ∉ 𝛽0𝑋 \ 𝑉 , i.e., 𝑞 ∈ 𝑉 . But we have 𝜑(𝑄) = 𝑞, so 𝑄 ∈ 𝜑−1(𝑉);
therefore 𝐷𝑐𝑚( 𝑓 ) ⊆ 𝜑−1(𝑉). Hence 𝜑 is continuous. To see this 𝜑 is onto, let
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𝑃 ∈ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)). Clearly, 𝑀 𝑝
𝑐 contains a minimal prime ideal 𝑃 ∈ 𝑀𝑖𝑛(𝐶𝑐 (𝑋)).

Hence 𝜑(𝑃) = 𝑝, and we are done.
(2) Let 𝜑 be one-to-one and 𝑝 ∈ 𝛽0𝑋 . If 𝑃1, 𝑃2 are two minimal prime ideals

in 𝐶𝑐 (𝑋) containing 𝑂 𝑝
𝑐 , then 𝜑(𝑃1) = 𝜑(𝑃2) = 𝑝. Therefore 𝑃1 = 𝑃2. Now,

since 𝑂 𝑝
𝑐 is the intersection of all minimal prime ideals of 𝐶𝑐 (𝑋) containing 𝑂 𝑝

𝑐 ,
we infer that 𝑂 𝑝

𝑐 is prime. Conversely, if 𝑂 𝑝
𝑐 is prime for each 𝑝 ∈ 𝛽0𝑋 , then 𝑋 is

an 𝐹𝑐-space and by Proposition 2.9 we have 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) =
{
𝑂 𝑝
𝑐 |𝑝 ∈ 𝛽0𝑋

}
, and

this shows that 𝜑 is one-to-one.
(3) Let 𝜑 be a homeomorphism. It is sufficient to show that 𝛽0𝑋 is 𝑐-basically

disconnected. To see this let 𝐹 ∈ 𝐶𝑐 (𝛽0𝑋) and 𝑓 = 𝐹 |𝑋. Since 𝜑 is one-to-
one, by part (2) and Proposition 2.9, we have 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) =

{
𝑂 𝑝
𝑐 |𝑝 ∈ 𝛽0𝑋

}
, and

𝜑(𝑉𝑐𝑚( 𝑓 )) = {𝜑(𝑃) |𝑃 ∈ 𝑉𝑐𝑚( 𝑓 )} =
{
𝑝 ∈ 𝛽0𝑋 | 𝑓 ∈ 𝑂 𝑝

𝑐

}
= int𝛽0𝑋cl𝛽0𝑋𝑍 ( 𝑓 ). But

by [17, Lemma 2.3] we have int𝛽0𝑋cl𝛽0𝑋𝑍 ( 𝑓 ) = int𝛽0𝑋𝑍 (𝐹). Hence 𝜑 (𝑉𝑐𝑚( 𝑓 )) =
int𝛽0𝑋𝑍 (𝐹). Since 𝑉𝑐𝑚( 𝑓 ) is closed in 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) and 𝜑 is homeomorphism,
we infer that int𝛽0𝑋𝑍 (𝐹) is closed in 𝛽0𝑋 , which means that 𝛽0𝑋 is 𝑐-basically
disconnected. Conversely, by part (1) 𝜑 is continuous and since 𝑋 is 𝑐-basically
disconnected, it is an 𝐹𝑐-space and hence 𝜑 is one-to-one, by part (2). Now
let 𝑓 ∈ 𝐶𝑐 (𝑋). By [17, Lemma 2.3], there exists 𝐹 ∈ 𝐶𝑐 (𝛽0𝑋) such that
int𝛽0𝑋cl𝛽0𝑋𝑍 ( 𝑓 ) = int𝛽0𝑋𝑍 (𝐹), hence 𝜑 (𝑉𝑐𝑚( 𝑓 )) = int𝛽0𝑋𝑍 (𝐹). Since 𝑋 is
𝑐-basically disconnected, we infer that 𝛽0𝑋 is so, and consequently 𝜑 (𝑉𝑐𝑚( 𝑓 )) =
int𝛽0𝑋𝑍 (𝐹) is closed in 𝛽0𝑋 . This means that 𝜑 is closed and it is a homeomor-
phism.

(4) Let 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) be compact and 𝑋 be an 𝐹𝑐-space. Then by (2) 𝜑 is
one-to-one. Hence 𝜑 is a continuous one-one mapping from the compact space
𝑀𝑖𝑛(𝐶𝑐 (𝑋)) onto 𝛽0𝑋 . Therefore 𝜑−1 is continuous. This means that 𝜑 is a
homeomorphism and by (3), 𝑋 is a 𝑐-basically disconnected space. Conversely, if 𝑋
is 𝑐-basically disconnected space, then 𝑋 is an 𝐹𝑐-space and 𝜑 is a homeomorphism
by (3). This implies that 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact, for 𝛽0𝑋 is compact.

Using Theorem 2.12, if we apply the proof of [13, Corolary 5.5] word for word, we
obtain the following result.

Corollary 2.13. Let 𝑋 be a zero-dimensional space. Then the space 𝑀𝑖𝑛(𝐶𝑐 (𝑋))
is compact if and only if 𝑋 is c.c.c. space ( a space 𝑋 such that for each 𝑓 ∈ 𝐶𝑐 (𝑋),
there is 𝑔 ∈ 𝐶𝑐 (𝑋) with 𝑍 ( 𝑓 ) ∪ 𝑍 (𝑔) = 𝑋 and int𝑋𝑍 ( 𝑓 ) ∩ int𝑋𝑍 (𝑔) = ∅).

Example 2.14. The space 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is not always compact. For instance using
Theorem 2.12 and [12, 6M], the space 𝑀𝑖𝑛(𝐶𝑐 (𝛽N \ N)) is not compact, while
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𝑀𝑖𝑛(𝐶𝑐 (𝛽N)) is a compact space.

3 Spaces 𝑋 for which 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact

We recall that a proper ideal 𝐼 in a ring 𝑅 is a 𝑧◦-ideal if for each 𝑎 ∈ 𝐼, we have
𝑃𝑎 ⊆ 𝐼 in which 𝑃𝑎 =

⋂{𝑃 : 𝑃 ∈ 𝑉 (𝑎)}. Furthermore, whenever 𝑎 is a zero
divisor, then 𝑃𝑎 is a proper 𝑧◦-ideal that is called a basic 𝑧◦-ideal. We denote 𝑃𝑐𝑓
as a basic 𝑧◦𝑐-ideal in 𝐶𝑐 (𝑋) for each 𝑓 ∈ 𝐶𝑐 (𝑋). For more details of 𝑧◦-ideals in
𝐶 (𝑋), see [3, 4].

Definition 3.1. A proper ideal 𝐼 in 𝐶𝑐 (𝑋) is called a 𝑧◦𝑐-ideal if for each 𝑓 ∈ 𝐼, we
have 𝑃𝑐𝑓 ⊆ 𝐼.

Theorem 3.2. Let 𝑋 be a zero-dimensional almost 𝐶𝑃-space. The following
statements are equivalent.

(1) 𝑋 is 𝑐-basically disconnected.
(2) 𝑋 is a 𝐶𝑃-space.
(3) 𝑞𝑐 (𝑋) is a von-Neumann regular ring.
(4) 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is a compact space.
(5) Every prime 𝑧◦𝑐-ideal in 𝐶𝑐 (𝑋) is a minimal prime ideal.
(6) Every prime 𝑧𝑐-ideal in 𝐶𝑐 (𝑋) is a minimal prime ideal.

Proof. (1) =⇒ (2) The proof is evident.
(2)=⇒ (3) Since 𝑋 is a 𝐶𝑃-space, then 𝐶𝑐 (𝑋) is a von-Neumann regular ring, so
𝑞𝑐 (𝑋) is a von-Neumann regular ring.
(3)=⇒ (4) By [15, Theorem B] , 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact.
(4) =⇒ (1) By Corollary 2.13, for each 𝑓 ∈ 𝐶𝑐 (𝑋), there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such
that 𝑍 ( 𝑓 ) ∪ 𝑍 (𝑔) = 𝑋 and int𝑋 (𝑍 ( 𝑓 ) ∩ 𝑍 (𝑔)) = ∅. Since 𝑋 is an almost 𝐶𝑃-
space, we have 𝑍 ( 𝑓 ) ∩ 𝑍 (𝑔) = ∅. Consequently, 𝑍 ( 𝑓 ) = 𝑋 \ 𝑍 (𝑔) is open and so
int𝑋𝑍 ( 𝑓 ) = 𝑍 ( 𝑓 ) is closed, i.e., 𝑋 is 𝑐-basically disconnected.
(3) ⇐⇒ (5) It is clear by [4, Proposition 1.26].
(3) ⇐⇒ (6) It is evident by [4, Proposition 1.26].

Proposition 3.3. Let 𝑋 be a zero-dimensional 𝐹𝑐-space. The following statements
are equivalent.
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(1) 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is a compact space.
(2) 𝑋 is 𝑐-basically disconnected.
(3) 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) and 𝛽0𝑋 are homeomorphic.
(4) 𝑞𝑐 (𝑋) is a von-Neumann regular ring.
(5) Every prime 𝑧◦𝑐-ideal in 𝐶𝑐 (𝑋) is a minimal prime ideal.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) It is valid by using Theorem 2.12.
(1)⇐⇒ (4) By [15, Theorem B].
(4) ⇐⇒(5) Using [4, Proposition 1.26] it is evident.

By [14], we recall that 𝑋 is a cozero complemented space or briefly 𝑐.𝑐-space
if for each 𝑓 ∈ 𝐶 (𝑋), there exists 𝑔 ∈ 𝐶 (𝑋) such that the union of their cozero-
sets is dense and intersection of their cozero-sets is empty. It is shown in [13]
that 𝑋 is a 𝑐.𝑐-space if and only if 𝑀𝑖𝑛(𝐶 (𝑋)) is a compact space. 𝑋 is called
a perfectly normal space if 𝑋 is a normal space and every closed subset of 𝑋 is
a 𝐺 𝛿-set (equivalently, every closed subset is a zero-set). Also, 𝑋 is a perfectly
normal space if and only if for every disjoint closed sets 𝐴 and 𝐵 in 𝑋 , there exists
𝑓 ∈ 𝐶 (𝑋) such that 𝐴 = 𝑓 −1({0}), 𝐵 = 𝑓 −1({1}), see [8].

Definition 3.4. A subset A of a space 𝑋 is called a 𝐶𝑃-set (resp. almost 𝐶𝑃-set)
of 𝑋 if whenever A ⊆ 𝑍 ( 𝑓 ) for some 𝑓 ∈ 𝐶𝑐 (𝑋), then A ⊆ 𝑖𝑛𝑡𝑋𝑍 ( 𝑓 ) (resp.
A ⊆ 𝑐𝑙𝑋𝑖𝑛𝑡𝑋𝑍 ( 𝑓 )). If {𝑝} is a 𝐶𝑃-set (resp. almost 𝐶𝑃-set), then 𝑝 is called a
𝐶𝑃-point (resp. almost 𝐶𝑃-point). Similar to [12, 4L], if 𝑀𝑐𝑝 = 𝑂𝑐𝑝 for 𝑝 ∈ 𝑋 ,
then 𝑝 is a 𝐶𝑃-point of 𝑋 . Thus, 𝑋 is a 𝐶𝑃-space if and only if every point is a
𝐶𝑃-point. Also, if every point of 𝑋 is an almost 𝐶𝑃-point, then 𝑋 is an almost
𝐶𝑃-space.

Lemma 3.5. If 𝑋 is a 𝑐.𝑐.𝑐-space and 𝑝 is an almost𝐶𝑃-point, then 𝑝 is a𝐶𝑃-point
of 𝑋 .

Proof. Let 𝑝 ∈ 𝑍 ( 𝑓 ) for some 𝑓 ∈ 𝐶𝑐 (𝑋). Since 𝑋 is a 𝑐.𝑐.𝑐-space, there
exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that 𝑓 𝑔 = 0 and int𝑋𝑍 ( 𝑓 ) ∩ int𝑋𝑍 (𝑔) = ∅. Clearly,
𝑐𝑜𝑧(𝑔) ⊆ int𝑋𝑍 ( 𝑓 ). We claim that 𝑝 ∈ 𝑐𝑜𝑧(𝑔). If not, then 𝑝 ∈ 𝑍 (𝑔). Thus,
𝑝 ∈ 𝑍 ( 𝑓 2 + 𝑔2), that is 𝑍 ( 𝑓 2 + 𝑔2) ≠ ∅. Since 𝑝 is an almost 𝐶𝑃-point, we infer
that int𝑋𝑍 ( 𝑓 2 + 𝑔2) ≠ ∅ which is a contradiction.

The following lemma is the counterpart of [2, Proposition 2.8].
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Lemma 3.6. A space 𝑋 is a 𝐶𝑃-space if and only if 𝑋 is both almost 𝐶𝑃-space
and 𝑐.𝑐.𝑐-space.

Proof. If 𝑋 is a 𝐶𝑃-space, then 𝑍 ( 𝑓 )=int𝑋𝑍 ( 𝑓 ). Also, if 𝑍 ( 𝑓 ) ≠ ∅, then
int𝑋𝑍 ( 𝑓 ) ≠ ∅, i.e., 𝑋 is an almost 𝐶𝑃-space. Furthermore, for each 𝑓 ∈ 𝐶𝑐 (𝑋)
we have 𝑍 ( 𝑓 ) = 𝑍 ( 𝑓 1

3 ), so there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that 𝑓 1
3 = 𝑓 .𝑔, so

𝑓
1
3 (1 − 𝑓

2
3 .𝑔) = 0. We set 1 − 𝑓

2
3 .𝑔 = ℎ ∈ 𝐶𝑐 (𝑋), then 𝑍 ( 𝑓 1

3 ) ∪ 𝑍 (ℎ) = 𝑋 . Thus,
𝑍 ( 𝑓 ) ∪ 𝑍 (ℎ) = 𝑋 and 𝑍 ( 𝑓 ) ∩ 𝑍 (ℎ) = ∅, for which ℎ ∈ 𝐶𝑐 (𝑋). Consequently,
int𝑋𝑍 ( 𝑓 ) ∩ int𝑋𝑍 (𝑔) = ∅, so 𝑋 is a 𝑐.𝑐.𝑐-space. The converse is clear by applying
Lemma 3.5.

Definition 3.7. A space 𝑋 is a countably perfectly normal space or 𝑐-perfectly
normal space if for every disjoint closed sets 𝐴 and 𝐵 in 𝑋 , there exists 𝑓 ∈ 𝐶𝑐 (𝑋)
such that 𝐴 = 𝑓 −1({0}), 𝐵 = 𝑓 −1({1}). Clearly, if 𝑋 is a 𝑐-perfectly normal space,
then every closed subset of 𝑋 is a zero-set, whence each open subset of 𝑋 is a
cozero-set.

By [13], if 𝑋 is a metric space, then 𝑀𝑖𝑛(𝐶 (𝑋)) is compact and extremally
disconnected. Also, if a ring 𝑅 satisfies c.a.c. and 𝑀𝑖𝑛(𝑅) is locally compact, then
𝑀𝑖𝑛(𝑅) is basically disconnected.
The next result is the counterpart of [13, Theorem 5.6].

Theorem 3.8. The following statements hold.

(1) If for each 𝑓 ∈ 𝐶𝑐 (𝑋), S( 𝑓 ) is a zero-set, then 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact and
basically disconnected.

(2) If 𝑋 is a 𝑐-perfectly normal space, then 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is compact and ex-
tremally disconnected.

Remark 3.9. Whenever every closed set in a space 𝑋 is a zero-set in 𝑍𝑐 (𝑋), then
𝑋 is a 𝑐-perfectly normal space. Also, every 𝑐-perfectly normal space is a perfectly
normal space. The converse is not necessarily true. The space R of real numbers
is perfectly normal but not 𝑐-perfectly normal. Obviously, perfectly normal spaces
and 𝑐-perfectly normal spaces coincide when 𝑋 is strongly zero-dimensional.

Lemma 3.10. For each 𝑓 , 𝑔 ∈ 𝐶𝑐 (𝑋), the following statements are valid.

(1) 𝑉𝑐𝑚(𝐴𝑛𝑛𝑐 ( 𝑓 )) ⊆ 𝑉𝑐𝑚(𝑔) if and only if 𝑍 ( 𝑓 ) ∪ 𝑍 (𝑔) = 𝑋
(2) 𝑉𝑐𝑚(𝑔) ⊆ 𝑉𝑐𝑚(𝐴𝑛𝑛𝑐 ( 𝑓 )) if and only if int𝑋 (𝑍 ( 𝑓 ) ∩ 𝑍 (𝑔)) = ∅
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(3) 𝐴𝑛𝑛𝑐 (𝐴𝑛𝑛𝑐 ( 𝑓 )) = 𝐴𝑛𝑛𝑐 (𝑔) if and only if 𝑉𝑐𝑚( 𝑓 ) = 𝑉𝑐𝑚(𝐴𝑛𝑛𝑐 (𝑔))
(4) 𝑉𝑐𝑚( 𝑓 ) = 𝑉𝑐𝑚(𝐴𝑛𝑛𝑐 (𝐴𝑛𝑛𝑐 ( 𝑓 )))

Proof. By [13, Lemmas 3.1 and 5.4] the proof is evident.

The proof of the next theorem is clear, see Lemma 3.10, Corollary 2.13 and [13,
Theorem 3.4].

Theorem 3.11. The following statements for a space 𝑋 are equivalent.

(1) 𝑀𝑖𝑛(𝐶𝑐 (𝑋)) is a compact space.
(2) For each 𝑓 ∈ 𝐶𝑐 (𝑋), there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that 𝐴𝑛𝑛𝑐 (𝐴𝑛𝑛𝑐 ( 𝑓 )) =

𝐴𝑛𝑛𝑐 (𝑔).
(3) For each 𝑓 ∈ 𝐶𝑐 (𝑋), there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that𝑉𝑐𝑚( 𝑓 ) = 𝑉𝑐𝑚(𝐴𝑛𝑛𝑐 (𝑔)).
(4) For each 𝑓 ∈ 𝐶𝑐 (𝑋), there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that S( 𝑓 ) ∪ S(𝑔) = 𝑋 and

int𝑋 (S( 𝑓 ) ∩ S(𝑔)) = ∅.
(5) 𝑋 is a 𝑐.𝑐.𝑐-space.

Recall that 𝑋 is a realcompact space if every real maximal ideal in𝐶 (𝑋) is fixed,
so R and all subspaces are realcompact, see [12, Chapter 8]. Also, by [9, Lemma
3.1], if 𝑋 is locally compact and realcompact, then 𝛽𝑋 \ 𝑋 is an almost 𝑃-space.
Furthermore, by [14, 1.6 (e)], 𝑋 is 𝑃-space if and only if 𝑋 is both almost 𝑃-space
and 𝑐.𝑐-space.

Example 3.12. In the following examples, we may have a space that is neither a
𝑐.𝑐-space nor a 𝑐.𝑐.𝑐-space. Also, a 𝑐.𝑐-space is not necessarily a 𝑐.𝑐.𝑐-space.
Furthermore, a 𝑐.𝑐.𝑐-space may not be a 𝑐.𝑐-space. Note that in the strongly zero-
dimensional space, two concepts of 𝑐.𝑐-space and 𝑐.𝑐.𝑐-space coincide.
(1) The space 𝑋 = 𝛽N \ N is a strongly zero-dimensional and almost 𝐶𝑃-space
which is not a 𝐶𝑃-space, then 𝑋 is neither a 𝑐.𝑐.𝑐-space nor a 𝑐.𝑐−space.
(2) Let 𝑋 = [−1, 0] ∪ {1

𝑛
: 𝑛 ∈ N}. Clearly 𝑋 is a 𝑐.𝑐-space. We show that 𝑋 is

not a 𝑐.𝑐.𝑐-space. To see this, we define 𝑓 : 𝑋 −→ R with:

𝑓 (𝑥) =



0 − 1 ≤ 𝑥 ≤ 0

1
𝑛

𝑥 =
1
𝑛
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Obviously, 𝑓 ∈ 𝐶𝑐 (𝑋). If there exists 𝑔 ∈ 𝐶𝑐 (𝑋) such that 𝑓 𝑔 = 0 and int𝑋𝑍 ( 𝑓 ) ∩
int𝑋𝑍 (𝑔) = ∅, then for 𝑟 ≠ 0, 𝑔 must be

𝑔(𝑥) =


𝑟 − 1 ≤ 𝑥 ≤ 0

0 𝑥 =
1
𝑛

The image of 𝑔 is countable. Since lim
𝑥−→0−

𝑔(𝑥) = 𝑟 , lim
𝑥−→0+

𝑔(𝑥) = 0, then 𝑔 is not
continuous at zero, so 𝑔 ∉ 𝐶𝑐 (𝑋). Consequently, 𝑋 is not a 𝑐.𝑐.𝑐-space.
(3) The space 𝑋 = 𝛽R \ R is a 𝑐.𝑐.𝑐-space but not 𝑐.𝑐-space. Clearly, 𝑋 =
(𝛽R+ \R+) ∪ (𝛽R− \R−) in which 𝛽R+ = cl𝛽RR+ and 𝛽R− = cl𝛽RR−. Now we set
𝑌 = 𝛽R+ \R+ and 𝑍 = 𝛽R− \R−. The spaces 𝑌 and 𝑍 are connected and compact,
see [12, 6.10], so they are disjoint closed sets. Let 𝑓 ∈ 𝐶𝑐 (𝑋) and suppose that
𝑓 |𝑌 = 𝑟 , 𝑓 |𝑍 = 𝑠. The cases 𝑟 = 𝑠 = 0 and 𝑟, 𝑠 ≠ 0 are clear. Hence suppose that
𝑟 = 0 and 𝑠 ≠ 0. Now, we set 𝑔 : 𝑋 −→ R with:

𝑔(𝑥) =



1 𝑥 ∈ 𝑌

0 𝑥 ∈ 𝑍
So, 𝑔 ∈ 𝐶𝑐 (𝑋). Since 𝑓 𝑔 = 0 and int𝑋𝑍 ( 𝑓 ) ∩ int𝑋𝑍 (𝑔) = 𝑌 ∩ 𝑍 = ∅, then 𝑋 is a
𝑐.𝑐.𝑐-space. Also, 𝑋 is an almost 𝑃-space which is not a 𝑃-space. Thus, 𝑋 is not a
𝑐.𝑐-space. Similarly, if 𝑋 = 𝛽R+ \ R+, then 𝑋 is a connected space, see [12, 6.10],
which is not a 𝑃-space. Thus, 𝑋 is a 𝑐.𝑐.𝑐-space which is not a 𝑐.𝑐-space.
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