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Reflectional topology in MV -algebras

F. Forouzesh and S.N. Hosseini

Abstract. In this paper, we define soaker ideals in an MV -algebra, and
study the relationships between soaker ideals and the other ideals in an invo-
lutive MV -algebras. Then we introduce a topology on the set of all the soaker
ideals, which we call reflectional topology, and give a basis for it. By defin-
ing the notion of join-soaker ideals, we show that the reflectional topology is
compact. We also give a characterization of connectedness of the reflectional
topology. Finally, we investigate the properties of T0 and T1-space in this
topology.

1 Introduction and preliminaries

MV -algebras have been introduced by C.C. Chang in 1958 [1] to give an
algebraic counterpart of the multiple-valued  Lukasiewicz propositional logic.

After their introduction by Chang, MV-algebras free themselves from
the bonds of logic and become an autonomous mathematical discipline with
deep connections to several other branches of mathematics. For example, in
1986 D. Mundici proved that the category of lattice ordered abelian groups
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with strong unit is categorically equivalent to the category of MV-algebras
([9]). This result is very important because lattice ordered abelian groups
do not set up an equational variety unlike MV-algebras. In this way more
complicated properties in the group theory language can became simpler
in the language of MV-algebras. Moreover, the study of normal forms for
Lukasiewicz logic brought to a deep relation between MV-algebras and toric
varieties through the concept of Schauder bases, which are the affine versions
of a complex of nonsingular cones.

We recall that if A is an MV−algebra, then we denote by Spec(A) the
set of prime ideals of A and Spec(A) can be endowed with the spectral
topology. The topological space Spec(A) is called the prime spectrum of A.
Recently, F. Forouzesh et al. introduced the inverse topology on Min(A)
and proved that it is compact, Hausdorff, T0, and T1 [6].

In this paper, we recall some facts concerning MV -algebras, introduce
soaker ideals in an MV -algebra A, investigate some relationships between
the soaker ideals and the other ideals of an involutive MV -algebra and give
a characterization of soaker ideals and study some properties of them.

Then on the set X = Refl(A), of soaker ideals, we define a topology,
τX , called the reflectional topology. We show it is an Alexandrov topology
and give a basis for it. We define join-soaker ideals in MV -algebras and
give several characterizations for it. We give a condition under which a
certain subset of X is compact; and we show that if A is a join-soaker ideal,
then X is compact. Also, we give a characterization of clopen sets and
use that to characterize connectedness of the reflectional topology τX . We
also prove for a Boolean algebra A, the topology is disconnected for a non-
trivial X. Finally, we show that the reflectional topology is T0; and we give
necessary and sufficient conditions for X to be T1. We show Hausdorffness
is equivalent to being T1.

In all the sections, we recollect some definitions and results which will
be used in what follows.

Definition 1.1. [1] An MV -algebra is a structure (A, ⊕, *, 0), where ⊕
is a binary operation, *, is a unary operation, and 0 is a constant such that
the following axioms are satisfied for any a, b ∈ A :
(MV 1) (A, ⊕, 0) is an abelian monoid,
(MV 2) (a∗)∗ = a,
(MV 3) 0∗ ⊕ a = 0∗,
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(MV 4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

Note that 1 = 0∗ and the auxiliary operation � is defined as follows:

x� y = (x∗ ⊕ y∗)∗.

Lemma 1.2. [10] Let A be an MV -algebra. For x, y ∈ A, the following
conditions are equivalent:

(1) x∗ ⊕ y = 1,

(2) x� y∗ = 0,

(3) There is an element z ∈M such that x⊕ z = y,

(4) y = x⊕ (y 	 x).

For any two elements x, y ∈ A, x ≤ y iff x and y satisfy the equivalent
conditions (1)-(4), where ≤ is the natural order of A.

We recall that the natural order determines a bounded distributive lat-
tice structure such that

x∨y = x⊕ (x∗�y) = y⊕ (x�y∗) and x∧y = x� (x∗⊕y) = y� (y∗⊕x).

Lemma 1.3. [10] In each MV -algebra A, the following hold for all x, y, z ∈ A:

(1) x ≤ y if and only if y∗ ≤ x∗,
(2) If x ≤ y, then x⊕ z ≤ y ⊕ z and x� z ≤ y � z, x ∧ z 6 y ∧ z,

(3) x ≤ y if and only if x∗ ⊕ y = 1 if and if x� y∗ = 0,

(4) x, y ≤ x ⊕ y and x � y ≤ x, y, x ≤ nx = x ⊕ x ⊕ · · · ⊕ x and
xn = x� x� · · · � x ≤ x,

(5) x⊕ x∗ = 1 and x� x∗ = 0,

(6) If x ≤ y and z ≤ t, then x⊕ z ≤ y ⊕ t,
(7) x� (y ∨ z) = (x� y) ∨ (x� z),
(8)x∧ (y⊕ z) 6 (x∧ y)⊕ (x∧ z), hence x∧ (x1 ⊕ · · · ⊕ xn) 6 (x∧ x1)⊕

· · · ⊕ (x ∧ xn), for all x1, . . . , xn ∈ A.

Definition 1.4. [2] An ideal of an MV -algebra A is a nonempty subset I
of A satisfying the following conditions:

(I1) If x ∈ I , y ∈ A and y ≤ x then y ∈ I,
(I2) If x, y ∈ I, then x⊕ y ∈ I.

We denote by Id(A) the set of ideals of an MV -algebra A.



252 F. Forouzesh and S.N. Hosseini

Definition 1.5. [2] Let P be an ideal of an MV -algebra A. Then P is a
proper ideal of A if P 6= A. An ideal I of an MV -algebra A is called
• [2] prime ideal if for all x, y ∈ A, x ∧ y ∈ P yields x ∈ P or y ∈ P .
• [10] finitely meet-irreducible if I ∩ J ⊆ P , then I ⊆ P or J ⊆ P , for

all I, J ∈ Id(A).

Lemma 1.6. [10] In an MV -algebra A, the ideal P is finitely meet-
irreducible if and only if P is prime ideal of A.

Definition 1.7. [2, 8] Let X and Y be two MV -algebras. A function
f : X → Y is called a homomorphism of MV -algebras if and only if

(1) f(0) = 0,
(2) f(x⊕ y) = f(x)⊕ f(y),
(3) f(x∗) = (f(x))∗.

Remark 1.8. [2] We recall that for a nonempty subset X ⊆ A, the smallest
ideal of A which contains X, that is,

⋂{I ∈ Id(A) : X ⊆ I}, is said to be
the ideal of A generated by X and will be denoted by (X].

Remark 1.9. [10] Let X ⊆ A. We have
(1) (X] = {a ∈ A : a 6 x1⊕x2⊕...⊕xn, for some n ∈ N and x1, ..., xn ∈

X}. I ∈ Id(A) is called a finitely generated ideal, if I = (x1, ..., xn], for some
x1, x2, ..., xn ∈ A and n ∈ N. In particular, (a] = {x ∈ A : x 6 na, for some n ∈
N}.

(2) For I1, I2 ∈ Id(A), I1 ∨ I2 = {x ∈ A : ∃ai ∈ I;x 6 a1 ⊕ a2}.
(3) (a] ∧ (b] = (a ∧ b].
(4) if a ≤ b, then (a] ⊆ (b].

Proposition 1.10. [10] Let f : A → B be a homomorphism of MV -
algebras.

(i) if J is a proper ideal of B, then f−1(J) is a proper ideal of A.
(ii) if f is onto and I is an ideal of A, then f(I) is an ideal of B.

Lemma 1.11. [10] Let f : A → B be an onto homomorphism of MV -
algebras A,B and

∨
i∈I Ii be a family of ideals of A. Then we have f(

∨
i∈I Ii) =∨

i∈I f(Ii).

Definition 1.12. [2] Let X be a nonempty subset of MV -algebra A and
AnnA(X) be the annihilator of X defined by

AnnA(X) = {a ∈ A : a ∧ x = 0,∀x ∈ X}.
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2 Soaker ideals in MV -algebras

In the sequel, A is an MV -algebra.

Definition 2.1. Let I be an ideal of A. I is called a soaker ideal of A, if

(i) I 6= {0}
(ii) For {Ii}i∈J ⊆ Id(A), If I ⊆ ∨i∈J Ii, then I ⊆ Ii, for some i ∈ J .

Example 2.2. Let A = {0, a, b, 1}, where 0 < a, b < 1. Define �, ⊕ and ∗
as follows:

� 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

⊕ 0 a b 1

0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

∗ 0 a b 1

1 b a 0

Then (A,⊕,�, ∗, 0, 1) is an MV -algebra [8]. It is clear that I1 = {0},
I2 = {0, a}, I3 = {0, b} and I4 = A are ideals of A and I2 and I3 are soaker
ideals, while A is not a soaker ideal because A ⊆ I2 ∨ I3. But A 6⊆ I2 and
A 6⊆ I3.

Example 2.3. Consider S1 = {0, 1}, S2 = {0, 1/2, 1}. Then A = S1 × S2

with operations (x, y)⊕ (z, t) = (min{1, x+ z},min{1, y+ t}) and (x, y)∗ =
(1− x, 1− y) is an MV -algebra. We have I0 = {(0, 0)}, I1 = {(0, 0), (1, 0)},
I2 = {(0, 0), (0, 1/2), (0, 1)} and A are ideals of A. It can be easily verified
that I1, I2 are soaker ideals, while A is not a soaker ideal.

Example 2.4. Let A = {0, a, b, c, d, e, f, 1} is rectangular cube such that
0 < a, d < e < 1, 0 < a, b < c < 1, 0 < b, d < f < 1, 0 < d < e, f < 1,
0 < a < c, e < 1 and 0 < b < c, f < 1.
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Define ⊕ and ∗ as follows:

⊕ 0 a b c d e f 1

0 0 a b c d e f 1
a a a c c e e 1 1
b b c b c f 1 f 1
c c c c c 1 1 1 1
d d e f 1 d e f 1
e e e 1 1 e e 1 1
f f 1 f 1 f 1 f 1
1 1 1 1 1 1 1 1 1

∗ 0 a b c d e f 1

1 f e d c b a 0

Then (A,⊕, ∗, 0, 1) is an MV -algebra [8], it is clear that I0 = {0}, I1 =
{0, a}, I2 = {0, d}, I3 = {0, b}, I4 = {0, a, d, e}, I5 = {0, a, b, c}, I6 =
{0, b, d, f} and I7 = A are ideals of A. We can easily see that I1, I2 and
I3 are soaker ideals of A,but I4, I5, I6 and I7 are not soaker ideals. For
example, I4 ⊆ I1 ∨ I2. But I4 6⊆ I1 and I4 6⊆ I2. Hence I4 is not a soaker
ideal of A.

Example 2.5. Let G = ⊕{Zi/i ∈ N} be the lexicographic product of
denumerable infinite copies of the abelian l-group Z of the relative integers
and ei ∈ G such that eik = 0 if k 6= i and eik = 1 if k = i.
Consider the perfect MV -algebra A = Γ(G), where Γ is a functor from the
category of abelian l-groups to the category of prefect MV -algebras [5].
If we set Pi =< (0, ei) >, then Pi ⊆ Pj , for i > j, and hence the set of all
soaker ideals of A is {Pi/i ∈ N}.

Theorem 2.6. S is a soaker ideal of A if and only if S =
∨
i∈J Ii implies

S = Ii, for some i ∈ J .

Proof. Let S be a soaker ideal and S =
∨
i∈J Ii. Since S ⊆ ∨i∈I Ii, we get

S ⊆ Ii ⊆
∨
i∈J Ii = S. Hence S = Ii.

Conversely, suppose that S ⊆ ∨i∈J Ii. Then S∩∨i∈J Ii =
∨
i∈J(S∩Ii) = S,

by hypothesis, S ∩ Ii = S, for some i ∈ J . Thus S ⊆ Ii, for some i ∈ J .
Therefore S is a soaker ideal of A.
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Lemma 2.7. In an MV -algebra A, we have (a] ∨ (b] = (a ∨ b] = (a⊕ b].

Proof. Since a, b ≤ a∨b ≤ a⊕b, by Remark 1.9(4), we deduce that (a], (b] ⊆
(a ∨ b] ⊆ (a⊕ b]. Hence (a] ∨ (b] ⊆ (a ∨ b] ⊆ (a⊕ b].
Conversely, let x ∈ (a⊕ b]. It follows from Remark 1.9 (1), (2) that for some
n ≥ 1,

x ≤ n(a⊕ b) = na⊕ nb ∈ (a] ∨ (b].

Hence x ∈ (a]∨(b]. That is, (a⊕b] ⊆ (a]∨(b]. Thus we have (a]∨(b] = (a⊕b].
So (a] ∨ (b] = (a ∨ b] = (a⊕ b].

Since for any ideal I, I =
∨
a∈I(a], we have:

Corollary 2.8. Every soaker ideal is principal.

Setting C = {z ∈ A : ∀x, y ∈ A, z ≤ x ⊕ y implies ∃m ∈ N, z ≤
mx or ∃n ∈ N, z ≤ ny}, we have:

Theorem 2.9. (a] is soaker if and only if a ∈ C.

Proof. Suppose that (a] is soaker. If a ≤ x ⊕ y, then by Remark 1.9 (4),
(3), we get (a] ⊆ (x] ∨ (y]. Hence (a] ⊆ (x] or (a] ⊆ (y]. So a ≤ mx, for
some m ∈ N or a ≤ ny, for some n ∈ N. Thus a ∈ C.

Now, suppose a ∈ C. If (a] ⊆ ∨α∈I(aα], then a ∈ ∨α∈I(aα]. We obtain
a ≤ aα1 ⊕ · · · ⊕ aαk . By hypothesis with some manipulations one obtains,
a ≤ m1aα1 or a ≤ m2aα2 or · · · or a ≤ mkaαk . We conclude that (a] ⊆ (aα1 ]
or (a] ⊆ (aα2 ] or · · · or (a] ⊆ (aαk ]. Thus (a] is soaker.

Lemma 2.10. If a ∈ C, then for all n ∈ N, na ∈ C; and if there exists
n ∈ N such that na ∈ C, then a ∈ C

Proof. Suppose that a ∈ C. Let n ∈ N and na ≤ x ⊕ y. Since a ≤ na, we
get a ≤ x⊕ y. So a ≤ kx or a ≤ ly. Thus na ≤ knx or na ≤ lny. Therefore
na ∈ C.

Now, suppose there exists n ∈ N such that na ∈ C. If a ≤ x ⊕ y, then
na ≤ nx ⊕ ny. By hypothesis, we have na ≤ (nk)x or na ≤ (nl)y. Since
a ≤ na, we deduce that a ≤ (nk)x or a ≤ (nl)y. Therefore a ∈ C.

Theorem 2.11. Let f : A → B be a homomorphism of MV -algebras and
S be a soaker ideal of B. Then f−1(S) is a soaker ideal of A.
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Proof. Clearly, f−1(S) is an ideal of A. If f−1(S) = {0}, then f({0}) = S,
and so {0} = S, which is a contradiction. Hence f−1(S) 6= {0}.
Let {Ii}i∈J be a family of ideals of A such that f−1(S) ⊆ ∨i∈J Ii. It follows
from Lemma 1.11 that S ⊆ f(

∨
i∈J Ii) =

∨
i∈J f(Ii). Now, since S is a

soaker ideal of B, we get S ⊆ f(Ii), for some i ∈ J . Hence f−1(S) ⊆ Ii, for
some i ∈ J . Thus f−1(S) is a soaker ideal of A.

Theorem 2.12. Let S be a soaker ideal of A and f : A→ B be an isomor-
phism of MV -algebras. Then f(S) is a soaker ideal of B.

Proof. Let {Ii}i∈J be a family of ideals of B such that f(S) ⊆ ∨i∈J Ii. Since
f is onto, we get Ii = f(I ′i), for some I ′i ∈ Id(A), and so f(S) ⊆ ∨i∈I f(I ′i),
for some I ′i ∈ Id(A). By Lemma 1.11, we have f(S) ⊆ f(

∨
i∈J I

′
i) and since

f is one to one, so S ⊆ ∨i∈J Ii
′. By hypothesis, S ⊆ I ′i, for some i ∈ J .

Hence f(S) ⊆ f(I ′i) = Ii, for some i ∈ J . Thus, f(S) is a soaker ideal of
B.

Definition 2.13. AnMV -algebraA is called involutive if I = Ann(Ann(I)),
for every ideal I of A.

Example 2.14. (i) MV -algebra in Example 2.2 is involutive.

(ii) MV -algebra in Example 2.5 is involutive.

Example 2.15. Let C = {0, c, 2c, 3c, . . . , 1−2c, 1−c, 1} be the MV -algebra
defined in [1] with operations as follows:
if x = nc and y = mc, then x⊕ y := (m+ n)c,
if x = 1− nc and y = 1−mc, then x⊕ y := 1,
if x = nc and y = 1−mc and m ≤ n, then x⊕ y := 1,
if x = nc and y = 1−mc and n < m, then x⊕ y := 1− (m− n)c,
if x = 1−mc and y = nc and m ≤ n, then x⊕ y := 1,
if x = 1−mc and y = nc and n < m, then x⊕ y := 1− (m− n)c,
if x = nc, then x∗ := 1− nc,
if x = 1− nc, then x∗ := nc.

We see that C is a prefect MV -algebra (that is, C has only a maximal
ideal) and it has only three ideals: {0}, M = {0, c, 2c, 3c, . . .} and C. Since
Ann(Ann(M)) = Ann({0}) = A 6= M , C is not involutive.



Reflectional topology in MV -algebras 257

Lemma 2.16. Let A be an MV -algebra and I, J ∈ Id(A). We have
(i) I ⊆ Ann(Ann(I)),
(ii) if I ⊆ J , then Ann(J) ⊆ Ann(I),
(iii) Ann(I ∩ J) = Ann(I) ∩Ann(J),
(iv) Ann(I ∨ J) ⊇ Ann(I) ∩Ann(J).

Proof. (i) Let a ∈ I. Suppose that x ∈ Ann(I). Hence x ∧ t = 0, for
all t ∈ I. Since a ∈ I, it follows that x ∧ a = 0, for x ∈ Ann(I). Thus
a ∈ Ann(Ann(I)). Therefore we get I ⊆ Ann(Ann(I)).

(ii) Suppose that a ∈ Ann(J). Hence a ∧ x = 0, for all x ∈ J . We get
a ∧ x = 0, for all x ∈ I. Then we obtain a ∈ Ann(I). Thus Ann(J) ⊆
Ann(I).

(iii) We have a ∈ Ann(I ∩ J) if and only if a∧ x = 0, for all x ∈ I ∩ J if
and only if a ∧ x = 0, for all x ∈ I and x ∈ J if and only if a ∈ Ann(I) and
a ∈ Ann(J) if and only if a ∈ Ann(I) ∩Ann(J).

(iv) Suppose that a ∈ Ann(I)∩Ann(J). Hence a∧ t = 0 and a∧ s = 0,
for all t ∈ I and s ∈ J .

Now, for all x ∈ I ∨ J , by Remark 1.9 (2), we get x ≤ c ⊕ b, for some
c ∈ I and b ∈ J . It follows from Lemma 1.3 (2), (8) that

a ∧ x ≤ a ∧ (c⊕ b) ≤ (a ∧ c)⊕ (a ∧ b) = 0

Hence a ∈ Ann(I ∨ J). Thus Ann(I ∨ J) ⊇ Ann(I) ∩Ann(J).

Lemma 2.17. Let A be involutive. We have

Ann(I) ∨Ann(J) ⊆ Ann(I ∩ J).

Proof. Since A is involutive, by Lemma 2.16(iii) and (iv), we have

I ∩ J = Ann(Ann(I ∩ J),

= Ann(Ann(I) ∩Ann(J)),

= Ann(Ann(I)) ∩Ann(Ann(J)),

⊆ Ann(Ann(I) ∨Ann(J)).

Hence Ann(Ann(I ∩ J)) ⊆ Ann(Ann(I) ∨ Ann(J)), so by Lemma 2.16(ii),
we get Ann(Ann(Ann(I) ∨ Ann(J))) ⊆ Ann(Ann(Ann(I ∩ J))). Thus we
obtain Ann(I) ∨Ann(J) ⊆ Ann(I ∩ J).
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Theorem 2.18. Let A be an involutive MV -algebra. Then, every non-zero
proper ideal of A is finitely meet-irreducible ideal if and only if it is a soaker
ideal of A.

Proof. Suppose that P is a soaker ideal of A and I ∩ J ⊆ P , where I, J ∈
Id(A). It follows from Lemma 2.16(iii) and (iv) that

Ann(P ) ⊆ Ann(I ∩ J),

= Ann(I) ∩Ann(J),

⊆ Ann(I) ∨Ann(J).

Since Ann(P ) is a soaker ideal, Ann(P ) ⊆ Ann(I) or Ann(P ) ⊆ Ann(J).
Then by Lemma 2.16(ii), we get Ann(Ann(P )) ⊇ Ann(Ann(I)) or
Ann(Ann(P )) ⊇ Ann(Ann(J)). Then we obtain P ⊇ I or P ⊇ J .

Conversely, suppose that P is a meet-irreducible ideal of A. Let P ⊆
I1 ∨ I2 ∨ · · · ∨ Ik, where Ii ∈ Id(A), for i = 1, · · · k. It follows from Lemma
2.16(ii) and (iv) that

Ann(P ) ⊇ Ann(I1 ∨ · · · ∨ Ik) ⊇ Ann(I1) ∩ · · · ∩Ann(Ik).

SinceAnn(P ) is an ideal, so by hypothesis, Ann(P ) ⊇ Ann(I1) orAnn(P ) ⊇
Ann(I2),..., Ann(P ) ⊇ Ann(Ik). Now, by Lemma 2.16(ii), we get
Ann(Ann(P )) ⊆ Ann(Ann(I1)) or ....or Ann(Ann(P )) ⊆ Ann(Ann(Ik)).
We obtain P ⊆ I1 or ... or P ⊆ Ik.

Theorem 2.19. If an ideal P is soaker, then Ann(P ) is finitely meet-
irreducible.

Proof. Suppose P is soaker ideal and I ∩ J ⊆ Ann(P ). It follows from
Lemma 2.16(ii) that Ann(Ann(P )) ⊆ Ann(I ∩ J). By Lemma 2.16(i), (iii)
and (iv), we have

P ⊆ Ann(Ann(P )),

⊆ Ann(I ∩ J),

= Ann(I) ∩Ann(J),

⊆ Ann(I) ∨Ann(J).

Since P is a soaker ideal, P ⊆ Ann(I) or P ⊆ Ann(J). By Lemma 2.16(ii),
we have Ann(Ann(I)) ⊆ Ann(P ) or Ann(Ann(J)) ⊆ Ann(P ). It follows
from Lemma 2.16(i) that I ⊆ Ann(P ) or J ⊆ Ann(P ).
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Theorem 2.20. If A is involutive and Ann(P ) is finitely meet-irreducible,
then the ideal P is soaker.

Proof. Suppose that P is finitely meet-irreducible and P ⊆ I1∨ I2∨· · ·∨ Ik,
where Ii ∈ Id(A), for i = 1, · · · k. Hence, by Lemma 2.16(ii) and (iv), we
get

Ann(P ) ⊇ Ann(I1 ∨ · · · ∨ Ik) ⊇ Ann(I1) ∩ · · · ∩Ann(Ik).

Since Ann(P ) is finitely meet-irreducible, Ann(P ) ⊇ Ann(I1) or Ann(P ) ⊇
Ann(I2),..., Ann(P ) ⊇ Ann(Ik). Now, by Lemma 2.16(ii), we get
Ann(Ann(P )) ⊆ Ann(Ann(I1)) or ....or Ann(Ann(P )) ⊆ Ann(Ann(Ik)).
We obtain P ⊆ I1 or ... or P ⊆ Ik.

By Theorem 2.18 and Lemma 1.6, we obtain the following corollary:

Corollary 2.21. Let A be an involutive MV -algebra. Then P is a soaker
ideal if and only if P is a prime ideal.

3 The reflectional topology in MV -algebras

Let A be an MV -algebra. We denote the set of all soaker ideals of A by
Refl(A) and for I ∈ Id(A), we define U(I) = {S ∈ Refl(A) | S ⊆ I}.

Proposition 3.1. Let A be an MV -algebra. Then for ideals I, K and
{Ii}i∈J ⊆ Id(A), we have:

(i) U(A) = Refl(A) and U({0}) = ∅.
(ii) I ⊆ K implies U(I) ⊆ U(K).

(iii)
⋂
i∈J U(Ii) = U(

⋂
i∈J Ii).

(iv)
⋃
i∈J U(Ii) = U(

∨
i∈J Ii).

Proof. (i) Obviously, U(A) = Refl(A) and U({0}) = ∅.
(ii) By definition, it is clear.

(iii) Since
⋂
i∈J Ii ⊆ Ii, for all i ∈ J , by part (ii), U(

⋂
i∈J Ii) ⊆ U(Ii), for

all i ∈ J . Hence U(
⋂
i∈J Ii) ⊆

⋂
i∈J U(Ii). Conversely, let S ∈ ⋂i∈J U(Ii).

Then S ∈ U(Ii), for all i ∈ J . We get S ⊆ Fi, for all i ∈ I, and so
S ⊆ ⋂i∈I Fi. Thus S ∈ U(

⋂
i∈J Ii).

(iv) Suppose that S ∈ ⋃i∈J U(Ii). Then we have S ∈ U(Ii), for some
i ∈ J . Hence S ⊆ Ii, for some i ∈ J . We get S ⊆ Ii ⊆

∨
i∈J Ii. It follows
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that S ∈ U(
∨
i∈J Ii). Thus

⋃
i∈J U(Ii) ⊆ U(

∨
i∈J Ii). Conversely, suppose

that S ∈ U(
∨
i∈J Ii). We get S ⊆ ∨i∈J Ii. Since S is a soaker ideal, we

get S ⊆ Ij , for some j ∈ J . Hence S ∈ U(Ij), for some j ∈ J . We obtain
S ∈ ⋃j∈J U(Ij). Therefore

⋃
i∈J U(Ii) = U(

∨
i∈J Ii).

By parts (i), (iii) and (iv) of Proposition 3.1, τX = {U(I)|I ∈ Id(A)}
is a topology on the set X = Refl(A), called the reflectional topology.

Recalling that an alexandrov topological space is one in which the in-
tersection of any collection of open sets is open, or equivalently the union
of any collection of closed sets is closed, we have:

Theorem 3.2. (X, τX) is an Alexandrov topology.

Proof. The proof follows from part (iii) of Proposition 3.1.

Example 3.3. Consider Example 2.2. We have U(I1) = ∅, U(I2) = {I2},
U(I3) = {I3}, and U(A) = {I2, I3}. Hence we obtain τX = {∅, {I2}, {I3}, X}.
Example 3.4. Consider Example 2.3.We can easily check that U(I0) = ∅,
U(I1) = {I1}, U(I2) = {I2}, and U(A) = {I1, I2}. Hence we obtain τX =
{∅, {I1}, {I2}, X}.
Example 3.5. Consider Example 2.4. We can easily check that U(I0) = ∅,
U(I1) = {I1}, U(I2) = {I2}, U(I3) = {I3}, U(I4) = {I1, I2}, U(I5) =
{I1, I3}, U(I6) = {I2, I3}, and U(A) = X. We obtain

τX = {∅, {I1}, {I2}, {I3}, {I1, I2}, {I1, I3}, {I2, I3}, X}.

Example 3.6. Consider Example 2.5. It is clear that X = Refl(A) =
{Pi/i ∈ N} and U({(0,0) = ∅, U(P1) = {Pi}i≥1, U(P2) = {Pi}i≥2 and
U(Pn) = {Pi}i≥n. Therefore we obtain τX = {∅, X, {Pi}i≥1, {Pi}i≥2, · · · } is
topology.

For a ∈ A, let us denote U((a]) by U(a). So U(a) = {S ∈ X | S ⊆ (a]}.
Proposition 3.7. Let a, b ∈ A. Then

(i) if a = 0, then U(a) = ∅.
(ii) if (a] = (b], then U(a) = U(b).
(iii) if a ≤ b, then U(a) ⊆ U(b).
(iv) U(a) ∩ U(b) = U(a ∧ b).
(v) U(a) ∪ U(b) = U(a ∨ b) = U(a⊕ b).
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Proof. (i) and (ii) are clear.

(iii) Suppose that a ≤ b. It follows from Remark 1.9(4) that (a] ⊆ (b].
Let S ∈ U(a). We get S ⊆ (a] ⊆ (b]. We conclude that S ∈ U(b). Thus
U(a) ⊆ U(b).

(iv) By Remark 1.9(3), we have

S ∈ U(a) ∩ U(b) ⇔ S ⊆ (a] and S ⊆ (b]

⇔ S ⊆ (a] ∧ (b]

⇔ S ⊆ (a ∧ b]
⇔ S ∈ U(a ∧ b).

(v) It follows from Lemma 2.7 that

S ∈ U(a) ∪ U(b) ⇔ S ⊆ (a] or S ⊆ (b]

⇔ S ⊆ (a] ∨ (b]( since (a], (b] ⊆ (a] ∨ (b])

⇔ S ⊆ (a ∨ b]
⇔ S ⊆ (a⊕ b]
⇔ S ∈ U(a ∨ b) and S ∈ U(a⊕ b).

Conversely, let S ∈ U(a ⊕ b). Then we get S ⊆ (a ⊕ b]. It follows from
Lemma 2.7 that S ⊆ (a] ∨ (b]. Since S is a soaker ideal, S ⊆ (a] or S ⊆ (b].
Thus S ∈ U(a) ∪ U(b).

Lemma 3.8. Any open subset of X is a union of subsets from the family
{U(a)|a ∈ A}.

Proof. An open subset of X is of the form U(I), for an ideal I of A. It
follows from Proposition 3.1(iv) that U(I) = U(

∨
a∈I(a]) =

⋃
a∈I U((a]) =⋃

a∈I U(a), as desired.

Theorem 3.9. Let A be an MV -algebra. The family {U(a)|a ∈ A} is a
basis for the topology of X.

Proof. By Proposition 3.1(iii), {U(a)|a ∈ A} is closed under intersection
and by Lemma 3.8, X = U(A) = ∪a∈AU(a). The result then follows.

The set U(a) will be called a basic open set of X.
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4 Compactness and connectedness

Considering X as a partially ordered set under inclusion, we have:

Lemma 4.1. Let I, J be ideals of an MV -algebra A. J is an upper bound
of U(I) if and only if U(I) ⊆ U(J).

Proof. Suppose that J is an upper bound of U(I). So for all S ∈ U(I),
S ⊆ J . Hence for all S ∈ U(I), S ∈ U(J). Thus we get U(I) ⊆ U(J).
Conversely, suppose U(I) ⊆ U(J). So for every S ∈ U(I), S ∈ U(J). Hence
for every S ∈ U(I), S ⊆ J . Hence J is an upper bound of U(I).

Corollary 4.2. I is an upper bound of U(I).

Denoting “S is a soaker ideal and S ⊆ I” by S ⊆s I, we have:

Lemma 4.3.
∨
S⊆sI S is a least upper bound of U(I).

Proof. Let S ∈ U(I). Then S ⊆s I, and so S ⊆ ∨S⊆sI S. So
∨
S⊆sI S is an

upper bound of U(I). Suppose J is an upper bound of U(I). Then for all
S ∈ U(I), S ⊆ J . Hence we get

∨
S⊆sI S ⊆ J . So

∨
S⊆sI S is a least upper

bound of U(I).

Lemma 4.4. U(I) = U(
∨
S⊆sI S).

Proof. Since
∨
S⊆sI S ⊆ I, U(

∨
S⊆sI S) ⊆ U(I). If S ∈ U(I), then S ⊆s I.

So S ⊆s ∨S⊆sIS. Thus S ∈ U(
∨
S⊆sI S). Therefore U(I) ⊆ U(

∨
S⊆sI S).

Definition 4.5. An ideal I is said to be a join-soaker ideal (or JS-ideal), if
I is the least upper bound of U(I).

Note that any soaker ideal is a JS-ideal.

Lemma 4.6. For an ideal I, the following conditions are equivalent:

(1) For all J ∈ Id(A), U(I) ⊆ U(J) implies I ⊆ J .

(2) I is a join-soaker ideal.

(3) F =
∨
S⊆sI S.
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Proof. (1)⇒ (2) By Corollary 4.2, I is an upper bound of U(I). Let J be an
upper bound of U(I). By Lemma 4.1, we get U(I) ⊆ U(J). By hypothesis,
I ⊆ J . Hence I is the least upper bound of U(I).

(2) ⇒ (3) By Lemma 4.3,
∨
S⊆sI S is a least upper bound of U(I). By

hypothesis, I is the least upper bound of U(I). Therefore I =
∨
S⊆sI S.

(3) ⇒ (1) Suppose U(I) ⊆ U(J). By Lemma 4.1, J is an upper bound
of U(I). By hypothesis, I =

∨
S⊆sI S and by Lemma 4.3,

∨
S⊆sI S is the

least upper bound of U(I). So I is the least upper bound of U(I). Thus
I ⊆ J .

Remark 4.7. We can easily show that if (a] ⊆ ∨α(bα], then (a] ⊆ ∨k
i=1(bi].

Also we have, if (a] =
∨
α(bα], then (a] =

∨k
i=1(bi].

Lemma 4.8. (a] is a JS-ideal if and only if there exists b1, b2, · · · , bk satis-
fiying:

(1) for all i ∈ I, bi ∈ C,

(2) there exists m such that for all i ∈ I, bi ≤ ma, and

(3) b1 ⊕ b2 ⊕ · · · ⊕ bk ≥ a.

In such a case (a] =
∨n
i=1(bi], where (bi] is soaker and (bi] ⊆ (a].

Proof. Suppose that (a] is a JS-ideal. Since soaker ideals are principal, (a] =
∨(bα]⊆(a](bα], where (bα]’s are soaker ideals of A. Hence a ≤ n1bα1⊕n2bα2⊕
· · ·⊕nkbαk . If there is no soaker ideal contained in (a], then (a] =

∨
(bα] = ∅,

which is a contradiction. So k ≥ 1. Let b1 = n1bα1 , b2 = n2bα2 , · · · . Then,
since bαi ∈ C, by Lemma 2.10, we have bi ∈ C. On the other hand, since
(bαi ] ⊆ (a], for all i ∈ J , bαi ≤ ami. Let m = max{mi : i = 1, · · · , k}. Then
for all i ∈ J , bαi ≤ am. Finally, b1 ⊕ · · · ⊕ bk = n1bα1 ⊕ · · ·nkbαk ≥ a.

Conversely, let there exist b1, b2, · · · , bk satisfing conditions (1), (2) and
(3). By (1), (bi] is soaker. By (2), bi ≤ ma and so (bi] ⊆ (a]. By (3),
a ≤ b1⊕· · ·⊕bk. Therefore (a] ⊆ ∨k

i=1(bi]. We conclude that (a] =
∨k
i=1(bi],

with (bi]’s soaker. Thus (a] =
∨

(bα]⊆(a](bα], where (bα]’s are soaker ideals.
Hence (a] is a JS-ideal.

Proposition 4.9. Let a ∈ A. If (a] is a JS-ideal, then U(a) is a compact
subset of X.

Proof. It is sufficient to show that any cover of U(a) by basic open sets
contains a finite subcover. Let U(a) ⊆ ⋃

i∈I U(ai). By Proposition 3.1,
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we have U(a) ⊆ ⋃
i∈I U((ai]) = U(

∨
i∈I((ai])). By Lemma 4.6, we have

〈a〉 ⊆ ∨i∈I〈ai〉 and so a ∈ ∨i∈I(ai]. It follows from Remark 1.9 that a ≤
n1ai1 ⊕ · · · ⊕ nkaik . By parts (iii) and (v) of Proposition 3.7, we have
U(a) ⊆ U(n1ai1 ⊕ · · · ⊕ nkaik) = U(ai1) ∪ · · · ∪ U(aik), as desired.

Corollary 4.10. If A is a JS-ideal, then X is compact.

Proof. Since (1] = A, by hypothesis (1] is a JS-ideal. Now by Theorem 4.9,
X = U(A) = U(1) is compact.

Denoting ”S is a soaker ideal and S 6⊆ I” by S 6⊆s I, we have:

Theorem 4.11. For any ideal I, X − U(I) ⊆ U(
∨
S 6⊆sI S).

Proof. Let S ∈ X − U(I). Then S 6⊆ I, hence S ⊆ ⋃S 6⊆sI S ⊆
∨
S 6⊆sI S. So

S ∈ U(
∨
S 6⊆sI S).

Theorem 4.12. Let I,K be ideals of A. X − U(I) ⊆ U(K) if and only if∨
S 6⊆sI S ⊆ K.

Proof. Suppose X − U(I) ⊆ U(K). Then for all S ∈ X − U(I), S ∈ U(K),
that is, for all S ∈ X, S 6⊆ I, S ⊆ K. So

⋃
S 6⊆sI S ⊆ K, hence

∨
S 6⊆sI S ⊆ K.

Conversely, suppose ∨S 6⊆IS ⊆ K. So U(
∨
S 6⊆I S) ⊆ U(K). By Theorem

4.11, we get X − U(I) ⊆ U(K).

Theorem 4.13. U(I) is closed if and only if X − U(I) = U(
∨
S 6⊆sI S).

Proof. Suppose U(I) is closed. So there exists an ideal K of A such that
X − U(I) = U(K). It follows from Theorem 4.12 that

∨
S 6⊆sI S ⊆ K and

U(K) ⊆ X − U(I). So, U(
∨
S 6⊆sI S) ⊆ U(K) and U(K) ⊆ X − U(I).

This yields U(
∨
S 6⊆sI S) ⊆ X − U(I). Now, by Theorem 4.11, we have

X − U(I) = U(
∨
S 6⊆sI S).

Conversely, suppose that X − U(I) = U(∨S 6⊆sIS). Since U(
∨
S 6⊆sI S) is

open, X − U(I) is open. Thus U(I) is closed.

Since U(I) is open in X, the above theorem characterizes the clopen
(that is, closed and open) subsets of X. In the following examples, we show
which subsets are clopen.
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Theorem 4.14. (X, τX) is connected if and only if for all I ∈ Id(A), if
X−U(I) = U(

∨
S 6⊆sI S), then either no soaker ideal is contained in I or all

the soaker ideals are contained in I.

Proof. (X, τX) is connected if and only if the only clopen subsets of X are
∅ or X if and only if for all ideals I, if X − U(I) = U(

∨
S 6⊆sI S), then

U(I) = ∅ or U(I) = X. Since U(I) = ∅ if and only if I contains no soaker
ideal and U(I) = X if and only if I contains all the soaker ideals, the result
follows.

Example 4.15. Consider Example 2.5. Using Example 3.6, we have
U(Pk)

c = {Pk, Pk+1, · · · }c = {P1, P2, · · · , Pk−1} 6= U(J), for all J ∈ Id(A),
we get U(Pk) is not closed, for all k ∈ N . Hence X is connected.

Example 4.16. Consider Example 2.2. Since U(I2) and U(I3) are closed
and open, hence X is disconnected.

Proposition 4.17. Let A be a Boolean algebra. Then for each a ∈ A, U(a)
is a clopen subset of X.

Proof. By Proposition 3.7, we have U(a) ∪ U(a′) = U(a ⊕ a′) = U(1) = X
and U(a) ∩ U(a′) = U(a ∧ a′) = U(0) = ∅. So U(a) = X − U(a′) and
therefore it is closed. We know U(a) is also open, thus it is a clopen subset
of X.

Corollary 4.18. Let A be a Boolean algebra. Then for each I ∈ Id(A),
U(I) is a clopen subset of X.

Proof. Since I =
∨
a∈I(a], the proof follows from Propositions 3.1, 3.2 and

4.17.

Theorem 4.19. Let A be a Boolean algebra. (X, τX) is connected if and
only if X contains at most one element.

Proof. If X is connected, then for each I ∈ Id(A), either I contains no
soaker ideal or it contains all the soaker ideals. Now if S is a soaker ideal,
then S must contain all the soaker ideals. It follows that if S and S′ are
two soaker ideals, then S = S′. Hence there is at most one soaker ideal of
A and so X contains at most one element. The converse is obvious.
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Theorem 4.20. The topological space (X, τX) is a T0-space.

Proof. Let S 6= S′ be soaker ideals of A. Then S /∈ U(S′) or S′ /∈ U(S).
Also, we have S ∈ U(S) and S′ ∈ U(S′). Therefore U(S) or U(S′) contains
only one of the ideals S or S′. Hence X is a T0-space.

Proposition 4.21. The topological space (X, τX) is a T1-space if and only
if for all soaker ideals S, U(S) = {S}.

Proof. Suppose that X is T1 and let S ∈ X. For S′ ∈ U(S) if S′ 6= S, then
there exists an ideal I of A such that S ∈ U(I) and S′ /∈ U(I). Hence, we
get U(S) ⊆ U(I) and S′ /∈ U(I). Thus S′ /∈ U(S), which is a contradiction.
Therefore, S′ = S. Hence U(S) = {S}. Conversely, suppose for all soaker
ideals S, U(S) = {S}. Given soaker ideals S 6= S′, U(S) = {S} is a
neighborhood of S not containing S′ and U(S′) = {S′} is a neighborhood
of S′ not containing S. Thus X is T1.

Theorem 4.22. The topological space (X, τX) is a T2-space if and only if
it is T1.

Proof. We know every T2-space is T1. The converse follows easily from
Proposition 4.21.

Example 4.23. Consider Example 2.4. Using Example 3.5, since for any
soaker ideal Ii, we get U(Ii) = Ii, for any i = 1, 2, 3. So by Proposition
4.21, X is a T1-space and thus T2.

Example 4.24. Consider Example 2.5. Using Example 3.6, since U(Pk) =
{Pi}i≥k, for k ∈ N , by Proposition 4.21, X is not a T1-space and thus it is
not T2.
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