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Coverings and liftings of generalized crossed
modules

Gamze Aytekin Arıcı and Tunçar Şahan∗

Abstract. In the theory of crossed modules, considering arbitrary self-actions instead
of conjugation allows for the extension of the concept of crossed modules and thus the
notion of generalized crossed module emerges. In this paper we give a precise definition
for generalized cat1-groups and obtain a functor from the category of generalized
cat1-groups to generalized crossed modules. Further, we introduce the notions of
coverings and liftings for generalized crossed modules and investigate properties of
these structures. Main objective of this study is to obtain an equivalence between
the category of coverings and the category of liftings of a given generalized crossed
module (𝐴, 𝐵, 𝛼).

1 Introduction

Crossed modules are defined by Whitehead [25] as an algebraic model for homotopy
2-types and have been widely used in different areas of mathematics (see for
example [2, 3, 8, 10, 12]). Crossed modules can be seen as 2-dimensional groups
[3]. It is a well-known fact that the category of crossed modules over groups
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and the category of group-groupoids, which also known as 2-groups, are naturally
equivalent [5, 11]. Using this equivalence many properties and structures known
in one of these categories are interpreted in other one. Some examples of these
interpretations are normality and quotient objects [16], coverings [1] and actions
[15]. These studies also give rise to similar studies on higher dimensional crossed
modules [9, 22, 23] and on topological crossed modules [13, 14].

In 1987, Porter [19] gave a general definition of crossed modules in certain
algebraic categories namely categories of groups with operations. See also [17, 18]
for an extensive research on categories of groups with operations and on categories
of interest. As a special case (C = Gp) of Porter’s definition for crossed modules,
a group homomorphism 𝛼 : 𝐴 → 𝐵 with a derived action of 𝐵 on 𝐴 is a crossed
module if the following diagram of split extensions is commutative in the category
of groups

0 // 𝐴
𝜄 //

1𝐴

��

𝐴 ⋊ 𝐴 𝑝
//

1𝐴×𝛼
��

𝐴
𝑠qq

//

𝛼

��

0

0 // 𝐴
𝜄 //

𝛼

��

𝐴 ⋊ 𝐵 𝑝
//

𝛼×1𝐵
��

𝐵

1𝐵
��

𝑠qq
// 0

0 // 𝐵
𝜄 // 𝐵 ⋊ 𝐵 𝑝

// 𝐵
𝑠qq

// 0

where the top and bottom rows are constructed from conjugation actions on 𝐴 and
on 𝐵, respectively, and the middle row constructed from the derived action of 𝐵
on 𝐴. Referring to the conventional definition of crossed modules, conjugation
actions are used on both groups. Recently, Yavari and Salemkar [27] examined the
effects of taking arbitrary actions on both groups instead of conjugation actions
in the definition of crossed modules. They named these structures by generalized
crossed modules since every crossed module is a generalized one.

In this study, with a similar thought we define generalized cat1-groups and a
functor from the category of generalized cat1-groups to that of generalized crossed
modules. Moreover, we introduce the notions of coverings and liftings for gener-
alized crossed modules and investigate the properties of these kind of structures.
Finally, we prove that the category of covering generalized crossed modules and
the category of lifting generalized crossed modules are naturally equivalent for a
fixed generalized crossed module (𝐴, 𝐵, 𝛼).
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2 Preliminaries

A crossed 𝐵-module of groups (or briefly a crossed module) is a group homo-
morphism 𝛼 : 𝐴 → 𝐵 with a (left) group action of 𝐵 on 𝐴, denoted by 𝑏 · 𝑎,
satisfying

(i) 𝛼(𝑏 · 𝑎) = 𝑏 + 𝛼(𝑎) − 𝑏,

(ii) 𝛼(𝑎) · 𝑎1 = 𝑎 + 𝑎1 − 𝑎

for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.
Such a crossed module is denoted by (𝐴, 𝐵, 𝛼).

Example 2.1. Following are the very well-known examples for crossed modules.

(i) Any group 𝐺 and its any normal subgroup 𝑁 defines a crossed module with
the embedding 𝑁 ↩→ 𝐺 with the conjugation action of 𝐺 on 𝑁 . As a special
case of this example (𝐺,𝐺, 1𝐺) becomes a crossed module.

(ii) Let 𝑀 be a 𝐺-module. Then 0: 𝑀 → 𝐺, the zero map, has a structure of
crossed module.

(iii) Automorphism group Aut(𝐺) of a given group𝐺 acts on𝐺 in a very natural
way, say 𝑓 · 𝑔 = 𝑓 (𝑔) for all 𝑓 ∈ Aut(𝐺) and 𝑔 ∈ 𝐺. In this case the inner
automorphism map 𝐺 → Aut(𝐺) becomes a crossed module.

(iv) If 𝑋 is a topological group, then the fundamental group 𝜋𝑋 is a group-
groupoid, the star St𝜋𝑋 0 at the identity 0 ∈ 𝑋 becomes a group and the final
point map 𝑑1 : St𝜋𝑋 0 → 𝑋 becomes a crossed module.

(v) The origin of crossed modules is based on this example due to Whitehead
[25, 26]; if 𝑋 is topological space and 𝐴 ⊆ 𝑋 with 𝑥 ∈ 𝐴, then there is a
natural action of 𝜋1(𝐴, 𝑥) on second relative homotopy group 𝜋2(𝑋, 𝐴, 𝑥)
and with this action the boundary map

𝜕 : 𝜋2(𝑋, 𝐴, 𝑥) → 𝜋1(𝐴, 𝑥)

becomes a crossed module. This crossed module is called fundamental
crossed module and denoted by Π(𝑋, 𝐴, 𝑥) (see for example [2] for more
details).
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Let (𝐴, 𝐵, 𝛼) and (𝐴′, 𝐵′, 𝛼′) be two crossed modules and let 𝑓 : 𝐴 → 𝐴′ and
𝑔 : 𝐵 → 𝐵′ be two group homomorphisms. If 𝑔𝛼 = 𝛼′ 𝑓 and 𝑓 (𝑏 · 𝑎) = 𝑔(𝑏) · 𝑓 (𝑎)
for all 𝑎 ∈ 𝐴 and 𝐵 ∈ 𝐵 then ⟨ 𝑓 , 𝑔⟩ is called a morphism of crossed modules.
The conditions for crossed module morphisms mean that the diagram below is
commutative.

𝐵 × 𝐴
𝑔× 𝑓
��

· // 𝐴

𝑓
��

𝛼 // 𝐵

𝑔

��

𝐵′ × 𝐴′ · // 𝐴′
𝛼′
// 𝐵′

Crossed modules and crossed module morphisms given above forms a category.
We will write XMod for the category of crossed modules.

It is a well-known fact that the category of crossed modules and of group-
groupoids, which are categories internal to groups, are naturally equivalent [5].

Now we recall the definition of a generalized crossed module from [27]. First
we need to remind the notion of group with action due to Datuashvili [6, 7].

Definition 2.2. [6] A group with action is a group𝐺 with an (left) action on itself.

The action of 𝐺 on itself will be denoted by

𝐺 × 𝐺 −→ 𝐺
(𝑔1, 𝑔2) ↦−→ 𝑔1𝑔2

for all 𝑔1, 𝑔2 ∈ 𝐺.
A morphism 𝑓 between groups with action𝐺 and 𝐻 is a group homomorphism

𝑓 : 𝐺 → 𝐻 such that 𝑓 (𝑔𝑔1) = 𝑓 (𝑔) 𝑓 (𝑔1) for all 𝑔, 𝑔1 ∈ 𝐺, that is, 𝑓 preserves the
self-action. The category of groups with action and morphisms between them is
denoted by Gr• [6].

Definition 2.3. [6] A subgroup 𝐻 of a group with action 𝐺 is called a subobject
of 𝐺 if 𝐻 is closed under the self action of 𝐻 induced from that of 𝐺.

Definition 2.4. [6] Let 𝑁 be a subobject of a group with action 𝐺. Then 𝑁 is
called an ideal of 𝐺 if

(i) 𝑁 is a normal subgroup of 𝐺,
(ii) 𝑔𝑛 ∈ 𝑁 and

(iii) 𝑛𝑔 − 𝑔 ∈ 𝑁
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for all 𝑔 ∈ 𝐺 and 𝑛 ∈ 𝑁 .

It has been shown in [6] that the quotient group 𝐺/𝑁 is an object in Gr• with
the self-action given by

(𝑔+𝑁 ) (𝑔1 + 𝑁) = (𝑔𝑔1) + 𝑁

for all 𝑔, 𝑔1 ∈ 𝐺.

2.1 Generalized crossed modules

Definition 2.5. Let 𝐴 and 𝐵 be two objects in Gr•, let 𝛼 : 𝐴 → 𝐵 be a group
homomorphism and let there be a group action of 𝐵 on 𝐴 which is denoted by 𝑏 · 𝑎
for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Then (𝐴, 𝐵, 𝛼) is called a generalized crossed module, if

(i) 𝛼(𝑏 · 𝑎) = 𝑏𝛼(𝑎),
(ii) 𝛼(𝑎) · 𝑎1 = 𝑎𝑎1

for all 𝑎, 𝑎1 ∈ 𝐴 and 𝑏 ∈ 𝐵 [27].

Remark 2.6. It is easy to see that for a generalized crossed module (𝐴, 𝐵, 𝛼)

𝛼(𝑎𝑎1) = 𝛼(𝛼(𝑎) · 𝑎1) (by (ii))
= 𝛼(𝑎)𝛼(𝑎1) (by (i))

for all 𝑎, 𝑎1 ∈ 𝐴, that is, the group homomorphism 𝛼 is in fact a morphism in Gr•.

A generalized crossed module (𝐴, 𝐵, 𝛼) is called aspherical if ker𝛼 = 0 and
simply connected if coker𝛼 = 0. In other words, (𝐴, 𝐵, 𝛼) is an aspherical gener-
alized crossed module if 𝛼 is injective, and a simply connected generalized crossed
module if 𝛼 is surjective.

Example 2.7. If the self-actions on 𝐴 and on 𝐵 are conjugation action then a
generalized crossed module (𝐴, 𝐵, 𝛼) becames a usual crossed module. So every
crossed module is a generalized crossed module.

Example 2.8. Let 𝐴 and 𝐵 be two groups. Assume that all actions, that is, of 𝐴
on itself, of 𝐵 on itself and on 𝐴, are trivial. Then for any group homomorphism
𝛼 : 𝐴→ 𝐵 the triple (𝐴, 𝐵, 𝛼) is a generalized crossed module.
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Example 2.9. Let 𝐺 be an object in Gr• and let 𝐻 be a subgroup of 𝐺 such that
𝑔ℎ ∈ 𝐻 for all 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻. Then (𝐻,𝐺, 𝑖) becomes an aspherical generalized
crossed module where the action of 𝐺 on 𝐻 is the induced one from the self-action
of 𝐺 and 𝑖 : 𝐻 → 𝐺 is the inclusion map. In particular for any characteristic
subgroup 𝐾 of 𝐺 the triple (𝐾,𝐺, 𝑖) is a generalized crossed module. It can be
seen that if 𝑁 is an ideal of 𝐺, as defined in Definition 2.4, then (𝑁,𝐺, 𝑖) is a
generalized crossed module.

This example is a generalization of normal subgroup crossed module where the
action is conjugation.

Lemma 2.10. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module and let 𝐾 := 𝛼(𝐴).
Then (ker𝛼, 𝐴, 𝑖𝐴) and (𝐾, 𝐵, 𝑖𝐵) become generalized crossed modules as in Ex-
ample 2.9. Moreover ker𝛼 acts trivially on 𝐴.

Proof. It can be proven by easy calculations. So we omit the proof.

Let (𝐴, 𝐵, 𝛼) and (𝐴′, 𝐵′, 𝛼′) be two generalized crossed modules and let
𝑓 : 𝐴 → 𝐴′ and 𝑔 : 𝐵 → 𝐵′ be two group homomorphisms. If 𝑔𝛼 = 𝛼′ 𝑓 and
𝑓 (𝑏 · 𝑎) = 𝑔(𝑏) · 𝑓 (𝑎) for all 𝑎 ∈ 𝐴 and 𝐵 ∈ 𝐵 then ⟨ 𝑓 , 𝑔⟩ is called a morphism
of generalized crossed modules. All generalized crossed modules and morphisms
between them as defined above forms a category. We will write GXMod for the
category of generalized crossed modules.

Lemma 2.11. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module and let 𝑓 : 𝐵 → 𝐵′

and 𝑔 : 𝐴′ → 𝐴 be two isomorphisms in Gr•. Then (𝐴, 𝐵′, �̃�) and (𝐴′, 𝐵, �̂�)
become generalized crossed modules where �̃� = 𝑓 𝛼, �̂� = 𝛼𝑔, the action of 𝐵′ on
𝐴 is given by

𝑏′ · 𝑎 =
(
𝑓 −1(𝑏′)

)
· 𝑎

and the action of 𝐵 on 𝐴′ is given by

𝑏 · 𝑎′ = 𝑔−1 (𝑏 · 𝑔(𝑎′))

for 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑎′ ∈ 𝐴′ and 𝑏′ ∈ 𝐵′.

Proof. In order to prove that (𝐴, 𝐵′, �̃�) is a generalized crossed module we need
to show that (𝐴, 𝐵′, �̃�) satisfies the conditions (i) and (ii) of Definition 2.5.
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(i) Let 𝑎 ∈ 𝐴 and 𝑏′ ∈ 𝐵′. Then

�̃�(𝑏′ · 𝑎) = �̃�( 𝑓 −1(𝑏′) · 𝑎)
= 𝑓

(
𝛼( 𝑓 −1(𝑏′) · 𝑎)

)
= 𝑓

(
𝑓 −1 (𝑏′ )𝛼(𝑎)

)
= 𝑓 𝑓 −1 (𝑏′ ) 𝑓 𝛼(𝑎)
= 𝑏′ 𝑓 𝛼(𝑎)
= 𝑏′ �̃�(𝑎).

(ii) Let 𝑎, 𝑎1 ∈ 𝐴. Then

�̃�(𝑎) · 𝑎1 = 𝑓 −1(�̃�(𝑎)) · 𝑎1

= 𝑓 −1( 𝑓 𝛼(𝑎)) · 𝑎1

= 𝛼(𝑎) · 𝑎1

= 𝑎𝑎1.

Thus (𝐴, 𝐵′, �̃�) is a generalized crossed module. Proving that (𝐴′, 𝐵, �̂�) is a
generalized crossed module can be done using a similar technique.

As a consequence of Lemma 2.11, we can give the following corollary.

Corollary 2.12. (𝐴′, 𝐵′, 𝛾) is a generalized crossed module where 𝛾 = 𝑓 𝛼𝑔 and
the action of 𝐵′ on 𝐴′ is given by

𝑏′ · 𝑎′ = 𝑔−1
(
𝑓 −1(𝑏′) · 𝑔(𝑎′)

)
for 𝑏′ ∈ 𝐵′ and 𝑎′ ∈ 𝐴′. Moreover (𝐴, 𝐵′, �̃�), (𝐴′, 𝐵, �̂�), (𝐴′, 𝐵′, 𝛾) and (𝐴, 𝐵, 𝛼)
are all isomorphic generalized crossed modules.

2.2 Generalized cat1-groups

Definition 2.13. Let 𝐺 be an object in Gr• and 𝑠, 𝑡 : 𝐺 → 𝐺 be two morphisms in
Gr•. Then (𝐺, 𝑠, 𝑡) is called a generalized cat1-group if

(i) 𝑠𝑡 = 𝑡, 𝑡𝑠 = 𝑠 and
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(ii) 𝑦𝑥 = 𝑥 for all 𝑥 ∈ ker 𝑠 and 𝑦 ∈ ker 𝑡.

Remark 2.14. Here note that for a generalized cat1-group (𝐺, 𝑠, 𝑡) if the action of
𝐺 on itself is conjugation then 𝑦𝑥 = 𝑦 + 𝑥 − 𝑦 = 𝑥 and hence 𝑦 + 𝑥 = 𝑥 + 𝑦 for all
𝑥 ∈ ker 𝑠 and 𝑦 ∈ ker 𝑡. This means that (𝐺, 𝑠, 𝑡) is an ordinary cat1-group. Thus
every cat1-group is a generalized cat1-group where the self action is conjugation.

Example 2.15. Let 𝐺 be group with trivial action on itself. Then (𝐺, 1𝐺 , 1𝐺) is a
generalized cat1-group.

Let (𝐺, 𝑠, 𝑡) and (𝐺′, 𝑠′, 𝑡′) be two generalized cat1-groups and let 𝑓 : 𝐺 → 𝐺′

a morphism in Gr•. If 𝑓 𝑠 = 𝑠′ 𝑓 and 𝑓 𝑡 = 𝑡′ 𝑓 then 𝑓 is called a morphism of
generalized cat1-groups.

𝐺

𝑓
��

𝑠 //

𝑡
// 𝐺

𝑓

��

𝐺′ 𝑠′ //

𝑡 ′
// 𝐺′

The category of all generalized cat1-groups and morphisms between them is
denoted by GC1Gp.

Proposition 2.16. For a generalized cat1-group (𝐺, 𝑠, 𝑡) the triple
(ker 𝑠, Im 𝑠, 𝑡) is a generalized crossed module where 𝑡 = 𝑡 |ker 𝑠.

Proof. Here the action of Im 𝑠 on ker 𝑠 is given by 𝑥 · 𝑔 = 𝑥𝑔 for all 𝑔 ∈ ker 𝑠 and
𝑥 ∈ Im 𝑠. It is clear that ker 𝑠 and Im 𝑠 are objects of Gr• with the induced action
from that of 𝐺 since 𝑠 is a morphism in Gr•, and that 𝑡 is a group homomorphism.
So we only need to show that conditions (i) and (ii) of Definition 2.5 are satisfied.

(i) Let 𝑔 ∈ ker 𝑠 and 𝑥 ∈ Im 𝑠. Then there exist an element 𝑔1 ∈ 𝐺 such that
𝑠(𝑔1) = 𝑥 and

𝑡 (𝑥 · 𝑔) = 𝑡 (𝑥𝑔)
= 𝑡 (𝑥𝑔)
= 𝑡 (𝑥 ) 𝑡 (𝑔)
= 𝑡 (𝑠 (𝑔1 ) ) 𝑡 (𝑔)
= 𝑠 (𝑔1 ) 𝑡 (𝑔)
= 𝑥𝑡 (𝑔).



Coverings and liftings of generalized crossed modules 125

(ii) Let 𝑔, 𝑔′ ∈ ker 𝑠. Then−𝑔+𝑡 (𝑔) ∈ ker 𝑡 and by the condition (ii) of Definition
2.13 −𝑔+𝑡 (𝑔)𝑔′ = 𝑔′. Hence

𝑡 (𝑔) · 𝑔′ = 𝑡 (𝑔)𝑔′

= 𝑡 (𝑔)𝑔′

= 𝑔+(−𝑔+𝑡 (𝑔) )𝑔′

= 𝑔
(
(−𝑔+𝑡 (𝑔) )𝑔′

)
= 𝑔𝑔′.

This completes the proof.

Remark 2.17. Above construction defines a functor

GC1Gp −→ GXMod

from the category of generalized cat1-groups to that of generalized crossed mod-
ules. However these categories are not naturally equivalent since the category
of generalized crossed modules is a full subcategory of the category of crossed
modules over groups with action which is equivalent to the category of generalized
cat1-groups. Hence above construction defines an embedding.

3 Coverings of generalized crossed modules

The notion of covering of a crossed module is introduced in [4] by Brown and
Mucuk. They proved that the category of covering groups of a given topological
group 𝑋 and the category of covering crossed modules of the associated crossed
module to 𝑋 , as in Example 2.1 (iv), are naturally equivalent. In this section we
introduce the notion of coverings of generalized crossed modules and explore their
properties.

Definition 3.1. Let (𝐴, 𝐵, 𝛼) and (𝐴, 𝐵, �̃�) be two generalized crossed modules. If
there is a morphism ⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼) of generalized crossed modules
such that 𝑓 : 𝐴 → 𝐴 is an isomorphism then (𝐴, 𝐵, �̃�) is called a covering of
(𝐴, 𝐵, 𝛼) and ⟨ 𝑓 , 𝑔⟩ is called a covering morphism.
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𝐴

𝑓 �
��

𝛼 // 𝐵

𝑔

��

𝐴 𝛼
// 𝐵

Example 3.2. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module. Then
⟨1𝐴, 1𝐵⟩ : (𝐴, 𝐵, 𝛼) → (𝐴, 𝐵, 𝛼) is a covering morphism of generalized crossed
modules.

Let ⟨ �̃� , �̃�⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼) and ⟨ 𝑓 ′, 𝑔′⟩ : (𝐴′, 𝐵′, 𝛼′) → (𝐴, 𝐵, 𝛼) be
two covering morphisms. If there is a morphism ⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴′, 𝐵′, 𝛼′)
of generalized crossed modules such that ⟨ 𝑓 ′, 𝑔′⟩ ◦ ⟨ 𝑓 , 𝑔⟩ = ⟨ �̃� , �̃�⟩ then ⟨ 𝑓 , 𝑔⟩ is
called a morphism of coverings of (𝐴, 𝐵, 𝛼).

(𝐴, 𝐵, �̃�) ⟨ 𝑓 ,𝑔⟩
//

⟨ �̃� ,𝑔⟩
��

(𝐴′, 𝐵′, 𝛼′)

⟨ 𝑓 ′ ,𝑔′ ⟩
~~

(𝐴, 𝐵, 𝛼)
Coverings of a generalized crossed module (𝐴, 𝐵, 𝛼) and morphisms be-

tween them as defined above forms a category. This category is denoted by
CovGXMod(𝐴, 𝐵, 𝛼).

Proposition 3.3. Let ⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼) be a covering morphism of
generalized crossed modules. Then 𝑓 (ker �̃�) ⊆ ker𝛼.

Proof. Let �̃� ∈ ker �̃�. Then �̃�(�̃�) = 0. Then we get

𝛼( 𝑓 (�̃�)) = 𝑔(�̃�(�̃�)) = 𝑔(0) = 0

since ⟨ 𝑓 , 𝑔⟩ is a morphism of generalized crossed modules and hence 𝑓 (�̃�) ∈ ker𝛼.
This completes the proof.

Let (𝐴, 𝐵, 𝛼) be an aspherical generalized crossed module and let

⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼)
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be a covering morphism of generalized crossed modules. Since (𝐴, 𝐵, 𝛼) is
aspherical then ker𝛼 = 0. By Proposition 3.3 𝑓 (ker �̃�) = 0 and consequently
ker �̃� = 0, since 𝑓 is an isomorphism.

Corollary 3.4. Every covering of an aspherical generalized crossed module is also
aspherical.

Example 3.5. Since (𝐻,𝐺, 𝑖) is an aspherical generalized crossed module (Exam-
ple 2.9) then every covering of (𝐻,𝐺, 𝑖) is also aspherical.

Lemma 3.6. Let ⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼) be a covering morphism of gener-
alized crossed modules, and let ℎ : 𝐵 → 𝐶 and 𝑘 : 𝐵 → 𝐶 be two isomorphisms in
Gr•. Then

⟨ 𝑓 , �̃�⟩ : (𝐴,𝐶, ℎ�̃�) → (𝐴,𝐶, 𝑘𝛼)
is also a covering morphism of generalized crossed modules where �̃� = 𝑘𝑔ℎ−1.

Proof. It is sufficient to prove the commutativity of the following diagram:

𝐴

𝑓 �
��

ℎ𝛼 // 𝐶

𝑔

��

𝐴
𝑘𝛼
// 𝐶.

Then we have
�̃�(ℎ�̃�) = 𝑘𝑔ℎ−1(ℎ�̃�) = 𝑘𝑔�̃� = 𝑘𝛼 𝑓

which completes the proof.

Proposition 3.7. For generalized crossed modules (𝐴, 𝐵, 𝛼), (𝐴, 𝐵, �̃�) and (𝐴′, 𝐵′, 𝛼′)
let

⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼)
and

⟨ �̃� , �̃�⟩ : (𝐴′, 𝐵′, 𝛼′) → (𝐴, 𝐵, �̃�)
be two morphism of generalized crossed modules and let 𝑓 ′ = 𝑓 �̃� and 𝑔′ = 𝑔�̃�.

(i) If ⟨ 𝑓 , 𝑔⟩ and ⟨ �̃� , �̃�⟩ are covering morphisms then so is

⟨ 𝑓 ′, 𝑔′⟩ : (𝐴′, 𝐵′, 𝛼′) → (𝐴, 𝐵, 𝛼).
(ii) If ⟨ 𝑓 , 𝑔⟩ and ⟨ 𝑓 ′, 𝑔′⟩ are covering morphisms and ⟨ �̃� , �̃�⟩ is a morphism

of coverings of (𝐴, 𝐵, 𝛼) then ⟨ �̃� , �̃�⟩ is also a covering morphism of generalized
crossed modules.
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𝐴′

�̃�
��

𝑓 ′

//

𝛼′
// 𝐵′

𝑔
��

𝑔′

oo

𝐴

𝑓

��

𝛼 // 𝐵

𝑔

��

𝐴 𝛼
// 𝐵

Proof. The proof is easy so is omitted.

Theorem 3.8. Let (𝐶, 𝐷, 𝛾) be a simply connected generalized crossed module,
let

⟨ 𝑓 , 𝑔⟩ : (𝐶, 𝐷, 𝛾) → (𝐴, 𝐵, 𝛼)
be a morphism of generalized crossed modules and let ⟨ �̃� , �̃�⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼)
be a covering morphism. Then there exist a generalized crossed module morphism

⟨ 𝑓 ′, 𝑔′⟩ : (𝐶, 𝐷, 𝛾) → (𝐴, 𝐵, �̃�)

such that ⟨ �̃� , �̃�⟩⟨ 𝑓 ′, 𝑔′⟩ = ⟨ 𝑓 , 𝑔⟩ if and only if 𝑓 (ker 𝛾) ⊆ �̃� (ker �̃�).
Proof. Let assume that 𝑓 (ker 𝛾) ⊆ �̃� (ker �̃�). We take 𝑓 ′ = �̃� −1 𝑓 and define
𝑔′ : 𝐷 → 𝐵 as follows: Since (𝐶, 𝐷, 𝛾) is simply connected, that is, 𝛾 is surjective,
then for any 𝑑 ∈ 𝐷 there exist an element 𝑐1 such that 𝛾(𝑐1) = 𝑑. Then we can
take 𝑔′(𝑑) = �̃� 𝑓 ′(𝑐1). First we need to show that 𝑔′ is well-defined. Suppose that
𝛾(𝑐2) = 𝑑 for some 𝑐2 ∈ 𝐶. It is easy to see that 𝑐1 − 𝑐2 ∈ ker 𝛾. Therefore

𝑓 (𝑐1 − 𝑐2) ∈ 𝑓 (ker 𝛾)

and hence by assumption

𝑓 (𝑐1 − 𝑐2) ∈ �̃� (ker �̃�).

Now we get ( �̃� −1 𝑓 ) (𝑐1 − 𝑐2) = 𝑓 ′(𝑐1 − 𝑐2) ∈ ker �̃� and

(�̃� 𝑓 ′) (𝑐1 − 𝑐2) = (�̃� 𝑓 ′) (𝑐1) − (�̃� 𝑓 ′) (𝑐2) = 0,

that is, (�̃� 𝑓 ′) (𝑐1) = (�̃� 𝑓 ′) (𝑐2) which proves that 𝑔′ is well-defined. Moreover, one
can easily see that 𝑔′𝛾 = �̃� 𝑓 ′ and that �̃�𝑔′ = 𝑔 from the definition of 𝑔′. Now, let
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𝑑1, 𝑑2 ∈ 𝐷 and 𝑐1, 𝑐2 ∈ 𝐶 such that 𝛾(𝑐1) = 𝑑1 and 𝛾(𝑐2) = 𝑑2. Since �̃� and 𝑓 ′

are group homomorphisms then we get

𝑔′(𝑑1 + 𝑑2) = 𝑔′𝛾(𝑐1 + 𝑐2)
= �̃� 𝑓 ′(𝑐1 + 𝑐2)
= �̃� 𝑓 ′(𝑐1) + �̃� 𝑓 ′(𝑐2)
= 𝑔′𝛾(𝑐1) + 𝑔′𝛾(𝑐2)
= 𝑔′(𝑑1) + 𝑔′(𝑑2)

which proves that 𝑔′ is a group homomorphism. Further for any 𝑑 ∈ 𝐷 and 𝑐 ∈ 𝐶
we get

𝑓 ′(𝑑 · 𝑐) = �̃� −1 𝑓 (𝑑 · 𝑐)
= �̃� −1( 𝑓 (𝑑 · 𝑐))
= �̃� −1(𝑔(𝑑) · 𝑓 (𝑐))
= �̃� −1(�̃�𝑔′(𝑑) · �̃� 𝑓 ′(𝑐))
= �̃� −1( �̃� (𝑔′(𝑑) · 𝑓 ′(𝑐)))
= 𝑔′(𝑑) · 𝑓 ′(𝑐)

which finishes the proof that ⟨ 𝑓 ′, 𝑔′⟩ is a morphism of generalized crossed modules.
Conversely, let 𝑓 (𝑐) ∈ 𝑓 (ker 𝛾) for some 𝑐 ∈ ker 𝛾. Here we get 𝛾(𝑐) = 0

and 𝑔′𝛾(𝑐) = 0 which implies �̃� 𝑓 ′(𝑐) = 0 since 𝑔′𝛾 = �̃� 𝑓 ′ by assumption. Thus
𝑓 ′(𝑐) = �̃� −1 𝑓 (𝑐) ∈ ker �̃� and hence 𝑓 (𝑐) ∈ �̃� (ker �̃�) which implies 𝑓 (ker 𝛾) ⊆
�̃� (ker �̃�) and completes the proof.

Corollary 3.9. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module and let

⟨ �̃� , �̃�⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼)

and
⟨ 𝑓 ′, 𝑔′⟩ : (𝐴′, 𝐵′, 𝛼′) → (𝐴, 𝐵, 𝛼)

be two covering morphisms such that (𝐴′, 𝐵′, 𝛼′) is simply connected. Then
(𝐴′, 𝐵′, 𝛼′) is also a covering of (𝐴, 𝐵, �̃�) if and only if 𝑓 (ker𝛼′) ⊆ �̃� (ker �̃�).
Moreover, if (𝐴, 𝐵, �̃�) is also simply connected then there is an isomorphism
⟨ 𝑓 , 𝑔⟩ : (𝐴′, 𝐵′, 𝛼′) → (𝐴, 𝐵, �̃�) if and only if 𝑓 (ker𝛼′) = �̃� (ker �̃�).
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3.1 An application to topological groups with action
Definition 3.10. Let 𝑋 be a topological group. If there is a continuous group action
of 𝑋 on itself then we say that 𝑋 is a self-acting topological group.

We will denote the set of all homotopy classes of the paths in 𝑋 by 𝜋(𝑋) and the
set of all homotopy classes of the paths with the initial point 𝑥0 in 𝑋 by P(𝑋, 𝑥0).
That is, P(𝑋, 𝑥0) = {[𝛼] | 𝛼(0) = 𝑥0}.
Proposition 3.11. Let 𝑋 be a self-acting topological group. Then 𝜋(𝑋) is a group
with action with the induced action from that of 𝑋 , i.e.

𝜙 : 𝜋(𝑋) × 𝜋(𝑋) −→ 𝜋(𝑋)([𝛼], [𝛽]) ↦−→ [𝛼] [𝛽] = [𝛼𝛽]

where (𝛼𝛽) (𝑡) = 𝛼(𝑡 ) 𝛽(𝑡) for 𝑡 ∈ [0, 1].
Proof. It is a well known fact that 𝜋(𝑋) is a group with the operation induced from
that of 𝑋 . So we only need to show that 𝜙 is a group action. Now we prove that 𝜙
is well-defined. Let denote the self-action of 𝑋 with 𝜓. Assume that 𝐹 : 𝛼 ≃ 𝛼′

and 𝐺 : 𝛽 ≃ 𝛽′. Then 𝐻 := 𝜓 ◦ (𝐹, 𝐺) is a homotopy from 𝛼𝛽 to 𝛼′
𝛽′. Other

details are straightforward from the definition of 𝛼𝛽 and the fact that 𝑋 being a
self-acting topological group.

Proposition 3.12. Let 𝑋 be a self-acting topological group with the identity element
𝑒. Then P(𝑋, 𝑒) is an ideal of 𝜋(𝑋).
Proof. We already know that P(𝑋, 𝑒) is a normal subgroup of 𝜋(𝑋). We only need
to show that conditions (ii) and (iii) of Definition 2.4 are satisfied. Let [𝛼] ∈ 𝜋(𝑋)
and [𝛽] ∈ P(𝑋, 𝑒).

(ii) Then 𝛽(0) = 𝑒 and we get

(𝛼𝛽) (0) = 𝛼(0) 𝛽(0) = 𝛼(0)𝑒 = 𝑒

and this implies that [𝛼] [𝛽] ∈ P(𝑋, 𝑒).
(iii) For the third condition we get(

𝛽𝛼 − 𝛼
)
(0) = 𝛽 (0)𝛼(0) − 𝛼(0) = 𝑒𝛼(0) − 𝛼(0) = 𝛼(0) − 𝛼(0) = 𝑒

which implies [𝛽 ] [𝛼] − [𝛼] ∈ P(𝑋, 𝑒).
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Example 3.13. As in Example 2.9 for a self-acting topological group 𝑋 with the
identity element 𝑒 the triple (P(𝑋, 𝑒), 𝜋(𝑋), 𝑖) is an aspherical generalized crossed
module.

Corollary 3.14. Let 𝑋 and 𝑋 be two self-acting topological groups and 𝑝 : 𝑋 → 𝑋

be a covering morphism of topological groups such that 𝑝
(
�̃�1 �̃�2

)
= 𝑝 ( �̃�1 ) 𝑝(�̃�2) for

any �̃�1, �̃�2 ∈ 𝑋 . Then

⟨𝑝∗ |P(𝑋,�̃�) , 𝑝
∗⟩ : (P(𝑋, �̃�), 𝜋(𝑋), �̃�) → (P(𝑋, 𝑒), 𝜋(𝑋), 𝑖)

becomes a covering morphism of generalized crossed modules where 𝑝∗ : 𝜋(𝑋) →
𝜋(𝑋) given by 𝑝∗( [�̃�]) = [𝑝�̃�] for any [�̃�] ∈ 𝜋(𝑋).

4 Liftings of generalized crossed modules

Liftings of crossed modules were defined by Mucuk and Sahan [15] as the interpre-
tations of group-groupoid actions on groups in the category of crossed modules.
See [9, 20] for further details on liftings. In that paper they prove a natural equiva-
lence between the category of coverings of a given crossed module and the category
of liftings of that crossed module. In the light of this result, now we define the
notion of a lifting of a generalized crossed module and give a generalization of the
equivalence given in [15].

Definition 4.1. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module, let 𝑋 be an object
in Gr• and let𝜔 : 𝑋 → 𝐵 be a group homomorphism. In this case there is an action
of 𝑋 on 𝐴 via 𝜔, i.e. 𝑥 · 𝑎 = 𝜔(𝑥) · 𝑎. If there is a generalized crossed module
(𝐴, 𝑋, 𝜑) such that 𝜔𝜑 = 𝛼 then we say that (𝐴, 𝑋, 𝜑) is a lifting crossed module
of (𝐴, 𝐵, 𝛼).

𝑋

𝜔
��

𝐴 𝛼
//

𝜑
??

𝐵

Example 4.2. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module. Then
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(i) (𝐴, 𝛼(𝐴), 𝛼) is a lifting of (𝐴, 𝐵, 𝛼) over the inclusion homomorphism
𝑖 : 𝛼(𝐴) → 𝐵,

(ii) (𝐴, 𝐵, 𝛼) is a lifting of (𝐴, 𝐵′, �̃�) over 𝑓 : 𝐵 → 𝐵′ where (𝐴, 𝐵′, �̃�) is the
generalized crossed module defined in Lemma 2.11.

(iii) Since every isomorphism in Gr• is a generalized crossed module then
(𝐴′, 𝐴, 𝑔) is a lifting of (𝐴′, 𝐵, �̂�) over 𝛼 : 𝐴 → 𝐵 where (𝐴′, 𝐵, �̂�) is
the generalized crossed module defined in Lemma 2.11.

(iv) (𝐴, 𝐴/ker𝛼, 𝑝) becomes a lifting of (𝐴, 𝐵, 𝛼) over 𝜔 : 𝐴/ker𝛼 → 𝐵, 𝑎 +
ker𝛼 ↦→ 𝛼(𝑎). Here (𝐴, 𝐴/ker𝛼, 𝑝) is called the natural lifting of (𝐴, 𝐵, 𝛼).

Lemma 4.3. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module, let 𝑋 be an object
in Gr• and let 𝜑 : 𝐴 → 𝑋 , 𝜔 : 𝑋 → 𝐵 be two group homomorphisms such that
𝜔𝜑 = 𝛼. Then (𝐴, 𝑋, 𝜑) is a generalized crossed module, hence a lifting of
(𝐴, 𝐵, 𝛼), if and only if 𝜑(𝑥 · 𝑎) = 𝑥𝜑(𝑎) for all 𝑥 ∈ 𝑋 and 𝑎 ∈ 𝐴.

Proof. We only need to show that (𝐴, 𝑋, 𝜑) satisfies condition (ii) of Definition 2.5
since condition (i) is already satisfied from the assumption. Let 𝑎, 𝑎1 ∈ 𝐴. Then

𝜑(𝑎) · 𝑎1 = 𝜔(𝜑(𝑎)) · 𝑎1

= 𝛼(𝑎) · 𝑎1

= 𝑎𝑎1.

This completes the proof.

Proposition 4.4. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module and let (𝐴, 𝑋, 𝜑) be
a lifting of (𝐴, 𝐵, 𝛼) over the group homomorphism𝜔 : 𝑋 → 𝐵. Then ker 𝜑 ⊆ ker𝛼
and ⟨1𝐴, 𝜔⟩ : (𝐴, 𝑋, 𝜑) → (𝐴, 𝐵, 𝛼) is a generalized crossed module morphism.

Proof. Let 𝑥 ∈ ker 𝜑. Then 𝜑(𝑥) = 0 and

𝛼(𝑥) = 𝜔𝜑(𝑥)
= 𝜔(𝜑(𝑥))
= 𝜔(0)
= 0.

Thus 𝑥 ∈ ker𝛼 and ker 𝜑 ⊆ ker𝛼. In order to prove that

⟨1𝐴, 𝜔⟩ : (𝐴, 𝑋, 𝜑) → (𝐴, 𝐵, 𝛼)
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is a generalized crossed module morphism, first we need to show that the diagram

𝐴

1𝐴

��

𝜑
// 𝑋

𝜔

��

𝐴 𝛼
// 𝐵

is commutative. It is easy to see that the above diagram is commutative since
(𝐴, 𝑋, 𝜑) is a lifting of (𝐴, 𝐵, 𝛼), i.e. 𝜔𝜑 = 𝛼. Finally, let 𝑥 ∈ 𝑋 and 𝑎 ∈ 𝐴. Then

1𝐴(𝑥 · 𝑎) = 𝑥 · 𝑎 = 𝜔(𝑥) · 𝑎 = 𝜔(𝑥) · 1𝐴(𝑎).
Hence ⟨1𝐴, 𝜔⟩ : (𝐴, 𝑋, 𝜑) → (𝐴, 𝐵, 𝛼) is a morphism of generalized crossed mod-
ule. This completes the proof.

Corollary 4.5. Any lifting (𝐴, 𝑋, 𝜑) of an aspherical generalized crossed module
(𝐴, 𝐵, 𝛼) is aspherical.

Example 4.6. Let (𝐻,𝐺, 𝑖) be a generalized crossed module as in Example 2.9.
Since 𝑖 is injective (𝐻,𝐺, 𝑖) is aspherical and thus any lifting (𝐻, 𝑋, 𝜑) of (𝐻,𝐺, 𝑖)
is also aspherical. Moreover 𝐻 can be considered as a subgroup of 𝑋 which is
invariant under the self action of 𝑋 .

Lemma 4.7. Let (𝐴, 𝑋, 𝜑) be a lifting of a generalized crossed module (𝐴, 𝐵, 𝛼)
over 𝜔 : 𝑋 → 𝐵 and let there exist isomorphisms 𝑓 : 𝑋 → 𝑋 ′ and 𝑔 : 𝐵 → 𝐵′ in
Gr•. Then (𝐴, 𝑋 ′, 𝜑′) is a lifting of (𝐴, 𝐵′, 𝛼′) over 𝜔′ := 𝑔𝜔 𝑓 −1 where 𝜑′ = 𝑓 𝜑
and 𝛼′ = 𝑔𝛼.

Proof. We know from Lemma 2.11 that (𝐴, 𝑋 ′, 𝜑′) and (𝐴, 𝐵′, 𝛼′) are generalized
crossed modules. So we only need to prove the commutativity, i.e. 𝜔′𝜑′ = 𝛼′.
Since (𝐴, 𝑋, 𝜑) be a lifting of a generalized crossed module (𝐴, 𝐵, 𝛼) over𝜔 : 𝑋 →
𝐵 then 𝜔𝜑 = 𝑎𝑙 𝑝ℎ𝑎. So

𝜔′𝜑′ = (𝑔𝜔 𝑓 −1) ( 𝑓 𝜑)
= 𝑔𝜔( 𝑓 −1 𝑓 )𝜑
= 𝑔𝜔𝜑

= 𝑔𝛼

= 𝛼′.

This completes the proof.
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Proposition 4.8. Let (𝐴, 𝑋, 𝜑) be a lifting of (𝐴, 𝐵, 𝛼) over 𝜔 : 𝑋 → 𝐵 and let
(𝐴, 𝑋 ′, 𝜑′) be a lifting of (𝐴, 𝑋, 𝜑) over 𝜔′ : 𝑋 ′ → 𝑋 . Then (𝐴, 𝑋 ′, 𝜑′) is a lifting
of (𝐴, 𝐵, 𝛼) over 𝜔𝜔′ : 𝑋 ′ → 𝐵.

Proof. It is sufficient to show the commutativity, i.e. (𝜔𝜔′)𝜑′ = 𝛼. Since (𝐴, 𝑋, 𝜑)
is a lifting of (𝐴, 𝐵, 𝛼) over 𝜔 : 𝑋 → 𝐵 and (𝐴, 𝑋 ′, 𝜑′) is a lifting of (𝐴, 𝑋, 𝜑) over
𝜔′ : 𝑋 ′ → 𝑋 then 𝜔𝜑 = 𝛼 and 𝜔′𝜑′ = 𝜑. So

(𝜔𝜔′)𝜑′ = 𝜔(𝜔′𝜑′) = 𝜔𝜑 = 𝛼.

This completes the proof.

Let (𝐴, 𝑋, 𝜑) and (𝐴, 𝑋 ′, 𝜑′) be two liftings of a generalized crossed module
(𝐴, 𝐵, 𝛼) over 𝜔 : 𝑋 → 𝐵 and 𝜔′ : 𝑋 ′ → 𝐵, respectively. If there is a group
homomorphism 𝑓 : 𝑋 → 𝑋 ′ such that 𝜔′ 𝑓 = 𝜔 then 𝑓 is called a morphism of
liftings of (𝐴, 𝐵, 𝛼).

𝑋

𝑓

��

𝜔
~~

𝐴
𝛼 //

𝜑
33

𝜑′
++

𝐵

𝑋 ′

𝜔′
``

For a given generalized crossed module (𝐴, 𝐵, 𝛼), liftings of (𝐴, 𝐵, 𝛼) form
a category with the morphisms defined above. This category is denoted by
LGXM/(𝐴, 𝐵, 𝛼).
Lemma 4.9. Let 𝑓 : 𝑋 → 𝑋 ′ be a morphism between liftings (𝐴, 𝑋, 𝜑) and
(𝐴, 𝑋 ′, 𝜑′) of (𝐴, 𝐵, 𝛼) over 𝜔 : 𝑋 → 𝐵 and 𝜔′ : 𝑋 ′ → 𝐵 respectively. Then
(𝐴, 𝑋, 𝜑) is a lifting of (𝐴, 𝑋 ′, 𝜑′) over 𝑓 if 𝜔′ is a monomorphism.

Proof. Let 𝜔′ : 𝑋 ′ → 𝐵 be a monomorphism. Since (𝐴, 𝑋, 𝜑) and (𝐴, 𝑋 ′, 𝜑′)
are liftings of (𝐴, 𝐵, 𝛼) over 𝜔 : 𝑋 → 𝐵 and 𝜔′ : 𝑋 ′ → 𝐵, respectively, then
𝜔𝜑 = 𝛼 = 𝜔′𝜑′. Hence

𝜔′( 𝑓 𝜑) = (𝜔′ 𝑓 )𝜑 = 𝜔𝜑 = 𝜔′𝜑′

and since 𝜔′ : 𝑋 ′ → 𝐵 is a monomorphism then 𝑓 𝜑 = 𝜑′. Thus (𝐴, 𝑋, 𝜑) is a
lifting of (𝐴, 𝑋 ′, 𝜑′) over 𝑓 .
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Proposition 4.10. Let ⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼) be a morphism of generalized
crossed modules and let (𝐴, 𝑋, 𝜑) be a lifting of (𝐴, 𝐵, �̃�) over 𝜔 : 𝑋 → 𝐵. Then
⟨ 𝑓 , �̃�⟩ : (𝐴, 𝑋, 𝜑) → (𝐴, 𝐵, 𝛼) is a morphism of generalized crossed modules where
�̃� = 𝑔𝜔.

Proof. It is sufficient to prove the commutativity of the following diagram.

𝐴

𝑓

��

𝜑
// 𝑋

𝑔

��

𝐴 𝛼
// 𝐵

Since �̃� = 𝑔𝜔 then
�̃�𝜑 = (𝑔𝜔)𝜑 = 𝑔(𝜔𝜑) = 𝑔�̃� = 𝛼 𝑓

and this completes the proof.

Following theorem gives a criteria for lifting a generalized crossed module
morphism to any lifting.

Theorem 4.11. Let ⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼) be a morphism of generalized
crossed modules such that (𝐴, 𝐵, �̃�) is simply connected and let (𝐴, 𝑋, 𝜑) be a
lifting of (𝐴, 𝐵, 𝛼) over 𝜔 : 𝑋 → 𝐵. Then there exist a generalized crossed
module morphism ⟨ 𝑓 , �̃�⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝑋, 𝜑) such that 𝜔�̃� = 𝑔 if and only if
𝑓 (ker �̃�) ⊆ ker 𝜑.

Proof. First assume that 𝑓 (ker �̃�) ⊆ ker 𝜑. Let �̃� : 𝐵 → 𝑋 is given by �̃�(�̃�) =
𝜑 𝑓 (�̃�) for some �̃� ∈ 𝐴 such that �̃�(�̃�) = �̃�. The function �̃� is well-defined since
(𝐴, 𝐵, �̃�) is simply connected, that is, �̃� is surjective, and 𝑓 (ker �̃�) ⊆ ker 𝜑. It
is easy to see that �̃� is a morphism in Gr•. Other details are straightforward so
omitted.

Conversely, let �̃� ∈ ker �̃�. Then by the definition of �̃�

𝜑( 𝑓 (�̃�)) = �̃�(�̃�(�̃�)) = �̃�(0) = 0

and thus 𝑓 (�̃�) ∈ ker 𝜑. This completes the proof.

Corollary 4.12. For a generalized crossed module (𝐴, 𝐵, 𝛼) with two liftings
(𝐴, 𝑋, 𝜑) and (𝐴, 𝑋, 𝜑) via 𝜔 and 𝜔, respectively, such that (𝐴, 𝑋, 𝜑) is simply
connected. In this case ker 𝜑 ⊆ ker 𝜑 if and only if (𝐴, 𝑋, 𝜑) is also a lifting of
(𝐴, 𝑋, 𝜑).
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Corollary 4.13. For a generalized crossed module (𝐴, 𝐵, 𝛼) with two simply con-
nected liftings (𝐴, 𝑋, 𝜑) and (𝐴, 𝑋, 𝜑) via𝜔 and𝜔, respectively.Then ker 𝜑 = ker 𝜑
if and only if there is an isomorphism

⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝑋, 𝜑) → (𝐴, 𝑋, 𝜑)

of generalized crossed modules.

Theorem 4.14. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module with 𝑁 ideal of
𝐴 such that 𝑁 ⊆ ker𝛼. Then (𝐴, 𝐴/𝑁, 𝜑) is a lifting of (𝐴, 𝐵, 𝛼) via 𝜔 where
𝜑(𝑎) = 𝑎 + 𝑁 and 𝜔(𝑎 + 𝑁) = 𝛼(𝑎). Moreover, ker 𝜑 = 𝑁 .

Proof. It is easy to see that𝜔𝜑 = 𝛼. Thus, it is sufficient to show that the conditions
for Lemma 4.3 are satisfied. Then for any 𝑎, 𝑎1 ∈ 𝐴 we have

𝜑((𝑎 + 𝑁) · 𝑎1) = 𝜑(𝛼(𝑎) · 𝑎1)
= 𝜑(𝑎𝑎1)
= 𝜑 (𝑎)𝜑(𝑎1)
= 𝑎+𝑁𝜑(𝑎1)

which completes the proof.

Theorem 4.15. Let (𝐴, 𝐵, 𝛼) be a generalized crossed module. Then there is a
natural equivalence between the category CovGXMod(𝐴, 𝐵, 𝛼) of covering gener-
alized crossed modules of (𝐴, 𝐵, 𝛼) and the category LGXM/(𝐴, 𝐵, 𝛼) of lifting
generalized crossed modules of (𝐴, 𝐵, 𝛼).
Proof. It is easy to see that if (𝐴, 𝑋, 𝜑) is a lifting of (𝐴, 𝐵, 𝛼) over 𝜔 : 𝑋 → 𝐵,
then ⟨1𝐴, 𝜔⟩ : (𝐴, 𝑋, 𝜑) → (𝐴, 𝐵, 𝛼) is a generalized crossed module morphism.
Since 1𝐴 is an isomorphism then (𝐴, 𝑋, 𝜑) is a covering of (𝐴, 𝐵, 𝛼). Moreover,
let (𝐴, 𝑋, 𝜑) be another lifting of (𝐴, 𝐵, 𝛼) over 𝜔 : 𝑋 → 𝐵 and let 𝑓 : 𝑋 → 𝑋
be a morphism in LGXM/(𝐴, 𝐵, 𝛼), then ⟨1𝐴, 𝑓 ⟩ : (𝐴, 𝑋, 𝜑) → (𝐴, 𝑋, 𝜑) is a
morphism in CovGXMod(𝐴, 𝐵, 𝛼). This construction defines a functor

LGXM/(𝐴, 𝐵, 𝛼) → CovGXMod(𝐴, 𝐵, 𝛼).

Conversely if ⟨ 𝑓 , 𝑔⟩ : (𝐴, 𝐵, �̃�) → (𝐴, 𝐵, 𝛼) is a covering morphism of general-
ized crossed modules, then 𝑓 : 𝐴→ 𝐴 is an isomorphism and if we take 𝜑 = �̃� 𝑓 −1

then (𝐴, 𝐵, 𝜑) becomes a lifting of (𝐴, 𝐵, 𝛼) over 𝑔. It is easy to see that 𝑔𝜑 = 𝛼
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and (𝐴, 𝐵, 𝜑) is a generalized crossed module. Further if ⟨ 𝑓 ′, 𝑔′⟩ : (𝐴′, 𝐵′, 𝛼′) →
(𝐴, 𝐵, 𝛼) is another covering morphism and ⟨ �̃� , �̃�⟩ : (𝐴, 𝐵, �̃�) → (𝐴′, 𝐵′, 𝛼′) is a
morphism in CovGXMod(𝐴, 𝐵, 𝛼) then �̃� : 𝐵 → 𝐵′ is a morphism in LGXM/(𝐴, 𝐵, 𝛼).
This construction also defines a functor

CovGXMod(𝐴, 𝐵, 𝛼) → LGXM/(𝐴, 𝐵, 𝛼).

Other details can be proven by easy calculations.

5 Conclusion

In this paper we extend a well-known result for crossed modules over groups
to generalized crossed modules over groups. Recently, Temel has obtained new
results on crossed semimodules [21] and introduced the notion of lifting for crossed
semimodules [24]. Thus it could be interesting to define the notion of generalized
crossed semimodule and to investigate the results given in this paper for generalized
crossed semimodules.
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