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Universal extensions of specialization
semilattices
Paolo Lipparini

Abstract. A specialization semilattice is a join semilattice together with a coarser
preorder ⊑ satisfying an appropriate compatibility condition. If 𝑋 is a topological
space, then (P(𝑋),∪, ⊑) is a specialization semilattice, where 𝑥 ⊑ 𝑦 if 𝑥 ⊆ 𝐾𝑦, for
𝑥, 𝑦 ⊆ 𝑋 , and 𝐾 is closure. Specialization semilattices and posets appear as auxiliary
structures in many disparate scientific fields, even unrelated to topology.

In a former work we showed that every specialization semilattice can be embedded
into the specialization semilattice associated to a topological space as above. Here we
describe the universal embedding of a specialization semilattice into an additive closure
semilattice.

1 Introduction

The idea of closure is pervasive in mathematics. First, the notion is used in the
sense of hull, generated by, for example when we consider the subgroup generated
by a given subset of some group. In a slightly different but related sense, closure is
a fundamental notion in topology. In both cases, “closed” sets are preserved under
arbitrary intersections; in the topological case the union of two closed sets is still
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closed; in most “algebraic” examples, the union of an upward directed family of
closed subsets is still closed.

The general notion of a closure space which can be abstracted from the above
examples has been dealt with or foreshadowed by such mathematicians as Schröder,
Dedekind, Cantor, Riesz, Hausdorff, Moore, Čech, Kuratowski, Sierpiński, Tarski,
Birkhoff and Ore, as listed in Erné [3], with applications, among others, to ordered
sets, lattice theory, logic, algebra, topology, computer science and connections with
category theory.

In many cases it is not necessary to describe the actual closure, we just need
to know whether some object is contained or not in the closure. Even in topology,
one frequently needs to consider only the adherence relation 𝑝 ∈ 𝐾𝑦, meaning
that the element 𝑝 belongs to the topological closure of the subset 𝑦. Arguing in
terms of adherence provides a conceivably more intuitive approach to continuity:
as well-known, a function 𝑓 between topological spaces is continuous if and only
if 𝑓 preserves the adherence relation, namely, if and only if 𝑝 ∈ 𝐾𝑦 implies
𝑓 (𝑝) ∈ 𝐾 𝑓 (𝑦).

Similarly, we can consider the specialization relation 𝑥 ⊑ 𝑦 defined by 𝑥 ⊆ 𝐾𝑦,
for 𝑥, 𝑦 subsets of some topological space 𝑋 . It is a natural generalization of the
specialization preorder defined on points of a topological space [6, Ex. 3.17e], [5].
As in the case of adherence, a function 𝑓 from 𝑋 to some other space𝑌 is continuous
if and only if the direct image function 𝑓→ is a homomorphism from the structure
(P(𝑋),∪, ⊑) to (P(𝑌 ),∪, ⊑).

The above “algebraization” of topology is thus significantly different from the
classical approach presented in [10], where the operation 𝐾 of closure is taken into
account. The notion of homomorphism in [10] does not correspond to the notion
of continuity. In fact, a function 𝑓 between two spaces is continuous if and only if
𝑓→(𝐾𝑥) ⊆ 𝐾 𝑓→(𝑥), for all subsets 𝑥. On the other hand, a homomorphism 𝜑 of
closure algebras [10] is assumed to satisfy the stronger condition 𝜑(𝐾𝑥) = 𝐾𝜑(𝑥).

In [9] we characterized specialization semilattices, those structures which can
be embedded into (P(𝑋),∪, ⊑) for some topological space 𝑋 , and specialization
posets, which can be embedded into (P(𝑋), ⊆, ⊑). See (S1) - (S3) below. While our
main interest was algebraic and model-theoretical, we realized that such structures
appear in many distinct and unrelated settings.

A typical example of a specialization to which no closure can be associated is
inclusion modulo finite. If 𝑋 is an infinite set and we let 𝑥 ⊑ 𝑦 if 𝑥 \ 𝑦 is finite, for
𝑥, 𝑦 ⊆ 𝑋 , then (P(𝑋),∪, ⊑) is a specialization semilattice. Inclusion modulo finite



Universal extensions of specialization semilattices 103

plays important roles, among other, in set theory, topology and model theory [1, 11].
From a slightly different perspective, working modulo finite corresponds to taking
the quotient modulo the ideal of finite sets on the standard Boolean algebra on
P(𝑋). From the present point of view, a similar construction can be used to
generate specialization semilattices: if 𝜑 : S → T is a semilattice homomorphism
and we set 𝑎 ⊑ 𝑏 in 𝑆 when 𝜑(𝑎) ≤ 𝜑(𝑏) in T, then S is endowed with the structure
of a specialization semilattice. As we shall show elsewhere, every specialization
semilattice can indeed be constructed this way. Specialization semilattices are
substructures of topological spaces in the language with union and ⊑, but, in a
sense, they are also semilattices together with a quotient (or a congruence).

Under different terminology, specialization appears in [4] in the context of
complete lattices, with deep and important applications to algebraic logic. See
Conditions (1) - (2) in [4, Subsection 3.1]. Specialization semilattices arise also
naturally in the theory of tolerance spaces [12], with applications to image analysis
and information systems [13].

Causal spaces have been introduced by Kronheimer and Penrose [7] in con-
nection with abstract foundations of general relativity. Causal spaces can be ax-
iomatized as two partial orders, one finer than the other, and satisfying a further
coherence condition. In particular, they are specialization posets. As another ex-
ample, if 𝜇 is a measure on some set 𝑆 of subsets of 𝑋 , then 𝑎 ⊑𝜇 𝑏 defined by
𝜇(𝑎) ≤ 𝜇(𝑏), for 𝑎, 𝑏 ∈ 𝑆, is a preorder which forms a specialization poset together
with inclusion. If 𝜇 is 2-valued, then we get a specialization semilattice. Such
structures have been widely studied in connection with foundations of probability.
See [8] and references there.

A closure poset (semilattice) is a partially ordered set (join semilattice) together
with an isotone, extensive and idempotent operator 𝐾 . See Remark 2.1. If 𝐾
satisfies 𝐾 (𝑎∨ 𝑏) = 𝐾𝑎∨𝐾𝑏 and 𝐾0 = 0 in a closure semilattice with minimum 0,
then 𝐾 satisfies the Kuratowski axioms for topological closure. Closure posets and
semilattices have many applications; see [3, 14] for references. As in the case of
topological spaces, setting 𝑎 ⊑ 𝑏 if 𝑎 ≤ 𝐾𝑏 induces the structure of a specialization
poset (semilattice) and a large part of the theory of closure posets applies to this
more general setting. See [9] for more details and further examples.

Henceforth we were convinced that the notion of a specialization semilattice de-
serves an accurate study, both for its possible foundational relevance in connection
with topology, and since the notion appears in many disparate fields.

The main result in [9] asserts that every specialization semilattice or poset can
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be embedded into a “topological” one. The extensions constructed in [9, Section
4] are not minimal and possibly neither canonical nor functorial. In search for a
better-behaved extension, here we explicitly describe the universal embedding of
a specialization semilattice into an additive closure semilattice. This is done in
Section 3. In Section 4 we then show that the existence of such an embedding, as
well as the existence of a multitude of other embeddings, follow from an abstract
argument.

2 Preliminaries

A specialization semilattice [9, Definition 3.1] is a join semilattice endowed with
a further preorder ⊑ which is coarser than the order ≤ induced by ∨ and satisfies
the further compatibility relation (S3) below. In detail, a specialization semilattice
S is a triple (𝑆,∨, ⊑) such that (𝑆,∨) is a semilattice and moreover

𝑎 ≤ 𝑏 ⇒ 𝑎 ⊑ 𝑏, (S1)
𝑎 ⊑ 𝑏 & 𝑏 ⊑ 𝑐 ⇒ 𝑎 ⊑ 𝑐, (S2)
𝑎 ⊑ 𝑏 & 𝑎1 ⊑ 𝑏 ⇒ 𝑎 ∨ 𝑎1 ⊑ 𝑏, (S3)

for all elements 𝑎, 𝑏, 𝑐, 𝑎1 ∈ 𝑆. Notice that from (S1) one gets

𝑎 ⊑ 𝑎, (S4)

for every 𝑎 in 𝑆.
It can be shown [9, Remark 3.4(a)] that every specialization semilattice satisfies

𝑎 ⊑ 𝑏 & 𝑎1 ⊑ 𝑏1 ⇒ 𝑎 ∨ 𝑎1 ⊑ 𝑏 ∨ 𝑏1. (S7)

A specialization poset is a partially ordered set with a further preorder satisfying
(S1) - (S2). Specialization posets occur naturally in many situations, but the theory
of specialization semilattices is much cleaner and here we shall be mainly interested
in the latter.

A homomorphism of specialization semilattices is a semilattice homomorphism
𝜂 such that 𝑎 ⊑ 𝑏 implies 𝜂(𝑎) ⊑ 𝜂(𝑏). An embedding is an injective homomor-
phism satisfying the additional condition that 𝜂(𝑎) ⊑ 𝜂(𝑏) implies 𝑎 ⊑ 𝑏.

If S is a specialization semilattice, 𝑎 ∈ 𝑆 and the set 𝑆𝑎 = {𝑏 ∈ 𝑆 | 𝑏 ⊑ 𝑎}
has a ≤-maximum, such a maximum shall be denoted by 𝐾𝑎 and shall be called
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the closure of 𝑎. Notice that we require 𝐾𝑎 to be the maximum of 𝑆𝑎, not just a
supremum. Namely, we require 𝐾𝑎 ⊑ 𝑎.

In general, 𝐾𝑎 need not exist in an arbitrary specialization semilattice: consider
the example of inclusion modulo finite mentioned in the introduction. If 𝐾𝑎 exists
for every 𝑎 ∈ 𝑆, then S shall be called a principal specialization semilattice.

Remark 2.1. (a) Principal specialization semilattices are in a one-to one corre-
spondence with closure semilattices, that is, semilattices with a further operation
𝐾 such that 𝑎 ≤ 𝐾𝑎, 𝐾𝐾𝑎 = 𝐾𝑎, and 𝐾 (𝑎 ∨ 𝑏) ≥ 𝐾𝑎 ∨ 𝐾𝑏.

If C is a closure semilattice, then setting 𝑎 ⊑ 𝑏 if 𝑎 ≤ 𝐾𝑏 makes C a special-
ization semilattice, and 𝐾 turns out to be closure also in the sense of specialization
semilattices. See [3, Section 3.1], in particular, [3, Proposition 3.9] for details.

(b) The clause 𝐾 (𝑎 ∨ 𝑏) ≥ 𝐾𝑎 ∨ 𝐾𝑏 is equivalent to the condition that 𝑐 ≥ 𝑎
implies 𝐾𝑐 ≥ 𝐾𝑎. As a consequence, we get 𝐾 (𝑎 ∨ 𝑏) ≤ 𝐾 (𝑎 ∨ 𝐾𝑏) in closure
semilattices. Moreover,𝐾 (𝑎∨𝑏) ≥ 𝐾𝑎 ≥ 𝑎,𝐾 (𝑎∨𝑏) ≥ 𝐾𝑏, so𝐾 (𝑎∨𝑏) ≥ 𝑎∨𝐾𝑏,
hence 𝐾 (𝑎 ∨ 𝑏) = 𝐾𝐾 (𝑎 ∨ 𝑏) ≥ 𝐾 (𝑎 ∨ 𝐾𝑏). In conclusion, as well-known,
𝐾 (𝑎 ∨ 𝑏) = 𝐾 (𝑎 ∨ 𝐾𝑏) in every closure semilattice.

By the same argument, we could even prove 𝐾 (𝑎 ∨ 𝑏) = 𝐾 (𝐾𝑎 ∨ 𝐾𝑏), but we
shall not need this in what follows.

(c) If 𝑎 and 𝑏 are elements of some specialization semilattice and both 𝐾𝑎 and
𝐾𝑏 exist, then 𝐾𝑎 ≤ 𝐾𝑏 if and only if 𝑎 ⊑ 𝑏. Indeed, from 𝑎 ≤ 𝑎 and (S1) we get
𝑎 ⊑ 𝑎, thus 𝑎 ≤ 𝐾𝑎, by the definition of 𝐾𝑎. Hence if 𝐾𝑎 ≤ 𝐾𝑏, then 𝑎 ≤ 𝐾𝑏,
which means 𝑎 ⊑ 𝑏, by the definition of 𝐾𝑏. Conversely, if 𝑎 ⊑ 𝑏, then from
𝐾𝑎 ⊑ 𝑎 and (S2) we get 𝐾𝑎 ⊑ 𝑏, which means 𝐾𝑎 ≤ 𝐾𝑏.

In particular, in a principal specialization semilattice, 𝐾𝑎 = 𝐾𝑏 if and only if
both 𝑎 ⊑ 𝑏 and 𝑏 ⊑ 𝑎.

If S and T are principal specialization semilattices, a 𝐾-homomorphism from
S to T is a homomorphism 𝜂 which preserves 𝐾 , that is 𝜂(𝐾𝑎) = 𝐾𝜂(𝑎). Thus
𝐾-homomorphisms correspond to the natural notion of homomorphism for closure
semilattices.

If 𝜂 is a semilattice homomorphism between two principal specialization semi-
lattices and 𝜂 satisfies 𝜂(𝐾𝑎) = 𝐾𝜂(𝑎), then 𝜂 is also a ⊑-homomorphism. Indeed,
𝑎 ⊑ 𝑏 is equivalent to 𝑎 ≤ 𝐾𝑏, hence 𝜂(𝑎) ≤ 𝜂(𝐾𝑏) = 𝐾𝜂(𝑏), which implies
𝜂(𝑎) ⊑ 𝜂(𝑏).

Notice that, even when S and T are principal, a specialization homomorphism
need not be a 𝐾-homomorphism; see, for example, the second sentence in the
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following Remark 2.2. Of course, if either S or T fails to be principal, then it is not
even possible to apply the notion of 𝐾-homomorphism. Whenever we speak of a
homomorphism without further specifications, we always mean a homomorphism
of specialization semilattices as introduced above, that is, we do not assume that
homomorphisms are 𝐾-homomorphisms, unless specified otherwise.

A principal specialization semilattice (or a closure semilattice) is additive if
𝐾 (𝑎 ∨ 𝑏) = 𝐾𝑎 ∨ 𝐾𝑏.

Remark 2.2. If 𝑋 is a topological space with topological closure 𝐾 , then (P,∪, 𝐾)
is an additive closure semilattice, thus (P,∪, ⊑) is a principal additive specializa-
tion semilattice, by Remark 2.1(a).

It can be checked that topological continuity corresponds to the notion of
homomorphism between the associated specialization semilattices [9, Proposition
2.4]; on the other hand, the notion of𝐾-homomorphism is stronger, and corresponds
to the notion of a closed continuous map.

All the above comments apply to closure spaces, which are like topological
spaces, except that the union of two closed subsets is not assumed to be closed,
equivalently, closure is not assumed to satisfy 𝐾 (𝑎 ∪ 𝑏) ⊆ 𝐾𝑎 ∪ 𝐾𝑏. In a closure
space the closure of the empty set is not assumed to be the empty set, either. Closure
spaces occur naturally in algebra; for example, if G is a group, then P(𝐺) becomes
a closure space if subgroups are considered as the closed subsets of 𝐺. See [3] for
more examples and details. Of course, in the case of a closure space, the associated
specialization semilattice as above is still principal, but not necessarily additive.

Further details about the above notions can be found in [9].
A specialization semilattice with 0 is a specialization semilattice with a constant

0 which is a neutral element with respect to the semilattice operation, thus a minimal
element in the induced order, and furthermore satisfies

𝑎 ⊑ 0 ⇒ 𝑎 = 0. (S0)

A homomorphism 𝜂 of specialization semilattices with 0 is required to satisfy
𝜂(0) = 0. When some risk of ambiguity might occur, we shall explicitly mention
that the homomorphism is 0-preserving.

Remark 2.3. We shall generally assume that specialization semilattices have a 0,
but this assumption is only for simplicity. In fact, if S is an arbitrary specialization
semilattice, then by adding a new ∨-neutral element 0 and setting 0 ⊑ 𝑎, for every
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𝑎 ∈ 𝑆 ∪ {0}, and 𝑎 @ 0, for every 𝑎 ∈ 𝑆, we get a specialization semilattice with
0. Conversely, if S is a specialization semilattice with 0, then 𝑆 \ {0} has naturally
the structure of a specialization semilattice.

3 Universal extensions

Given any specialization semilattice S, we now construct a “universal” principal
additive extension S̃ of S.

Definition 3.1. Suppose that S is a specialization semilattice.
On the product 𝑆 × 𝑆 define an equivalence relation ∼ by

(*) (𝑎, 𝑏) ∼ (𝑐, 𝑑) if and only if, in S, 𝑏 ⊑ 𝑑, 𝑑 ⊑ 𝑏 and there are 𝑎1, 𝑐1 ∈ 𝑆
such that 𝑎1 ⊑ 𝑏, 𝑐1 ⊑ 𝑑 and 𝑎 ≤ 𝑐 ∨ 𝑐1, 𝑐 ≤ 𝑎 ∨ 𝑎1.

We shall check in Lemma 3.3(i) below that ∼ is actually an equivalence relation.
Let 𝑆 = (𝑆 × 𝑆)/∼.

Define 𝐾 : 𝑆 → 𝑆 by 𝐾 [𝑎, 𝑏] = [𝑎, 𝑎 ∨ 𝑏], where [𝑥, 𝑦] is the ∼ class of the
pair (𝑥, 𝑦). In Lemma 3.3(ii)(iii) we shall prove that 𝐾 is well-defined and that 𝑆
naturally inherits a semilattice operation ∨ from the semilattice product S × S.

Define ⊑ on 𝑆 by [𝑎, 𝑏] ⊑ [𝑐, 𝑑] if [𝑎, 𝑏] ≤ 𝐾 [𝑐, 𝑑], where ≤ is the order
induced by ∨ and let S̃ = (𝑆,∨, ⊑), S̃′ = (𝑆,∨, 𝐾).

If S is a specialization semilattice with 0, define 𝜐S : 𝑆 → 𝑆 by 𝜐S (𝑎) = [𝑎, 0].

We intuitively think of [𝑎, 𝑏] as 𝑎 ∨ 𝐾𝑏, where 𝐾𝑏 is the “new” closure we
need to introduce; in particular, [𝑎, 0] corresponds to 𝑎 and [0, 𝑏] corresponds to
a new element 𝐾𝑏.

Theorem 3.2. Suppose that S is a specialization semilattice with 0. Let S̃ and 𝜐S
be as in Definition 3.1. Then the following statements hold.

(1) S̃ is a principal additive specialization semilattice with 0.
(2) 𝜐S is a 0-preserving embedding of S into S̃.
(3) The pair (S̃, 𝜐S) has the following universal property.
For every principal additive specialization semilattice T and every homomor-

phism 𝜂 : S → T, there is a unique 𝐾-homomorphism 𝜂 : S̃ → T such that
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𝜂 = 𝜐S ◦ 𝜂.

S

𝜂
��

𝜐S // S̃
𝜂
��

T
(4) If U is another specialization semilattice with 0 and 𝜓 : S → U is a 0-

preserving homomorphism, then there is a unique 𝐾-homomorphism 𝜓 : S̃ → Ũ
making the following diagram commute.

S
𝜓

��

𝜐S // S̃

𝜓
��

U
𝜐U // Ũ

We first need to check that Definition 3.1 is correct. This is the content of the
following lemma.

Lemma 3.3. Assume the notation and the definitions in 3.1.
(i) The relation ∼ on 𝑆 × 𝑆 is an equivalence relation.
(ii) The operation 𝐾 is well-defined on the ∼-equivalence classes.
(iii) The relation ∼ is a semilattice congruence on the semilattice product S×S,

hence S̃ inherits a semilattice structure from S × S.
(iv) If S is a specialization semilattice with 0, then 𝐾 satisfies

𝐾 [𝑎, 𝑏] = [0, 𝑎 ∨ 𝑏] = [𝑎, 𝑎 ∨ 𝑏] .

Proof. (i) The relation ∼ is symmetric, since its definition is symmetric. It is
reflexive because of (S4), since if 𝑎 = 𝑐 and 𝑏 = 𝑑, then we can take 𝑎1 = 𝑐1 = 𝑏
in (*). We now check transitivity. Let (𝑎, 𝑏) ∼ (𝑐, 𝑑) be witnessed by elements
𝑎1, 𝑐1 as in (*). Let (𝑐, 𝑑) ∼ (𝑒, 𝑓 ) be witnessed by 𝑐′1, 𝑒

′
1, thus 𝑑 ⊑ 𝑓 , 𝑓 ⊑ 𝑑,

𝑐′1 ⊑ 𝑑, 𝑒′1 ⊑ 𝑓 and 𝑐 ≤ 𝑒 ∨ 𝑒′1, 𝑒 ≤ 𝑐 ∨ 𝑐′1. Then 𝑏 ⊑ 𝑓 , by 𝑏 ⊑ 𝑑, 𝑑 ⊑ 𝑓 and (S2).
Symmetrically 𝑓 ⊑ 𝑏. From 𝑎 ≤ 𝑐 ∨ 𝑐1 and 𝑐 ≤ 𝑒 ∨ 𝑒′1 we get 𝑎 ≤ 𝑒 ∨ 𝑒′1 ∨ 𝑐1.
Moreover, 𝑐1 ⊑ 𝑑 ⊑ 𝑓 , hence 𝑐1 ⊑ 𝑓 by (S2), thus 𝑒′1∨𝑐1 ⊑ 𝑓 , by 𝑒′1 ⊑ 𝑓 and (S3).
Symmetrically, 𝑒 ≤ 𝑎 ∨ 𝑎1 ∨ 𝑐′1 and 𝑎1 ∨ 𝑐′1 ⊑ 𝑏. This means that the elements
𝑎′′1 = 𝑎1 ∨ 𝑐′1 and 𝑒′′1 = 𝑒′1 ∨ 𝑐1 witness (𝑎, 𝑏) ∼ (𝑒, 𝑓 ).

(ii) We have to show that if (𝑎, 𝑏) ∼ (𝑐, 𝑑), then (𝑎, 𝑎∨𝑏) ∼ (𝑐, 𝑐∨𝑑). Suppose
that (𝑎, 𝑏) ∼ (𝑐, 𝑑) is witnessed by 𝑎1 and 𝑐1, as given by (*) in Definition 3.1.
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From 𝑎 ≤ 𝑐 ∨ 𝑐1 and 𝑐1 ⊑ 𝑑 we get 𝑎 ⊑ 𝑐 ∨ 𝑐1 ⊑ 𝑐 ∨ 𝑑, by (S1), (S4) and (S7),
hence 𝑎 ⊑ 𝑐 ∨ 𝑑, by (S2). Since 𝑏 ⊑ 𝑑 ≤ 𝑐 ∨ 𝑑, hence 𝑏 ⊑ 𝑐 ∨ 𝑑, by (S1) and
(S2), then we also have 𝑎 ∨ 𝑏 ⊑ 𝑐 ∨ 𝑑, by (S3). Symmetrically, 𝑐 ∨ 𝑑 ⊑ 𝑎 ∨ 𝑏. The
remaining conditions in Clause (*) in Definition 3.1 are verified by using the same
𝑎1 and 𝑐1. Indeed, from 𝑎1 ⊑ 𝑏 and 𝑏 ≤ 𝑎 ∨ 𝑏, hence 𝑏 ⊑ 𝑎 ∨ 𝑏 by (S1), we get
𝑎1 ⊑ 𝑎∨ 𝑏, by (S2). Similarly, 𝑐1 ⊑ 𝑐∨ 𝑑. The last two conditions in (*) hold since
these conditions do not involve 𝑏 and 𝑑, and 𝑎 and 𝑐 have remained unchanged.

Hence (𝑎, 𝑎 ∨ 𝑏) ∼ (𝑐, 𝑐 ∨ 𝑑). This means that 𝐾 is well-defined.
(iii) We have to show that if (𝑎, 𝑏) ∼ (𝑐, 𝑑), then (𝑎, 𝑏)∨(𝑒, 𝑓 ) ∼ (𝑐, 𝑑)∨(𝑒, 𝑓 ),

that is, (𝑎 ∨ 𝑒, 𝑏 ∨ 𝑓 ) ∼ (𝑐 ∨ 𝑒, 𝑑 ∨ 𝑓 ). Since (𝑎, 𝑏) ∼ (𝑐, 𝑑), then 𝑏 ⊑ 𝑑, hence
𝑏 ∨ 𝑓 ⊑ 𝑑 ∨ 𝑓 follows from (S4) and (S7). Symmetrically, 𝑑 ∨ 𝑓 ⊑ 𝑏 ∨ 𝑓 . Again
by (𝑎, 𝑏) ∼ (𝑐, 𝑑), there is 𝑐1 ⊑ 𝑑 such that 𝑎 ≤ 𝑐 ∨ 𝑐1. Then 𝑐1 ⊑ 𝑑 ∨ 𝑓
by (S2) (since 𝑑 ⊑ 𝑑 ∨ 𝑓 by (S1)); moreover, 𝑎 ∨ 𝑒 ≤ 𝑐 ∨ 𝑒 ∨ 𝑐1. Performing
the symmetrical argument, we get 𝑎1 ⊑ 𝑏 ∨ 𝑓 and 𝑐 ∨ 𝑒 ≤ 𝑎 ∨ 𝑒 ∨ 𝑎1. This
means that the same elements 𝑐1 and 𝑎1 witnessing (𝑎, 𝑏) ∼ (𝑐, 𝑑) also witness
(𝑎 ∨ 𝑒, 𝑏 ∨ 𝑓 ) ∼ (𝑐 ∨ 𝑒, 𝑑 ∨ 𝑓 ). We have shown that ∼ is a semilattice congruence.

(iv) Since we have shown that 𝐾 is well defined on the equivalence classes,
in order to get the equation in (iv) it is enough to check that if S has a 0, then
(𝑎, 𝑎 ∨ 𝑏) ∼ (0, 𝑎 ∨ 𝑏). The condition 𝑎 ∨ 𝑏 ⊑ 𝑎 ∨ 𝑏 is from (S4). Then take
𝑐1 = 𝑎 ∨ 𝑏 and 𝑎1 = 0 in order to witness (*).

Proof of Theorem 3.2. Definition 3.1 is justified by Lemma 3.3. In order to prove
Clause (1) in the theorem it is easier to deal with the structure S̃′ from Definition
3.1.

Claim. S̃′ = (𝑆,∨, 𝐾) is an additive closure semilattice.

We have shown in Lemma 3.3(iii) that (𝑆,∨) is a semilattice; it remains to
check that 𝐾 is an additive closure. Indeed, by the definition of 𝐾 ,

[𝑎, 𝑏] ≤ [𝑎, 𝑎 ∨ 𝑏] = 𝐾 [𝑎, 𝑏],
𝐾𝐾 [𝑎, 𝑏] = 𝐾 [𝑎, 𝑎 ∨ 𝑏] = [𝑎, 𝑎 ∨ 𝑎 ∨ 𝑏] = 𝐾 [𝑎, 𝑏], and
𝐾 ( [𝑎, 𝑏] ∨ [𝑐, 𝑑]) = 𝐾 [𝑎 ∨ 𝑐, 𝑏 ∨ 𝑑] = [𝑎 ∨ 𝑐, 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑]

= [𝑎, 𝑎 ∨ 𝑏] ∨ [𝑐, 𝑐 ∨ 𝑑] = 𝐾 [𝑎, 𝑏] ∨ 𝐾 [𝑐, 𝑑] .

Having proved the claim, Clause (1) in the theorem follows from Remark
2.1(a). The 0 of S̃ is the class [0, 0], since (0, 0) is a neutral element for S × S,
hence [0, 0] is neutral for the quotient S̃ = S/∼. Moreover, [𝑎, 𝑏] ⊑ [0, 0] means
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[𝑎, 𝑏] ≤ 𝐾 [0, 0] = [0, 0] and this implies [𝑎, 𝑏] = [0, 0], since [0, 0] is the
minimum of S̃.

Now we prove (2). We have 𝜐S (𝑎 ∨ 𝑏) = [𝑎 ∨ 𝑏, 0] = [𝑎, 0] ∨ [𝑏, 0] =
𝜐S (𝑎) ∨𝜐S (𝑏), hence 𝜐S is a semilattice homomorphism. Moreover, 𝜐S is injective,
since 𝜐S (𝑎) = 𝜐S (𝑐) means (𝑎, 0) ∼ (𝑐, 0) and this happens only if 𝑎 ≤ 𝑐 and
𝑐 ≤ 𝑎, that is, 𝑎 = 𝑐. Indeed, if 𝑏 = 𝑑 = 0 and 𝑎1 ⊑ 𝑏, 𝑐1 ⊑ 𝑑 in Clause (*) in
Definition 3.1, then 𝑎1 = 𝑐1 = 0 by (S0).

Furthermore, if 𝑎 ⊑ 𝑏 in S, then 𝑎 ∨ 𝑏 ⊑ 𝑏, by (S4) and (S3). We then get
(𝑎∨ 𝑏, 𝑏) ∼ (𝑏, 𝑏), by (S4) and taking 𝑐1 = 𝑎∨ 𝑏 and 𝑎1 = 𝑏 in (*) from Definition
3.1. Hence [𝑎, 0] ≤ [𝑎 ∨ 𝑏, 𝑏] = [𝑏, 𝑏] = 𝐾 [𝑏, 0], that is, 𝜐S (𝑎) ⊑ 𝜐S (𝑏),
according to the definition of ⊑ on 𝑆 in Definition 3.1. This shows that 𝜐S is a
⊑-homomorphism.

In fact, 𝜐S is an embedding, since from 𝜐S (𝑎) ⊑ 𝜐S (𝑏), that is, [𝑎, 0] ≤
𝐾 [𝑏, 0] = [𝑏, 𝑏], we get [𝑎 ∨ 𝑏, 𝑏] = [𝑎, 0] ∨ [𝑏, 𝑏] = [𝑏, 𝑏], that is, (𝑎 ∨ 𝑏, 𝑏) ∼
(𝑏, 𝑏), hence, according to (*) in Definition 3.1, 𝑎 ∨ 𝑏 ≤ 𝑏 ∨ 𝑐1, for some 𝑐1 ⊑ 𝑏.
From 𝑎 ≤ 𝑎 ∨ 𝑏 ≤ 𝑏 ∨ 𝑐1 and (S1) we get 𝑎 ⊑ 𝑏 ∨ 𝑐1. From 𝑐1 ⊑ 𝑏, (S4) and (S3)
we get 𝑏 ∨ 𝑐1 ⊑ 𝑏, hence 𝑎 ⊑ 𝑏 by (S2). This shows that 𝜐S is an embedding.

Since 𝜐S (0) = [0, 0], then 𝜐S is 0-preserving.
We now deal with (3). If 𝜂 : S → T is a homomorphism and there exists 𝜂 such

that 𝜂 = 𝜐S ◦𝜂, then 𝜂( [𝑎, 0]) = 𝜂(𝜐S (𝑎)) = 𝜂(𝑎), for every 𝑎 ∈ 𝑆. If furthermore 𝜂
is a 𝐾-homomorphism, then 𝜂( [0, 𝑏]) =3.3 𝜂(𝐾 [𝑏, 0]) = 𝐾𝜂( [𝑏, 0]) = 𝐾𝜂(𝑏), by
the equation in Lemma 3.3(iv). Since 𝜂 is supposed to be a lattice homomorphism,
it follows that 𝜂( [𝑎, 𝑏]) = 𝜂( [𝑎, 0]) ∨𝜂( [0, 𝑏]) = 𝜂(𝑎) ∨𝐾𝜂(𝑏), hence if 𝜂 exists it
is unique. The above considerations make sense since T is assumed to be principal,
so that 𝐾𝜂(𝑏) exists.

It is then enough to show that the above condition 𝜂( [𝑎, 𝑏]) = 𝜂(𝑎) ∨ 𝐾𝜂(𝑏)
actually determines a 𝐾-homomorphism 𝜂 from S̃ to T.

First, we need to check that if (𝑎, 𝑏) ∼ (𝑐, 𝑑), then 𝜂(𝑎)∨𝐾𝜂(𝑏) = 𝜂(𝑐)∨𝐾𝜂(𝑑),
so that 𝜂 is well-defined. In fact, suppose that (𝑎, 𝑏) ∼ (𝑐, 𝑑) is given by (*) in
3.1. From 𝑏 ⊑ 𝑑 and 𝑑 ⊑ 𝑏, we get 𝜂(𝑏) ⊑ 𝜂(𝑑) and 𝜂(𝑑) ⊑ 𝜂(𝑏), since 𝜂
is a homomorphism, so that 𝐾𝜂(𝑏) = 𝐾𝜂(𝑑), by the final sentence in Remark
2.1(c). Moreover, if 𝑐1 ⊑ 𝑑, then 𝜂(𝑐1) ⊑ 𝜂(𝑑), so that 𝜂(𝑐1) ≤ 𝐾𝜂(𝑑), by
the definition of 𝐾 . Since in addition 𝑎 ≤ 𝑐 ∨ 𝑐1, then 𝜂(𝑎) ≤ 𝜂(𝑐 ∨ 𝑐1) =
𝜂(𝑐) ∨𝜂(𝑐1) ≤ 𝜂(𝑐) ∨𝐾𝜂(𝑑), since 𝜂 is a homomorphism, so that 𝜂(𝑎) ∨𝐾𝜂(𝑏) ≤
𝜂(𝑐) ∨ 𝐾𝜂(𝑑), since we have already shown that 𝐾𝜂(𝑏) = 𝐾𝜂(𝑑). Symmetrically,
𝜂(𝑐) ∨ 𝐾𝜂(𝑑) ≤ 𝜂(𝑎) ∨ 𝐾𝜂(𝑏), hence 𝜂(𝑐) ∨ 𝐾𝜂(𝑑) = 𝜂(𝑎) ∨ 𝐾𝜂(𝑏). This means
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that 𝜂 is well-defined.
We now check that 𝜂 is a semilattice homomorphism. Indeed,

𝜂( [𝑎, 𝑏]) ∨ 𝜂( [𝑐, 𝑑]) = 𝜂(𝑎) ∨ 𝐾𝜂(𝑏) ∨ 𝜂(𝑐) ∨ 𝐾𝜂(𝑑)
= 𝜂(𝑎) ∨ 𝜂(𝑐) ∨ 𝐾𝜂(𝑏) ∨ 𝐾𝜂(𝑑)
=A 𝜂(𝑎 ∨ 𝑐) ∨ 𝐾 (𝜂(𝑏) ∨ 𝜂(𝑑))
= 𝜂(𝑎 ∨ 𝑐) ∨ 𝐾𝜂(𝑏 ∨ 𝑑) = 𝜂( [𝑎 ∨ 𝑐, 𝑏 ∨ 𝑑]),

where we have used the definition of 𝜂, the assumption that 𝜂 is a semilattice
homomorphism and in the identity marked with the superscript 𝐴 we have used the
assumption that T is additive.

Finally, 𝜂 is a 𝐾-homomorphism, since

𝜂(𝐾 [𝑎, 𝑏]) = 𝜂( [𝑎, 𝑎 ∨ 𝑏]) = 𝜂(𝑎) ∨ 𝐾𝜂(𝑎 ∨ 𝑏) =♦ 𝐾𝜂(𝑎 ∨ 𝑏) =
𝐾 (𝜂(𝑎) ∨ 𝜂(𝑏)) =2.1 𝐾 (𝜂(𝑎) ∨ 𝐾𝜂(𝑏)) = 𝐾𝜂( [𝑎, 𝑏]),

where we have used the definitions of 𝐾 and 𝜂, the assumption that 𝜂 is a homo-
morphism of specialization semilattices with 0 and Remark 2.1(b). The equation
marked with ♦ follows from 𝜂(𝑎) ≤ 𝜂(𝑎 ∨ 𝑏) ≤ 𝐾𝜂(𝑎 ∨ 𝑏).

Notice that we do not need to assume that T has a 0, in order to get (3). However,
if T has a 0 and 𝜂 is 0-preserving, then 𝜂 is 0-preserving, too, since we have proved
that 𝜐S is 0-preserving and that the diagram in (3) commutes.

Having proved Clause (3) in the theorem, we now prove Clause (4). Suppose
that U is a specialization semilattice with 0 and 𝜓 : S → U is a 0-preserving
homomorphism. Then 𝜂 = 𝜓 ◦ 𝜐U is a 0-preserving homomorphism from S to Ũ,
by clauses (1) and (2) applied to U. Applying Clause (3) to 𝜂 and T = Ũ, and
by the last comment in the proof of (3), we get that there is a unique 0-preserving
𝐾-homomorphism 𝜂 from S̃ to Ũ such that 𝜂 = 𝜐S ◦ 𝜂. Letting 𝜓 = 𝜂, then the
diagram in (4) commutes, since we have taken 𝜂 = 𝜓 ◦ 𝜐U . Conversely, if 𝜓 is
a 𝐾-homomorphism which makes the diagram in (4) commute, then necessarily
𝜓 = 𝜂, because of the unicity of 𝜂 in (3).

Notice that 𝜐S as given by Theorem 3.2(2) does not necessarily preserve existing
closures in S: just consider the case in which S is principal but not additive, then
closures necessarily are modified, since S̃ turns out to be additive.

Moreover, it is necessary to ask that 𝜂 is a𝐾-homomorphism in Theorem 3.2(3);
it is not enough to assume that 𝜂 is just a homomorphism. Indeed, let S = N with
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max as join and with 𝑛 ⊑ 𝑚, for all 𝑚, 𝑛 > 0. Then S̃ is isomorphic to S ∪ {∞},
where 𝐾𝑎 = ∞, for every 𝑎 ∈ 𝑆 ∪ {∞}, 𝑎 ≠ 0. Let 𝑇 = {0, 1, 2} with 2 ⊑ 1
and with the standard interpretation otherwise. Let 𝜂 : S → T with 𝜂(0) = 0 and
𝜂(𝑛) = 1 otherwise. Then the only 𝐾-homomorphism extending 𝜂 must send ∞ to
2 = 𝐾 (1). However, if we set 𝜂∗(∞) = 1, we still get a (not 𝐾-) homomorphism
from S̃ to T extending 𝜂.

Remark 3.4. For simplicity, we have stated and proved Theorem 3.2 for spe-
cialization semilattices with 0, but the theorem holds for arbitrary specialization
semilattices.

If S1 does not have a 0, first apply the theorem to S = S1 ∪ {0} as constructed
in Remark 2.3 and then restrict to S1 and S̃ \ {0}. Notice that 𝜐S sends 0 to 0.

In order to prove (3), if 𝜂1 : S1 → T1, add a new 0 to T1, getting some
specialization semilattice T. Extend 𝜂1 to some homomorphism 𝜂 : S → T by
setting 𝜂(0) = 0. Having obtained (3) in the extended situation, it follows that (3)
holds for the original 𝜂1, S1 and T1.

4 More general universal extensions

In the present section we assume that the reader is familiar with some basic notions
of model theory [2]. The following lemma about the existence of universal objects
is a folklore argument. A subreduct is a substructure of some reduct.

In the next lemma L ⊆ L′ are two languages, K ′ is a class of models for L′

and K is the class of all subreducts in the language L of members of K ′. We adopt
the convention that models in K ′ are denoted by A′, B′, . . . and A, B, . . . are the
corresponding L-reducts.

Lemma 4.1. Under the above assumptions, if K ′ is closed under isomorphism,
substructures and products, then, for every A ∈ K, there are Ã′ ∈ K ′ and an
L-embedding 𝜐A : A → Ã such that, for every B′ ∈ K ′ and L-homomorphism
𝜂 : A → B, there is a unique L′-homomorphism 𝜂 : Ã′ → B′ such that 𝜂 = 𝜐A ◦ 𝜂.

A

𝜂
��

𝜐A // Ã
𝜂
��

Ã′

𝜂
��

B B′
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The structure Ã′ is unique up to isomorphism over 𝜐A (𝐴). As a conse-
quence, if E ∈ K and 𝜓 : A → E is an L-homomorphism, then 𝜓 lifts to an
L′-homomorphism 𝜓 : Ã′ → Ẽ′ making the following diagram commute.

A
𝜓

��

𝜐A // Ã

𝜓
��

Ã′

𝜓
��

E
𝜐E // Ẽ Ẽ′

Proof. The proof is a standard construction of free objects. Since A ∈ K, then A
is a subreduct of some C′ ∈ K ′. Since K ′ is closed under substructures, we can
choose C′ in such a way that C′ is generated by 𝐴 in the language L′. Consider
the class of all C′ ∈ K ′ such that there is a homomorphism 𝜉 from A to C and
C′ is generated by 𝜉 (𝐴) in the language L′; by the preceding sentence this class is
nonempty. If 𝜉,C′ and 𝜉1,C′

1 are as above, let us call the pairs (𝜉,C′) and (𝜉1,C′
1)

equivalent if there is an isomorphism 𝜓 : C′
1 → C′ such that 𝜉 = 𝜉1 ◦ 𝜓, namely,

C′ and C′
1 are isomorphic over the image of 𝐴. Let (C′

𝑖 , 𝜉𝑖)𝑖∈𝐼 be a family of
representatives for each equivalence class. Since each C′ as above is generated by
𝜉 (𝐴) in the languageL′, we have |𝐶′ | ≤ sup{𝜔, |𝐴|, |L′ |}, hence any representative
can be taken over some fixed set of cardinality sup{𝜔, |𝐴|, |L′ |}; in conclusion,
there is a set—not a proper class—of such representatives.

Let D′ =
∏
𝑖∈𝐼 C′

𝑖 , thus D′ ∈ K ′, since K ′ is closed under products. Let Ã′ be
the substructure of D′ L′-generated by the sequences (𝜉𝑖 (𝑎))𝑖∈𝐼 , for 𝑎 varying in
𝐴. Since K ′ is closed under substructures, then Ã′ ∈ K ′. Moreover, the function
which assigns to 𝑎 ∈ 𝐴 the sequence (𝜉𝑖 (𝑎))𝑖∈𝐼 is an L-embedding 𝜐A from A to
Ã; 𝜐A is an embedding because of the first sentence in the proof. Notice that, for
every 𝑖 ∈ 𝐼, the projection 𝜋𝑖 from D′ to C′

𝑖 induces a homomorphism 𝜁𝑖 : Ã′ → C′
𝑖

such that 𝜉𝑖 = 𝜐A ◦ 𝜁𝑖 .
If B′ ∈ K ′ and 𝜂 : A → B is a homomorphism, let B′

1 be the L′-substructure
of B′ generated by 𝜂(𝐴), let 𝜄 be the inclusion embedding from B′

1 to B′ and let 𝜂1
be the function induced by 𝜂 from A to B1, that is, 𝜂 = 𝜂1 ◦ 𝜄. By the choice of the
C′
𝑖s, B′

1 is isomorphic to C′
𝑖 , for some 𝑖 ∈ 𝐼, through an isomorphism 𝜓 such that

𝜂1 = 𝜉𝑖 ◦𝜓, hence 𝜂 = 𝜂1 ◦ 𝜄 = 𝜉𝑖 ◦𝜓 ◦ 𝜄 = 𝜐A ◦ 𝜁𝑖 ◦𝜓 ◦ 𝜄. It follows that 𝜂 = 𝜁𝑖 ◦𝜓 ◦ 𝜄
is the desired homomorphism.

Since, by construction, Ã′ is L′-generated by 𝜐A (𝐴), then every element of Ã′

has the form 𝑡 (𝜐A (𝑎1), . . . , 𝜐A (𝑎𝑛)), for some natural number 𝑛, some term 𝑡 of L′

and elements 𝑎1, . . . , 𝑎𝑛 of 𝐴. The requests that 𝜂 be an L′-homomorphism and
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that 𝜂 = 𝜐A ◦ 𝜂 imply that

𝜂(𝑡 (𝜐A (𝑎1), . . . , 𝜐A (𝑎𝑛))) = 𝑡 (𝜂(𝜐A (𝑎1)), . . . , 𝜂(𝜐A (𝑎𝑛)))
= 𝑡 (𝜂(𝑎1), . . . , 𝜂(𝑎𝑛)),

hence 𝜂 is uniquely determined.
To prove the last statement, just take 𝜂 = 𝜓 ◦ 𝜐E, B = Ẽ and argue as in the

proof of clause (4) in Theorem 3.2.

In particular, Lemma 4.1 applies when K ′ is the class of the models of some
universal Horn first-order theory 𝑇 ′ in the language L′.

Lemma 4.1, together with the above comment, can be applied in all the situa-
tions described below.

(C1) L′ is the language of Boolean algebras plus a binary relation symbol ⊑ and
a unary operation symbol 𝐾 . 𝑇 ′ is the theory of closure algebras, that is, 𝑇 ′

contains the axioms for Boolean algebras plus axioms saying that 𝐾0 = 0
and 𝐾 is extensive, idempotent and additive and let us add to 𝑇 ′ an axiom
defining ⊑, namely, 𝑎 ⊑ 𝑏 ⇔ 𝑎 ≤ 𝐾𝑏.
Finally, L = {∨, ⊑}.

(C2) L′ is the language of closure semilattices plus a binary relation symbol ⊑.
𝑇 ′ is the theory of closure semilattices plus axioms defining ⊑, as above,
L = {∨, ⊑}.

(C3) As in (C1), but 𝐾 is only assumed to be extensive, idempotent and isotone.

(C4) As in (C2), plus the assumption that 𝐾 is additive.

(C5) As in (C2), plus the assumption that 𝐾 satisfies 𝑎 ∨ 𝐾𝑏 = 𝐾 (𝑎 ∨ 𝑏).
(C6) L′ is the language of closure posets plus a binary relation symbol ⊑. 𝑇 ′ is

the theory of closure posets plus axioms defining ⊑. Let L = {≤, ⊑}.
(C7) We can allow L = {≤, ⊑} also in all cases (C1)-(C5), adding the symbol ≤

to L′, with its definition 𝑎 ≤ 𝑏 ⇔ 𝑎 ∨ 𝑏 = 𝑏.

Recall that K is the class of all L-subreducts of models of K ′. In cases (C1)
- (C5) the class K turns out to be the class of all specialization semilattices, since
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we have proved in [9, Theorem 4.10] that every specialization semilattice can be
embedded into the specialization semilattice associated to some topological space
𝑋 . In particular, this provides an embedding into the specialization closure algebra
(𝑃(𝑋),∩,∪, ∁, ∅, 𝑋, 𝐾, ⊑); for cases (C2) - (C4) it is then sufficient to consider an
appropriate reduct.

For case (C5), it follows from the proof of [9, Theorem 4.8] that every spe-
cialization semilattice can be extended to some principal specialization semilattice
satisfying 𝑎 ∨ 𝐾𝑏 = 𝐾 (𝑎 ∨ 𝑏). In fact, for case (C5) the construction in the
proof [9, Theorem 4.8] provides an explicit description for the universal object
whose existence follows from Lemma 4.1. Notice also that Theorem 3.2 here
provides a description for the universal object corresponding to (C4).

In cases (C6) and (C7) the class 𝐾 is the class of specialization posets, since we
have shown in [9, Proposition 4.15] that every specialization poset can be embedded
into the order-reduct of some specialization semilattice. Then use the arguments
for (C1) - (C5).

It is an open problem to provide an explicit description of the structure Ã′ given
by Lemma 4.1 in cases (C1) - (C3) and (C6) - (C7).
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