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1 Introduction

The algebraic formulation of two-valued logic is, of course, Boolean algebra.
Once we go up to three values, there are competing logics and competing al-
gebraic formulations. We are interested in a very natural three-valued logic
which, along with true and false, allows an intermediate value correspond-
ing to don’t know. The logic was introduced in 1935 by G. C. Moisil [31],
but was made famous by S. C. Kleene in his 1952 text Introduction to Meta-
mathematics [29] and is referred to as Kleene’s strong logic. For Boolean
algebras we might as well introduce nullary operations 0 and 1 correspond-
ing to false and true since they are term definable from ∧ and ¬. But in
an algebraic formulation of Kleene’s strong logic, we have a choice as 0 and
1 are not term definable from ∧, ∨ and ¬, nor is the intermediate value
d corresponding to don’t know: we can add none, some or all as nullaries
depending on our point of view. All four possibilities will be considered,
but the class of ternary algebras, where all three values are assigned names,
is the focus of our attention.

Definition 1.1. An algebra A = 〈A;∨,∧,¬, 0, d, 1〉 is a ternary algebra if

(L) 〈A;∨,∧, 0, 1〉 is a bounded distributive lattice,

(M) A satisfies the De Morgan laws and the double negation law

¬(a ∨ b) = ¬a ∧ ¬b, ¬(a ∧ b) = ¬a ∨ ¬b, ¬¬a = a,

for all a, b ∈ A,

(K) A satisfies a ∨ ¬a > d and a ∧ ¬a 6 d, for all a ∈ A, and

(D) A satisfies ¬d = d.

In terms of truth values, we think of 0 and 1 as false and true, as usual.
We interpret d as don’t know, so that (D) corresponds to the fact that if
we do not know if some statement is true, then we don’t know whether its
negation is true.

Conditions (L) and (M) say that the reduct AK := 〈A;∨,∧,¬, 0, 1〉 is a
De Morgan algebra. Condition (K) guarantees that AK satisfies

a ∨ ¬a > b ∧ ¬b,
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for all a, b ∈ A, so that (L), (M) and (K) together guarantee that AK is
a Kleene algebra. Consequently, many results about Kleene algebras can
be transported directly to corresponding results for ternary algebras. For
example, since the only subdirectly irreducible Kleene algebras are the two-
and three-element chains (Kalman [27]), it follows immediately that, up to
isomorphism, the only subdirectly irreducible ternary algebra is the three-
element algebra T shown in Figure 1. Consequently, in terms of the usual
class operators, the variety T of ternary algebras can be written T =
ISP(T).

0

d

1

Figure 1: The three-element ternary algebra T

Up to term equivalence, there are four different ways to assign a set of
nullaries to the three-element algebra 〈{0, d, 1};∨,∧,¬〉. The four possibil-
ities, and the varieties they generate, are:

• Kleene lattices: L = Var(L), where L := 〈{0, d, 1};∨,∧,¬〉;
• Kleene algebras: K = Var(K), where K := 〈{0, d, 1};∨,∧,¬, 0, 1〉;
• ternary algebras: T = Var(T), where T := 〈{0, d, 1};∨,∧,¬, 0, d, 1〉;
• don’t know algebras: Dk = Var(Dk), where Dk := 〈{0, d, 1};∨,∧,¬, d〉.

We include the variety of don’t know algebras for completeness; it has not
previously been studied.

Our primary aim is to derive a (strong and optimal) natural duality
and the restricted Priestley duality for ternary algebras and to apply them
to give straightforward and transparent proofs of some known results for
ternary algebras. We will also present, and in some cases prove, the cor-
responding dualities for Kleene lattices, Kleene algebras and don’t know
algebras.

Ternary algebras and the corresponding three-valued logic have a num-
ber of applications in computer science where the constant d is variously
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interpreted as ‘don’t know’, ‘unknown’, ‘undefined’, ‘indefinite’, ‘transient’,
‘ambiguous’, ‘center’, . . . . A good summary of applications of ternary al-
gebras in computer science can be found in the 1995 text Asynchronous
circuits by J. A. Brzozowski and C. H. Seger [9] and the 1999 paper by J. A.
Brzozowski [6]. An application that is not mentioned in [9] and [6] is in
the database language SQL. In order to deal with queries that involve a
NULL value, SQL uses a logic based on the three-element ternary algebra;
almost every text dedicated to SQL will include a section dedicated to three-
valued logic with values true, false and unknown. Another example of an
application outside the realm of circuit design is the three-valued attribute
exploration created by Burmeister [10, 11] in the context of Formal Concept
Analysis [40].

In Section 2, we trace some of the history of Kleene lattices, Kleene
algebras and ternary algebras. In Section 3, we develop an optimal natural
duality for each of the four varieties and in every case give an axiomati-
sation of the topological structures in the dual category. The restricted
Priestley dualities for T and Dk are described in Section 4, and the re-
stricted Priestley dualities for K and L are described in Section 5. The
translation functors between the natural and restricted Priestley dual cat-
egories for T are presented in detail in Section 6; the section ends with
a brief description of the corresponding translation functors for Dk, K
and L . Some applications of the dualities and the translation functors are
described in Section 7—in particular, we will see that several results about
ternary algebras, previously proved by purely algebraic means, fall out very
easily from the dualities and the translations.

We will assume a familiarity with the basics of universal algebra and
lattice theory. We refer to B. A. Davey and H. A. Priestley [21] for order-
theoretic concepts and notation not defined here: for example, down-set,
up-set, meet-irreducible, join-irreducible, linear sum, ↓S, ↑S, . . . .

An early draft of parts of this paper appeared in the report by the second
author [30] on an AMSI Summer Vacation Research Project supervised by
the first author.
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2 What’s in a name?

In this section we attempt to trace the history of the varieties of Kleene
lattices, Kleene algebras and ternary algebras.

2.1 Kleene lattices In 1935, G. C. Moisil [31] considered De Morgan
lattices (without naming them), he explicitly introduced the three-element
Kleene lattice on pages 106–108. In place of our 0, d and 1, he used i,
p and c, respectively, and referred to them as impossible, problématique
and certaine. Much later in 1957, and independently of Moisil, De Mor-
gan lattices were studied by A. Bia lynicki-Birula and H. Rasiowa [4] and
A. Bia lynicki-Birula [3] under the name quasi-Boolean algebras. The fol-
lowing year, again independently, J. A. Kalman [27] studied them under
the name distributive lattices with involution. Kalman proved that the only
subdirectly irreducible De Morgan lattices are the two-element Boolean lat-
tice, the three-element Kleene lattice and the four-element non-Boolean De
Morgan lattice.

2.2 Kleene algebras Kalman’s results for De Morgan lattices apply
directly to De Morgan algebras. Consequently, the only subdirectly ir-
reducible De Morgan algebras are the two-element Boolean algebra, the
three-element Kleene algebra and the four-element non-Boolean De Morgan
algebra.

Kleene describes the three-element Kleene lattice/algebra on page 332
of his 1952 text [29], but he introduced it earlier in 1938 [28] in the context
of partial recursive functions. In fact he introduced the corresponding logic
which is referred to as Kleene’s strong logic. He gave the truth tables for ∨,
∧ and ¬ on {0, d, 1}—Kleene used the symbols f, t and u (for undefined).
On page 333 of [29], Kleene remarks:

The third “truth value” u is not on a par with the other two t
and f in our theory.

Thus it is reasonable to argue that the appropriate algebraic formulation of
Kleene’s strong logic is indeed Kleene algebra rather than ternary algebra.

Kleene algebras also arise naturally in the study of fuzzy switching func-
tions, that is, the term functions of the algebra I := 〈[0, 1];∨,∧,¬, 0, 1〉
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based on the unit interval: here ∨ and ∧ are max and min, respectively, and
¬x := 1−x. See the 1972 paper by F. P. Preparata and R. T. Yeh [37]. It is
clear that I is a Kleene algebra and contains a subalgebra isomorphic to K,
from which it follows that the fuzzy switching functions are essentially the
term functions of K.

The name Kleene algebra seems to have been used first in print by D.
Brignole and A. Monteiro [5] in 1967.

2.3 From Kleene lattices to ternary algebras The move from
Kleene lattices with no constants to Kleene algebras with two constants
to ternary algebras with three constants seems to have resulted from the
application of three-valued logic to switching circuits/relay networks and
later to logic circuits.

According to J. A. Brzozowski [6], the earliest work in this direction was
in the late 1940s by M. Gotô [25, 26]. Like Kleene [28, 29], Gotô was more
concerned with the logic rather than the algebra, and while he treated 0
and 1 as nullary operations, he did not treat d as a nullary.

In 1959, D. E. Muller [34] suggested the use of the three-element Kleene
algebra for the ‘treatment of transition signals in electronic switching cir-
cuits’. While he included 0 and 1 as constants, he did not formally name
the intermediate value d.

In 1964, M. Yoeli and S. Rinon [41] introduced B-ternary operations
on {0, d, 1} and studied their application to the detection of static hazards
in logic circuits (they use the older name switching circuits). Their B-
ternary operations are precisely the term functions of the three-element
Kleene algebra; they did not include the constant function with value d.

In 1972, M. Mukaidono [32] introduced the uncertainty order, which he
referred to as ambiguity (see Figure 2), and proved that the term functions
of the three-element Kleene algebra are precisely the functions that preserve
the uncertainty order and the unary relation B = {0, 1}.

In 1986, M. Mukaidono [33] explicitly listed the three elements of {0, d, 1}
as constants and gave the axioms for ternary algebras, which he referred to
as Kleene algebras with center. He characterised the term functions as those
that preserve the uncertainty order (see our Theorem 7.1). This paper by
Mukaidono appears to be the first devoted to what we now call ternary
algebras.
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The first use of the name ternary algebra appears to be in 1995 by J. A.
Brzozowski and C. H. Seger in their text Asynchronous Circuits [9].

2.4 Don’t-know algebras The remaining possibility is the variety
Var(Dk) of don’t know algebras which is generated by the algebra Dk =
〈{0, d, 1};∨,∧,¬, d〉 in which we name only the element d. This variety has
not previously been studied.

3 Natural dualities for L , K , T and Dk

For the basics of the theory of natural dualities we refer to the text by
Clark and Davey [13]. Here we sketch a restricted version tailored to ternary
algebras and their cousins, Kleene algebras, Kleene lattices and don’t know
algebras.

3.1 Some general theory Let A := ISP(M) be the quasivariety gen-
erated by a finite algebra M. We aim to build a category X of topological
structures dual to A (qua category). To this end, we search for topological
structures M = 〈M ;G,R, T 〉, where T is the discrete topology on M , and G
and R are, respectively, sets of finitary operations and relations on M that
are compatible with M, that is, the relations in R and the graphs of the op-
erations in G are non-empty subuniverses of finite powers of M. (In general,
partial operations are allowed but we shall not need them. In fact, we will
need only nullary operations.) The structure M is referred to as an alter ego
of M. The potential dual category for A is the category X := IScP

+(M)
whose objects are isomorphic copies of topologically closed substructures
of non-zero powers of M. The compatibility between the operations and
relations in G ∪R and the algebra M guarantees that we have well-defined
hom-functors

D: A →X where D(A) = A (A,M) 6MA,

E: X → A where E(X) = X (X,M) 6MX ,
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for all A ∈ A and all X ∈ X . The functors are defined on morphisms in
the usual way via composition: for all u ∈ A (A,B) and all ϕ ∈X (X,Y),

D(u) : D(B)→ D(A) is given by D(u)(y) := y ◦ u, for all y ∈ A (B,M),

E(ϕ) : E(Y)→ E(X) is given by E(ϕ)(α) := α ◦ ϕ, for all α ∈X (Y,M).

We then have a dual adjunction 〈D,E, e, ε〉 where the unit e and counit ε are
both given by evaluation: the maps eA : A→ ED(A) and εX : X→ DE(X),
which are easily seen to be embeddings, are defined, for all A ∈ A and all
X ∈X , by

eA(a)(x) := x(a), for all a ∈ A and all x ∈ A (A,M),

εX(x)(α) := α(x), for all x ∈ X and all α ∈X (X,M).

If eA is an isomorphism for all A ∈ A , then A is dually equivalent to a
subcategory of X and we say that M yields a duality on A . If, in addition,
εX is an isomorphism for all X ∈ X , then A and X are dually equivalent
categories and we say that M yields a full duality between A and X . If M
yields a full duality and M is injective in the category X then we say that
M yields a strong duality between A and X . See Clark and Davey [13] for
the missing details.

A duality is optimal if removing an operation or relation in G ∪R would
destroy it; that is, if an operation or relation in G ∪ R were removed, then
we could find an algebra A ∈ A such that eA : A → DE(A) is not an
isomorphism.

An algebra M is called lattice based if there are binary term functions ∨
and ∧ such that 〈M ;∨,∧〉 is a lattice. If M is a finite lattice-based algebra,
we can use the NU Strong Duality Theorem [13, Theorem 3.3.8] to find a
structure M that yields a strong duality on A . The theorem is more general
than the version given here, but this special case is adequate for our needs.

Theorem 3.1 (Special NU Strong Duality Theorem). Let M be a
finite lattice-based algebra and let A = ISP(M).

(1) The structure M = 〈M ;R(2)
M , T 〉 yields a duality on A , where R(2)

M

is the set of all compatible binary relations on M and T is the
discrete topology on M .
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(2) Assume that every non-trivial subalgebra of M is subdirectly ir-
reducible and has no non-constant homomorphisms into M other
than the inclusion, and let C := {c1, . . . , cn} be the set of all ele-
ments of M that form one-element subalgebras. Let R be a set of
compatible finitary relations on M such that M = 〈M ;R, T 〉 yields
a duality on A . Then MC := 〈M ; c1, . . . , cn,R, T 〉 yields a strong
and therefore full duality on A = ISP(M).

Remark 3.2. Once we have applied Theorem 3.1(1), and know that the

structure M = 〈M ;R(2)
M , T 〉 yields a duality on A = ISP(M), we wish

to simplify the set R(2)
M , while retaining enough relations to yield a duality.

ThatM yields a duality on A is precisely the statement that, for all A ∈ A ,
the evaluation maps eA(a) : A (A,M) → M are the only continuous maps
from A (A,M) to M that preserve the pointwise structure on A (A,M)
inherited from MA. For all A ∈ A , every map α : A (A,M)→M

• preserves the trivial relations ∆M = { (a, a) | a ∈M }, M2 and M ,

• preserves an intersection R ∩ S of relations provided it preserves both
R and S,

• preserves a binary relation R if and only if it preserves its converse R ,̆

• preserves a product R × S of relations provided it preserves both R
and S, and

• preserves the unary relation {a} provided it preserves the nullary op-
eration a.

A number of other constructs can be used to simplify R(2)
M (see [13, 2.4.5

and Section 9.2]) but the five listed above will be sufficient here.

Theorem 3.1 is very easy to apply to the classes of ternary algebras,
Kleene algebras, Kleene lattices and don’t know algebras. We will present
a strong and optimal natural duality for each of the varieties as well as an
axiomatisation of the dual category. The proofs of optimality and of the
axiomatisations will be delayed until Subsections 3.6 and 3.7.

We start with Kleene lattices, as the generating algebra L has the most
compatible binary relations, and work our way down to the other varieties.

Two relations, shown in Figure 2, will play a featured role in each of our
dualities:
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• the uncertainty order 4 = {(0, 0), (0, d), (d, d), (1, d), (1, 1)}, and

• ∼ = {0, d, 1}2 \ {(0, 1), (1, 0)}, the looped path of length 2.

0

d

1
0 d 1

Figure 2: The uncertainty order 4 and looped path ∼ on {0, d, 1}

{(d, d)} ∆B

L× {d} {d} × L

B × L 4 < L×B
∼

∆L

Figure 3: Sub(L2)

Let B = {0, 1}; the sixteen non-empty subuniverses of L2 in increasing
size are

{(d, d)}, ∆B, B × {d}, {d} ×B, ∆L, L× {d}, {d} × L,
B2, 4 ∩ (B × L), < ∩ (L×B), 4, <, B × L, L×B, ∼, L2.

(R(2)
L )

The lattice Sub(L2) of subuniverses of L2 is shown in Figure 3; the meet-
irreducibles are shaded and labelled.
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Remark 3.3. It is very easy to use Figure 3 to find the lattices Sub(K2),
Sub(T2) and Sub(Dk2) and their meet-irreducibles. Just use the following
facts:

• let M be an algebra, let B ⊆ M and let MB be the algebra ob-
tained from M by adding the elements of B as nullary operations;
then Sub(MB) = ↑B, where B is the subuniverse of MB generated
by B;

• for every lattice A and all a ∈ A, the meet-irreducibles of the sublattice
formed by the principal up-set ↑a are precisely the meet-irreducibles
in A that lie in ↑a.

We then find, modulo changing the name of the underlying set from L
to K, T or Dk respectively, that Sub(K2) = ↑∆B, Sub(T2) = ↑∆L and
Sub(Dk2) = ↑{(d, d)}, where each principal up-set is calculated in Sub(L2).

3.2 Kleene lattices By Theorem 3.1(1), the structure L1 = 〈L;R(2)
L , T 〉

yields a duality on L . To optimise the set R(2)
L , we apply the dot points

in Remark 3.2. We first eliminate the trivial relations ∆L and L2, then
eliminate all meet-reducible relations leaving

{(d, d)}, L× {d}, {d} × L, 4, <, B × L, L×B, and ∼ .

Next we eliminate one of each pair of mutually converse relations (such as
4 and <), then replace all products by their unary-relation factors, then
eliminate the trivial relation L; this leaves {d}, 4, ∼, and B. Finally we
replace the one-element subuniverse {d} by the corresponding nullary op-
eration (this is needed to guarantee a full duality—see [13, Lemma 3.1.2]).
Theorem 3.1(2), with C = {d}, yields the following strong duality; its opti-
mality is proved in Subsection 3.6 below.

Theorem 3.4. The structure L = 〈{0, d, 1}; d,4,∼, B, T 〉 yields a strong
(and therefore full) optimal duality between the variety L = ISP(L) of
Kleene lattices and the category X L := IScP

+(L). In particular, eA : A→
ED(A) is an isomorphism for every Kleene lattice A and εX : X → DE(X)
is an isomorphism for all X ∈X L .
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Strictly speaking, since the functors in this theorem depend upon the
choice of the algebra L and the alter ego L, we should denote them by
DL : L → X L and EL : X L → L . To avoid excessive subscripting, we
shall drop the subscripts L and L. The same comment applies to Theo-
rems 3.6, 3.8 and 3.10.

We now state the characterisation of the objects in the dual category
X L . The proofs of all of the dual-category characterisations are given in
Subsection 3.7. Recall that a topological structure 〈X;4, T 〉 is a Priestley
space if 〈X; T 〉 is a compact topological space, 4 is an order relation, and
for all x, y ∈ X with x 64 y, there exists a clopen up-set U with x ∈ U and
y /∈ U .

Theorem 3.5. A topological structure X = 〈X; d,4,∼, B, T 〉 in the signa-
ture of L belongs to X L if and only if

(NL1) 〈X;4, T 〉 is a Priestley space,

(NL2) • ∼ is a topologically closed binary relation on X,

• B is a topologically closed unary relation on X, and

(NL3) the following universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y & y 4 z → z ∼ x,

(c) x ∼ y & x ∈ B → x 4 y,

(d) d /∈ B,

(e) x 4 d.

3.3 Kleene algebras Using Figure 3 and applying Remark 3.3, we see
that K2 has eleven subuniverses five of which are meet-irreducible, namely

4, <, B ×K, K ×B, and ∼ .

Applying the dot points in Remark 3.2, we find that 4, ∼ and B will yield
a duality on the variety Var(K) of Kleene algebras. Then Theorem 3.1(2),
with C = ∅, yields the following strong duality.

Theorem 3.6. The structure K = 〈{0, d, 1};4,∼, B, T 〉 yields a strong
(and therefore full) optimal duality between the variety K = ISP(K) of
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Kleene algebras and the category X K := IScP
+(K). In particular, eA : A→

ED(A) is an isomorphism for every Kleene algebra A and εX : X→ DE(X)
is an isomorphism for all X ∈X K .

The axiomatisation of X K is obtained from the axiomatisation of X L

by simply removing the axioms that no longer apply; we will see why in
Subsection 3.7.

Theorem 3.7. A topological structure X = 〈X;4,∼, B, T 〉 in the signature
of K belongs to X K if and only if

(NK1) 〈X;4, T 〉 is a Priestley space,

(NK2) • ∼ is a topologically closed binary relation on X,

• B is a topologically closed unary relation on X, and

(NK3) the following universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y & y 4 z → z ∼ x,

(c) x ∼ y & x ∈ B → x 4 y.

Theorems 3.6 (minus the optimality) and 3.7 were first proved by Davey
and Werner [22, Section 2.11]; see also [13, Theorem 4.3.10]. The optimality
of the duality was first proved in Davey and Priestley [20, Section 5]; see
also [13, Section 8.4].

3.4 Ternary algebras Again, using Figure 3 and applying Remark 3.3
we see that T2 has five subuniverses three of which are meet-irreducible,
namely

4, <, and ∼ .

Since < can be safely removed, we find that 4 and ∼ yield a duality on
the variety Var(T) of ternary algebras. Then Theorem 3.1(2), with C = ∅,
yields all but the optimality in the following theorem.

Theorem 3.8. The structure T = 〈{0, d, 1};4,∼, T 〉 yields a strong (and
therefore full) optimal duality between the variety T = ISP(T) of ternary
algebras and the category X T := IScP

+(T). In particular, eA : A→ ED(A)
is an isomorphism for every ternary algebra A and εX : X → DE(X) is an
isomorphism for all X ∈X T .
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Again, the axiomatisation of X T is obtained from the axiomatisation
of X L by simply removing the axioms that no longer apply—see Subsec-
tion 3.7.

Theorem 3.9. A topological structure X = 〈X;4,∼, T 〉 in the signature of
T belongs to X T if and only if

(NT1) 〈X;4, T 〉 is a Priestley space,

(NT2) ∼ is a topologically closed binary relation on X, and

(NT3) the following universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y & y 4 z → z ∼ x.

3.5 Don’t know algebras Once again, using Figure 3 and applying
Remark 3.3 we see that Dk2 has eight subuniverses five of which are meet-
irreducible, namely

T × {d}, {d} × T, 4, <, and ∼ .

Applying the dot points in Remark 3.2, we find that {d}, 4 and ∼ yield a du-
ality on the variety Var(Dk) of don’t know algebras. Then Theorem 3.1(2),
with C = {d}, yields the following strong duality.

Theorem 3.10. The structure Dk = 〈{0, d, 1}; d,4,∼, T 〉 yields a strong
(and therefore full) optimal duality between the variety Dk = ISP(Dk) of
don’t know algebras and the category X Dk := IScP

+(Dk). In particular,
eA : A → ED(A) is an isomorphism for every don’t know algebra A and
εX : X→ DE(X) is an isomorphism for all X ∈X Dk.

Once again, the axiomatisation of X Dk is the natural subset of the
axioms for X L .

Theorem 3.11. A topological structure X = 〈X; d,4,∼, T 〉 in the signature
of Dk belongs to X Dk if and only if

(NDk1) 〈X;4, T 〉 is a Priestley space,

(NDk2) ∼ is a topologically closed binary relation on X, and
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(NDk3) the following universal axioms are satisfied:

(a) x ∼ x,

(b) x ∼ y & y 4 z → z ∼ x,

(c) x 4 d.

We now provide the missing proofs. We begin with the proofs that the
dualities in Theorems 3.4, 3.6, 3.8 and 3.10 are optimal.

3.6 The proofs that all four dualities are optimal We com-
mence with the optimality of the duality for Kleene lattices, as the opti-
mality of the other three dualities will follow almost immediately. To prove
that we cannot remove 4 from the alter ego L = 〈{0, d, 1}; d,4,∼, B, T 〉
without destroying the duality, we must find a Kleene lattice A and a map
γ : L (A,L)→ L such that γ preserves d, ∼ and B but not 4: such a map
cannot be an evaluation eA(a), for any a ∈ A, as the evaluation maps pre-
serve every compatible relation on L. The Test Algebra Lemma [13, 8.1.3]
tells us that we may choose A to be the subalgebra A(4) of L2 with un-
derlying set 4.

It is very easy to see that L (A(4),L) = {ρ1, ρ2, d}, where ρi : A(4)→
L is the ith projection and d : A(4)→ L is the constant map onto {d}. Now
define γ : L (A(4),L) → L by γ(ρ1) = d, γ(ρ2) = 1 and γ(d) = d. Clearly
γ preserves d and preserves B as the relation B is empty on L (A(4),L).
Since {1, d}2 ⊆ ∼, it is trivial that γ preserves ∼, and γ fails to preserve 4
as ρ1 4 ρ2 in L (A(4),L) but γ(ρ1) = d 64 1 = γ(ρ2) in L.

We turn now to the relation∼. It is again easy to see that L (A(∼),L) =
{ρ1, ρ2, d}, where ρi : A(∼) → L is the ith projection and d : A(∼) → L is
the constant map onto {d}. In L (A(∼),L) we have ρ1 ∼ ρ2, ρ1 4 d, ρ2 4 d
but ρ1 64 ρ2 and ρ2 64 ρ1, and the relation B is empty. Hence the function
γ : T (A(∼),T)→ T given by γ(ρ1) = 0, γ(ρ2) = 1 and γ(d) = d preserves
d, 4 and B but not ∼.

Now consider the relation B and note that A(B) = B. We have
L (B,L) = {ρ1, d}, where ρ1 : B → L is the inclusion map of B into L
and d : B → L is the constant map onto {d}. Define γ : L (B,L) → L by
γ(ρ1) = γ(d) = d. Then γ preserves d by definition, preserves 4 and ∼ since
they both contain (d, d), and fails to preserve B as ρ1 ∈ B on L (B,L) but
γ(ρ1) = d /∈ B.
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Finally, consider the relation {d} corresponding to the nullary d. Then
L (A({d}),L) = {ρ1}, where ρ1(d) = d. The map γ : L (A({d}),L) → L
defined by γ(ρ1) = 1 preserves 4, ∼ and B since (1, 1) ∈ 4, (1, 1) ∈ ∼ and
1 ∈ B, but clearly does not preserve d.

This proves that the duality on L given by L is optimal. It follows
almost immediately that the dualities for the other three varieties are also
optimal. Indeed, let C be one of K , T and Dk, denote its three-element
generating algebra by C, let R be one of d, 4, ∼ and B that occurs in the
corresponding alter ego. Now let R be the algebra in C with underlying
set R and, as above, let A(R) be the algebra in L with underlying set R.
Thus A(R) is the L -reduct of R obtained by deleting some of the nullary
operations from the signature. Since C (R,C) ⊆ L (A(R),L), we may
define γ′ : C (R,C)→ C to be the restriction of the map γ : L (A(R),L)→
L defined in the proof above. Then γ′ preserves every element of {d,4,∼
, B}\{R} since γ does. Finally, γ′ does not preserve R since the failure of γ
to preserve R was witnessed in L (A(R),L) by the projections ρi and they
belong to the subset C (R,C). Hence all four dualities are optimal.

Remark 3.12. Some general theory provides an alternative proof that the
dualities for K and T are optimal. The only K -homomorphisms from
A(∼) and from A(4) to K are the two projections, and consequently the
same is true of the T -homomorphisms. This tells us that the relations
∼ and 4 are hom-minimal in both K and T . As both relations contain
the diagonal and are meet-irreducible in Sub(T2), Proposition 8.2 in Craig,
Davey and Haviar [16] tells us that they are absolutely unavoidable within
Sub(T2), that is, if R is a subset of Sub(T2) such that 〈T ;R, T 〉 yields
a duality on T , then R must contain ∼ and either 4 or <. The same
argument applies to Sub(K2). It follows at once that the duality for ternary
algebras in Theorem 3.8 is optimal and, modulo proving that B cannot be
removed from K, that the duality for Kleene algebras in Theorem 3.6 is
optimal.

3.7 The proofs of the axiomatisations The facts we require about
Priestley spaces are contained in the following lemma; see Davey and Priest-
ley [21].

Lemma 3.13. Let X = 〈X;4, T 〉 be a Priestley space.
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(1) Every open down-set in X is a union of clopen down-sets.

(2) Let U be a closed down-set in X and V be a closed up-set in X
with U ∩V = ∅. Then there exists a clopen down-set W in X with
U ⊆W and W ∩ V = ∅.

(3) For all x ∈ X, the principal down-set ↓x and the principal up-set
↑x are closed in X.

(4) The order 4 is a closed subset of X2.

We begin with the proof of the axiomatisation of the dual category X L

for Kleene lattices given in Theorem 3.5.
The following consequences of axioms (a)–(e) in (NL3) will be useful:

quasi-equations (i)–(iii) follow from (a) and (b) along with the fact that 4
is reflexive, (iv) follows from (a)–(c) along with the fact that 4 is antisym-
metric, while (v) follows from (a), (b) and (e).

(i) x ∼ y → y ∼ x (by (b) as 4 is reflexive),

(ii) x 4 y → x ∼ y (by (a) and (b) followed by (i)),

(iii) x 4 y & x 4 z → y ∼ z (by, in order, (ii), (i), (b) then (i)),

(iv) y 4 x & x ∈ B → y = x (by (ii) then (i) then (c)),

(v) x ∼ d (by (ii) and (e)).

We will use the following easily proved characterisation of X L -morphisms.

Lemma 3.14. Let X ∈X L , let U, V ⊆ X and define λUV : X → T by

λUV (x) =





0, if x ∈ U,
1, if x ∈ V,
d, if x ∈ X \ (U ∪ V ),

for all x ∈ X. Then λUV is an X L -morphism if and only if

(1) U and V are clopen down-sets,

(2) (U × V ) ∩∼ = ∅,

(3) B ⊆ U ∪ V , and

(4) d /∈ U ∪ V .
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In particular, λUV is an X L -morphism if V is empty and U is a proper
clopen down-set containing B. Moreover, if U and V are non-empty, then
(4) follows from (2).

We abbreviate the map λU∅ to λU . We will also use without comment
the fact that if Z is a closed subset of X2, then π1(Z) is closed in X; a
consequence of the compactness of X.

Proof of Theorem 3.5. It is clear that the structure L satisfies (NL1)–
(NL3). Since these properties are preserved under the formation of products
and topologically closed subspaces, it follows that every structure X ∈ X
satisfies (NL1)–(NL3).

For the converse, assume that X = 〈X; d,4,∼, B, T 〉 satisfies (NL1)–
(NL3). To prove that X is isomorphic to a closed substructure of a power
of L, we call on the Separation Theorem [13, Thm 1.4.3]. We must prove
the following:

(S1) there is a morphism α : X→ L,

(S2) for all x, y ∈ X with x 6∼ y, there exists a morphism α : X → L
with α(x) 6∼ α(y),

(S3) for all x, y ∈ X with x 64 y, there exists a morphism α : X → L
with α(x) 64 α(y),

(S4) for all x ∈ X\B, there exists a morphism α : X→ L with α(x) /∈ B.

First assume that X is empty. Then the empty map from X to L is a
morphism, whence (S1) holds, and (S2)–(S4) hold vacuously. Now assume
that X is non-empty.

(S1): By assumption, B is topologically closed and by (iv) it is a down-
set. Let x ∈ X \B. (By (d), x = d will suffice.) By Lemma 3.13(3), the set
↑x is a closed up-set disjoint from B. Hence by Lemma 3.13(2), there exists
a clopen down-set W that contains B but not x. It follows from Lemma 3.14
that the map λW is an X L -morphism. Hence (S1) holds.

(S2): Let x, y ∈ X with x 6∼ y. Since ∼ is closed in X2, the set

{ z ∈ X | z ∼ x } = π1

(
∼ ∩ (X × {x})

)
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is closed in X and by (b) and (i) is an up-set. Hence Y := { z ∈ X | z 6∼ x }
is an open down-set containing y. By Lemma 3.13(1), there is a clopen
down-set V containing y with V ⊆ Y . The set

W := {w ∈ X | (∀z ∈ V ) w 6∼ z }
= X \ {w ∈ X | (∃z ∈ V ) w ∼ z }
= X \ π1

(
∼ ∩ (X × V )

)
,

is a down-set as {w ∈ X | (∃z ∈ V ) w ∼ z } is an up-set, by (b) and (i),
and is open in X, as ∼ ∩ (X × V ) is closed in X2. Since V ⊆ Y , we have
x ∈W , and by (c) and the fact that V is a down-set, we have B \ V ⊆W ;
so ↓x ∪ (B \ V ) ⊆W . By Lemma 3.13(3) and (iv), ↓x ∪ (B \ V ) is a closed
down-set. Hence, by Lemma 3.13(2), applied to ↓x ∪ (B \ V ) and X \W ,
there is a clopen down-set U containing ↓x ∪ (B \ V ) with U ⊆ W . Thus
B ⊆ U ∪ V , and, by construction, we have (U × V ) ∩ ∼ = ∅, as U ⊆ W .
As U and V are non-empty, Lemma 3.14 tells us that the map α = λUV is
an X L -morphism from X to L satisfying α(x) = 0 6∼ 1 = α(y). Hence (S2)
holds.

(S3): Let x, y ∈ X with x 64 y. If x ∈ B, then x 6∼ y, by (c), and
the map α constructed in the proof of (S2) satisfies α(x) 6∼ α(y) and so
satisfies α(x) 64 α(y). If x /∈ B, then the closed down-set ↓y ∪ B and the
closed up-set ↑x are disjoint and Lemma 3.13(2) yields a clopen down-set
W with ↓y ∪ B ⊆ W and W ∩ ↑x = ∅. Since x 4 d, we have d /∈ W . By
Lemma 3.14, the map α = λW is an X L -morphism and satisfies α(x) 64
α(y) by construction. Hence (S3) holds.

(S4): Let x ∈ X \B. The map α = λW constructed in the proof of (S1)
is an X L -morphism satisfying α(x) = d /∈ B.

Proofs of Theorems 3.7, 3.9 and 3.11. We use the fact that the cate-
gories X K , X T and X Dk have natural enrichments in X L (correspond-
ing to the reducts of K , T and Dk in L ). We start with Theorem 3.9 as
T has the smallest signature.

Let X = 〈X;4,∼, T 〉 be a topological structure in the signature of T
and assume that X satisfies (NT1)–(NT3). Define the structure S(X) :=
〈X ∪̇ {d}; d,4′,∼′, B, T 〉 where

• 4′ = 4 ∪ (X × {d}) ∪ {(d, d)},
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• ∼′ = ∼ ∪ (X × {d}) ∪ ({d} ×X) ∪ {(d, d)}, and

• B = ∅.

It is easily seen that S(X) satisfies (NL1)–(NL3). Hence, by Theorem 3.5,
S(X) belongs to X L and so embeds into a power of L. It follows at once
that X embeds into a power of T and so belongs to X T . This proves
Theorem 3.9. When restricted to L , the map S yields a functor S: X L →
X T that is dual to the forgetful functor from T to L .

Proofs of Theorems 3.7 and 3.11 are simple modifications of this argu-
ment.

4 The Restricted Priestley dualities for T and Dk

4.1 The Restricted Priestley duality for T A general theory of
restricted Priestley dualities is presented by B. A. Davey and A. Gair [18],
but we will not require the general theory here. Priestley duality gives a dual
equivalence between the category D of bounded distributive lattices and the
category P of Priestley spaces with continuous order-preserving maps as
morphisms (see Priestley [38, 39] and Davey and Priestley [21]). It is the
strong duality that arises from the Special NU Strong Duality Theorem 3.1
applied to D = 〈{0, 1};∧,∨, 0, 1〉, the two-element bounded lattice, and
D = 〈{0, 1};v, T 〉, the two-element chain with the discrete topology. At
the object level:

• the dual of a bounded distributive lattice A is H(A) = D(A,D), with
its order and topology inherited from the power DA;

• the dual of a Priestley space Y is K(Y) = P(Y,D), a sublattice of DY .

The functors are defined on morphisms via composition as described in
Subsection 3.1.

Given a ternary algebra A, let A[ = 〈A;∨,∧, 0, 1〉 be its bounded-
distributive-lattice reduct. Since ¬ : A → A is a homomorphism from A[

to (A[)∂ , it is encoded in the Priestley dual H(A[) via a map g : H(A[) →
H(A[) that is continuous and order-reversing. Formally, g : D(A[,D) →
D(A[,D) is given by

(
∀y ∈ D(A[,D)

)(
∀a ∈ A

)
g(y)(a) = 1 ⇐⇒ y(¬a) = 0, (†)
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or equivalently by

(
∀y ∈ D(A[,D)

)
g(y) = c ◦ y ◦ ¬, (‡)

where c : {0, 1} → {0, 1} is complementation. Our aim is to axiomatise the
structures of the form 〈D(A[,D); g,v, T 〉, where A is a ternary algebra.

Definition 4.1. A topological structure Y = 〈Y ; g,v, T 〉 is a ternary
Priestley space if

(PT1) Y[ := 〈Y ;v, T 〉 is a Priestley space,

(PT2) g : Y → Y is continuous and order-reversing,

(PT3) g ◦ g = idY ,

(PT4) y v g(y) or y w g(y), for all y ∈ Y , and

(PT5) g(y) 6= y, for all y ∈ Y .

The category of ternary Priestley spaces with continuous, order-preserving
and g-preserving maps as morphisms is denoted by Y T .

Every ternary Priestley space has a natural partition into a clopen down-
set and a clopen up-set that are interchanged by g.

Lemma 4.2. Let Y = 〈Y ; g,v, T 〉 be a ternary Priestley space and define

Y− = { y ∈ Y | y v g(y) } and Y+ = { y ∈ Y | g(y) v y }.

(1) g(Y−) = Y+, g(Y+) = Y− and Y = Y− ∪̇ Y+,

(2) Y− is a clopen down-set and Y+ is a clopen up-set.

Proof. (1) Conditions (PT4) and (PT5) imply that Y = Y− ∪̇ Y+, while
(PT2) and (PT3) imply that g(Y−) = Y+ and g(Y+) = Y−.

(2) As g is continuous, by (PT2), graph(g) is closed in Y2, and by
Lemma 3.13(4), v is closed in Y2, by (PT1). It follows that both Y−
and Y+ are closed in Y, whence, by (1), both are clopen. Let y ∈ Y− and
let x ∈ Y with x v y. Hence y v g(y) and g(y) v g(x), by (PT2). Thus
x v g(x), whence x ∈ Y−. Hence Y− is a down-set, and similarly Y+ is an
up-set.
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Given a ternary Priestley space Y = 〈Y ; g,v, T 〉 with underlying Priest-
ley space Y[ = 〈Y ;v, T 〉, define ¬ : P(Y[,D)→P(Y[,D) by

(
∀α ∈P(Y[,D)

)(
∀y ∈ Y

)
¬α(y) = 1 ⇐⇒ α(g(y)) = 0, (∗)

or equivalently by

(
∀α ∈P(Y[,D)

)
¬α = c ◦ α ◦ g, (∗∗)

where c : {0, 1} → {0, 1} is complementation.

Theorem 4.3. Let A be a ternary algebra and let Y be a ternary Priestley
space.

(1) 〈D(A[,D); g,v, T 〉 is a ternary Priestley space.

(2) 〈P(Y[,D);∨,∧,¬, 0, d, 1〉 is a ternary algebra, where 0, 1: Y[ → D
are the constant maps and d : Y[ → D is defined by

d(y) = 1 ⇐⇒ y w g(y). (])

Proof. (1) As both ¬ and c are dual D-homomorphisms, g(y) = c ◦ y ◦ ¬ is
a D-homomorphism, for all y ∈ D(A[,D); hence g is well defined. We must
prove (PT2)–(PT5) of Definition 4.1. The subbasic open sets in D(A[,D)
are of the form

Ua,i := { y ∈ D(A[,D) | y(a) = i },
for a ∈ A and i ∈ {0, 1}. We have g−1(Ua,i) = U¬a,c(i), by the definition
of g. Hence g is continuous.

To prove that g is order-reversing, let x, y ∈ D(A[,D) with x v y. By
(†), for all a ∈ A, we have

g(y)(a) = 1 ⇐⇒ y(¬a) = 0 =⇒ x(¬a) = 0 ⇐⇒ g(x)(a) = 1,

whence g(x) w g(y). Hence (PT2) holds. That g(g(y)) = y is an immediate
consequence of (‡) and the fact that ¬ ◦ ¬ = idA and c ◦ c = id{0,1}; hence
(PT3) holds.

To prove (PT4), let y ∈ D(A[,D) and suppose that y 6v g(y) and
y 6w g(y). Hence there exist a, b ∈ A with

y(a) = 1 & g(y)(a) = 0 and y(b) = 0 & g(y)(b) = 1.
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Thus, by (†), we have

y(a) = 1 & y(¬a) = 1 and y(b) = 0 & y(¬b) = 0

=⇒ y(a ∧ ¬a) = 1 and y(b ∨ ¬b) = 0

=⇒ a ∧ ¬a 
 b ∨ ¬b,

which contradicts the fact that A satisfies a ∧ ¬a 6 b ∨ ¬b, for all a, b ∈ A.
Hence (PT4) holds.

To see that g(y) 6= y it suffices to note that, by (‡) and the fact that
¬d = d,

g(y)(d) = c(y(¬d) = c(y(d)) 6= y(d).

Hence (PT5) holds.

(2) It follows immediately from Lemma 4.2 that the map d is continuous
and order-preserving and so belongs to P(Y[,D), and moreover, d satisfies

d(y) = 0 ⇐⇒ y v g(y). (]])

We now prove conditions (M), (K) and (D) from Definition 1.1. Given
the similarity between the definition of ¬ in (∗) and (∗∗) and the definition
of g in (†) and (‡), the proof that ¬ is order-reversing and satisfies ¬¬α = α,
for all α ∈ P(Y[,D), is a simple symbol swap of the corresponding proof
in (1). It follows at once that ¬ is a dual order-isomorphism (that is, ¬
is surjective and satisfies α 6 β ⇔ ¬α > ¬β) and so is a dual lattice
automorphism. Hence (M) follows.

We turn now to condition (K). Let α ∈P(Y[,D). To prove that α∨¬α >
d we must show that, for all y ∈ Y , if d(y) = 1 then α(y) ∨ ¬α(y) = 1. Let
y ∈ Y with d(y) = 1. If α(y) = 1, then we are done, so assume that
α(y) = 0. Since d(y) = 1, by (]) we have y w g(y) and so α(y) w α(g(y)).
Thus,

α(y) = 0 =⇒ α(g(y)) = 0 =⇒ c(α(g(y))) = 1

=⇒ ¬α(y) = 1 =⇒ α(y) ∨ ¬α(y) = 1,

as required. The proof that α ∧ ¬α 6 d is the order-theoretic dual of this
argument but using (]]) rather than (]).
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Finally, we prove that ¬d = d. Let y ∈ Y . Using, in order, (∗∗), (]]),
(PT3) and (]), we have

¬d(y) = 1 ⇐⇒ c(d(g(y))) = 1 ⇐⇒ d(g(y)) = 0

⇐⇒ g(y) v g(g(y)) ⇐⇒ g(y) v y ⇐⇒ d(y) = 1.

Hence ¬d = d. This completes the proof of (2).

By restricting the domains and codomains of the Priestley-duality func-
tors, with a slight abuse of notation we now have functors H: T → Y T

and K: Y T → T given on objects by: for all A ∈ T and Y ∈ Y T ,

H(A) = 〈D(A[,D); g,v, T 〉, and

K(Y) = 〈P(Y[,D);∨,∧,¬, 0, d, 1〉.

That the functors are well defined on morphisms follows from our next
lemma.

Lemma 4.4. Let A and B be ternary algebras, let X and Y be ternary
Priestley spaces, let u : A[ → B[ be a homomorphism and let ϕ : X[ → Y[
be a Priestley-space morphism.

(1) u preserves ¬ (and therefore preserves d) if and only if H(u) : H(B)→
H(A) preserves g.

(2) ϕ preserves g if and only if K(ϕ) : K(Y)→ K(X) preserves ¬ (and
therefore preserves d).

Proof. We will prove (1). The proof of (2) is very similar. Assume that u
preserves ¬. Then, u ◦ ¬ = ¬ ◦ u, and hence

H(u)(g(y)) = g(y) ◦ u = c ◦ y ◦ ¬ ◦ u = c ◦ y ◦ u ◦ ¬ = g(y ◦ u) = g(H(u)(y)),

for all y ∈ D(B,D). Thus, H(u) preserves g.
Conversely, assume that H(u) preserves g. Then, for all y ∈ D(B,D)

we have H(u)(g(y)) = g(H(u)(y)), whence

y ◦ (u ◦ ¬) = c ◦ c ◦ (y ◦ u) ◦ ¬ = c ◦ g(H(u)(y))

= c ◦H(u)(g(y)) = c ◦ (c ◦ y ◦ ¬) ◦ u = y ◦ (¬ ◦ u).

Since D(B,D) separates the points of B, we conclude that u◦¬ = ¬◦u.
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Theorem 4.5 (Restricted Priestley duality for T ). The two functors H: T →
Y T and K: Y T → T give a dual category equivalence between the category
T of ternary algebras and the category Y T of ternary Priestley spaces. In
particular, A ∼= KH(A) and Y ∼= HK(Y) for every ternary algebra A and
every ternary Priestley space Y.

Proof. Since the functors H: D →P and K: P → D give a dual category
equivalence between the category D of bounded distributive lattices and the
category P of Priestley spaces, it remains only to prove that, for all A ∈ T
and all Y ∈ Y T ,

(1) the isomorphism eA[ : A[ → KH(A)[ in D is an isomorphism in T ,
and

(2) the isomorphism εY[ : Y[ → DE(Y)[ in P is an isomorphism in Y T .

Again, we will prove only (1). Let A ∈ T , let a ∈ A and let y ∈ D(A[,D).
Since ¬eA[(a) = c ◦ eA[(a) ◦ g in KH(A[) and g(y) = c ◦ y ◦ ¬ in D(A[,D),
we have

(
¬eA[(a)

)
(y) = c(eA[(a)(g(y))) = c(g(y)(a))

= c(c(y(¬a))) = y(¬a) = eA[(¬a)(y).

Hence ¬eA[(a) = eA[(¬a), as required.

4.2 The Restricted Priestley duality for Dk Very little work is
now required to obtain the restricted Priestley dual for don’t know algebras.
Since the algebras in Dk are not necessarily bounded, we must use the
corresponding version of Priestley duality. Let

D = 〈{0, 1};∨,∧〉 and D01 = 〈{0, 1}; 0, 1,v, T 〉

be the two-element lattice and the two-element bounded Priestley space. A
straightforward application of the Special NU Strong Duality Theorem 3.1(2)
with C = {0, 1} shows that D01 yields a strong duality between the category
D = ISP(D) of distributive lattices and the category P01 = IScP

+(D01)
of bounded Priestley spaces (with continuous order- and bound-preserving
maps as morphisms).
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Definition 4.6. A topological structure Y = 〈Y ; g, 0, 1,v, T 〉 is a bounded
ternary Priestley space if

(BPT1) Y[ := 〈Y ; 0, 1,v, T 〉 is a bounded Priestley space,

(BPT2) g : Y → Y is continuous and order-reversing,

(BPT3) g ◦ g = idY ,

(BPT4) y v g(y) or y w g(y), for all y ∈ Y , and

(BPT5) g(y) 6= y, for all y ∈ Y .

The category of bounded ternary Priestley spaces with continuous, order-,
bound- and g-preserving maps as morphisms is denoted by Y Dk.

We denote the natural hom-functors between D and P01 by H and K01.
For each A ∈ Dk and each Y ∈ Y Dk, we now let A[ and Y[ be respectively
the underlying distributive lattice and bounded Priestley space. Restricting
to Dk and Y Dk, we now have functors H: Dk→ Y Dk and K01 : Y Dk → Dk
given on objects by

H(A) = 〈D(A[,D); g, 0, 1,v, T 〉, and

K01(Y) = 〈P01(Y[,D01);∨,∧,¬, d〉,

for all A ∈ Dk and Y ∈ Y Dk, where 0, 1: A[ → D are the constant maps
and, as before, d : Y[ → D01 is defined by

d(y) = 1 ⇐⇒ y w g(y).

Theorem 4.7 (Restricted Priestley duality for Dk). The two functors
H: Dk → Y Dk and K01 : Y Dk → Dk give a dual category equivalence
between the category Dk of don’t know algebras and the category Y Dk of
bounded ternary Priestley spaces. In particular, A ∼= K01H(A) and Y ∼=
HK01(Y) for every don’t know algebra A and every bounded ternary Priest-
ley space Y.

Proof. That H: Dk→ Y Dk and K01 : Y Dk → Dk are well-defined functors
is a trivial modification of the proof above for H: T → Y T and K: Y T →
T . It is clear that a proof of the theorem can be obtained by making
simple changes to the proof of Theorem 4.5. Instead, we will derive the
results directly from Theorem 4.5 itself.
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Let D̂k be the full subcategory of Dk consisting of bounded don’t
know algebras in which the top is join-irreducible and the bottom is meet-
irreducible. Let U: Dk → D̂k be the functor that adds new bounds and
extends ¬ in the obvious way, and let V: D̂k → Dk be the functor that
removes the bounds. Then, VU(A) = A and UV(A) ∼= A. We regard Y Dk

as a subcategory of Y T , so that both K01(Y) and K(Y) are defined. Then,
for all A ∈ Dk and all Y ∈ Y Dk, we have

H(A) ∼= HU(A) and K01(Y) ∼= VK(Y).

Hence, by Theorem 4.5,

K01H(A) ∼= VKHU(A) ∼= VU(A) = A, and

HK01(Y) ∼= HUVK(Y) ∼= HK(Y) ∼= Y.

5 The Restricted Priestley dualities for K and L

5.1 The Restricted Priestley duality for K The restricted Priest-
ley duality for Kleene algebras dates back to W. H. Cornish and P. R. Fowler
[14, 15] in the 1970s. It was generalised to varieties of Ockham algebras gen-
erated by a finite subdirectly irreducible algebra by B. A. Davey and H. A.
Priestley [19] in 1987 (see also [13, 7.4.5]). For completeness and for com-
parison with the results for ternary algebras and don’t know algebras, we
record the result here.

Definition 5.1. A topological structure Y = 〈Y ; g,v, T 〉 is a Kleene space
if

(PK1) Y[ := 〈Y ;v, T 〉 is a Priestley space,

(PK2) g : Y → Y is continuous and order-reversing,

(PK3) g ◦ g = idY , and

(PK4) y v g(y) or y w g(y), for all y ∈ Y .

The category of Kleene spaces with continuous, order-preserving and g-
preserving maps as morphisms is denoted by Y K .
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As with T , we restrict the domains and codomains of the Priestley-
duality functors, to yield functors H: K → Y K and K: Y K → K given
on objects by

H(A) = 〈D(A[,D); g,v, T 〉, and

K(Y) = 〈P(Y[,D);∨,∧,¬, 0, 1〉,

for all A ∈ K and Y ∈ Y K .

Theorem 5.2 (Restricted Priestley duality for K ). The functors H: K →
Y K and K: Y K → K give a dual category equivalence between the cat-
egory K of Kleene algebras and the category Y K of Kleene spaces. In
particular, A ∼= KH(A) and Y ∼= HK(Y) for every Kleene algebra A and
every Kleene space Y.

5.2 The Restricted Priestley duality for L The restricted Priest-
ley duality for don’t know algebras was obtained from the corresponding
duality for ternary algebras by simply adding the requirement that the
Priestley spaces be bounded. The restricted Priestley duality for Kleene
lattices arises from the restricted Priestley duality for Kleene algebras in
exactly the same way.

Definition 5.3. A topological structure Y = 〈Y ; g, 0, 1,v, T 〉 is a bounded
Kleene space if

(PL1) Y[ := 〈Y ; 0, 1,v, T 〉 is a bounded Priestley space,

(PL2) g : Y → Y is continuous and order-reversing,

(PL3) g ◦ g = idY , and

(PL4) y v g(y) or y w g(y), for all y ∈ Y .

The category of bounded Kleene spaces with continuous, order-, bound- and
g-preserving maps as morphisms is denoted by Y L .

As with the restricted Priestley duality for Dk, we restrict the domains
and codomains of the Priestley-duality functors (for not-necessarily bounded
distributive lattices), to yield functors H: L → Y L and K01 : Y L → L
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given on objects by

H(A) = 〈D(A[,D); g, 0, 1,v, T 〉, and

K01(Y) = 〈P01(Y[,D01);∨,∧,¬〉,

for all A ∈ L and Y ∈ Y L , where 0, 1: A[ → D are the constant maps.
The following theorem was first stated by H. Gaitán [24].

Theorem 5.4 (Restricted Priestley duality for L ). The functors H: L →
Y L and K: Y L → L give a dual category equivalence between the category
L of Kleene lattices and the category Y L of bounded Kleene spaces. In
particular, A ∼= KH(A) and Y ∼= HK(Y) for every Kleene lattice A and
every bounded Kleene space Y.

6 Translating between the natural and Priestley duals for T

We now return our attention to the dualities for the variety T of ternary
algebras. To increase the utility of both the natural dual X T and the
restricted Priestley dual Y T , by allowing them to work in tandem, we now
give explicit descriptions (up to a natural isomorphism) of the translation
functors between the two dual categories:

P := H ◦ E: X T → Y T and N := D ◦K: Y T →X T .

The corresponding functors for don’t know algebras, Kleene algebras and
Kleene lattices are described briefly at the end of the section.

Let X = 〈X;4,∼, T 〉 belong to X T . Informally, we define P(X) to be
the Priestley space obtained by placing the order-theoretic dual X∂ ‘below’
X and defining the order between X∂ and X via ∼, then defining g to be the
map that flips the top and bottom. Formally, we define

P(X) := 〈X̂ ∪̇X; g,v, T 〉,

where X̂ := {x̂ | x ∈ X}. The relation v is defined on X̂ ∪̇X by

x v y, if x 4 y, x̂ v ŷ, if x < y, and x̂ v y, if x ∼ y,

for all x, y ∈ X, (note that x v ŷ never holds), the map g is defined by

g(x) = x̂ and g(x̂) = x, for all x ∈ X,
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and T is the disjoint union topology. We extend P to a functor from X T

to Y T in the obvious way: if ϕ : X→ Y is an X T -morphism, then

P(ϕ)(x) = ϕ(x) and P(ϕ)(x̂) = ϕ̂(x), for all x ∈ X.

We will give an indirect proof that P(X) is a ternary Priestley space in
Theorem 6.5.

Our initial step will be to prove that P ◦ D ∼= H, but first we require
a couple of background lemmas that are based in the theory of piggyback
dualities. No knowledge of piggyback dualities is required here, but the
interested reader may like to consult the Clark–Davey text [13, Section 7.2]
and the references given there.

0

d

1

0

1

0

d

1

ω0 ω1

Figure 4: The maps ω0 and ω1

Let ω0, ω1 ∈ D(T[,D) be the homomorphisms shown in Figure 4. Let
A be a ternary algebra and define µA : PD(A)→ H(A) by

µA(x) = ω1 ◦ x and µA(x̂) = ω0 ◦ x for all x ∈ T (A,T).

Some general theory tells us that µA is surjective.

Lemma 6.1. µA : PD(A)→ H(A) is surjective for every ternary algebra A.

Proof. Since T is the only subdirectly irreducible algebra in T , the homo-
morphisms from A to T separate the points of A. Hence, for all a 6= b in A,
there exists x ∈ T (A,T) and i ∈ {0, 1} such that ωi(x(a)) 6= ωi(x(b)). It
follows at once from [13, Lemma 7.2.2] that µA is surjective.

To prove that µA is an isomorphism in Y T , we require a description of
the order on H(A) in terms of the structure on D(A). This is a special case
of a very general result by Cabrer and Priestley [12, Theorem 2.3]. As the
arguments are very easy in our special case, we present the details.
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Let A be a ternary algebra and let R be a {0, 1}-sublattice of A[. Then,
provided d ∈ R, there is a unique maximal ternary-algebra subuniverse R◦

of A contained in R. This is a consequence of the fact that ¬ is a dual
endomorphism of A[ that fixes d—see Davey and Priestley [19, Lemma 3.5]
and Clark and Davey [13, Exercise 7.5]. We apply this to subsets of T 2 of
the form

(ωi, ωj)
−1(v) := { (c, d) ∈ T 2 | ωi(c) v ωj(d) }.

Indeed, if (d, d) ∈ (ωi, ωj)
−1(v), then we define Rij to be (ωi, ωj)

−1(v)◦.

As usual, R
D(A)
ij denotes the pointwise extension of Rij to T (A,T).

Lemma 6.2. Let A be a ternary algebra, let x, y ∈ T (A,T) and let i, j ∈
{0, 1}. The following are equivalent.

(1) ωi ◦ x v ωj ◦ y in H(A),

(2) ωi(d) v ωj(d) and (x, y) ∈ RD(A)
ij .

Proof. Assume that ωi ◦ x v ωj ◦ y in H(A). Then ωi(x(a)) v ωj(y(a)), for
all a ∈ A. In particular, ωi(d) = ωi(x(d)) v ωj(x(d)) = ωj(d). It follows
that (d, d) ∈ (ωi, ωj)

−1(v) and hence Rij := (ωi, ωj)
−1(v)◦ is a non-empty

subuniverse of T2. Thus we can argue as follows.
Define xuy : A→ T2 by (xuy)(a) = (x(a), y(a)). Then, since (xuy)(A)

is a non-empty subuniverse of T2,

ωi ◦ x v ωj ◦ y in H(A)

⇐⇒ (∀a ∈ A) ωi(x(a)) v ωj(y(a))

⇐⇒ (∀a ∈ A) (x(a), y(a)) ∈ (ωi, ωj)
−1(v)

⇐⇒ (x u y)(A) ⊆ (ωi, ωj)
−1(v)

⇐⇒ (d, d) ∈ (ωi, ωj)
−1(v) and (x u y)(A) ⊆ (ωi, ωj)

−1(v)◦ = Rij

⇐⇒ ωi(d) v ωj(d) and (∀a ∈ A) (x(a), y(a)) ∈ Rij
⇐⇒ ωi(d) v ωj(d) and (x, y) ∈ RD(A)

ij .

The relations Rij = (ωi, ωj)
−1(v)◦, for i, j ∈ {0, 1}, are very easy to

calculate.

Lemma 6.3. For i, j ∈ {0, 1}, we have ωi(d) v ωj(d) if and only if ij 6= 10.
Moreover, R00 = <, R11 = 4 and R01 = ∼.
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Proof. A quick look at Figure 4 reveals that ωi(d) v ωj(d) if and only if
ij 6= 10. We leave the reader to draw three copies of T2 and thereby verify
the claim concerning R00, R11 and R01.

We require one further calculation.

Lemma 6.4. Let A be a ternary algebra. Then, for all x ∈ T (A,T), we
have g(ω0 ◦ x) = ω1 ◦ x and g(ω1 ◦ x) = ω0 ◦ x in H(A).

Proof. Since g(ω0 ◦ x) = c ◦ ω0 ◦ x ◦ ¬, we have, for all a ∈ A,

g(ω0 ◦ x)(a) = 1⇔ c(ω0(x(¬a))) = 1⇔ ω0(x(¬a)) = 0

⇔ ¬x(a) = x(¬a) ∈ {0, d} ⇔ x(a) ∈ {1, d} ⇔ (ω1 ◦ x)(a) = 1,

whence g(ω0 ◦ x) = ω1 ◦ x. The proof that g(ω1 ◦ x) = ω0 ◦ x is similar.

Theorem 6.5. P(X) is a ternary Priestley space, for all X ∈ X T , and
P: X T → Y T is a functor satisfying PD(A) ∼= H(A), for all A ∈ T .
Indeed, µ : PD→ H is a natural isomorphism.

Proof. Once we know that P is a functor, a very simple calculation shows
that µ : PD → H is a natural transformation, that is, that H(u) ◦ µB =
µA ◦ PD(u), for all A,B ∈ T and all u ∈ T (A,B). It is clear that P
is a functor provided it is well defined, that is, provided P(X) is a ternary
Priestley space, for all X ∈X T . Let X ∈X T . Up to isomorphism, X is of
the form D(A), for some A ∈ T . Since H(A) is a ternary Priestley space, for
all A ∈ T , to show that P(X) is a ternary Priestley space, and to complete
the proof of the theorem, it suffices to prove that µA : PD(A) → H(A) is
an isomorphism of topological structures, for all A ∈ T .

Let A ∈ T . By Lemma 6.1, µA is surjective and by the definition of v
on X̂ ∪̇X along with Lemmas 6.2 and 6.3, we have x v y in PD(A) if and
only if µA(x) v µA(y). Let x ∈ T (A,T). By Lemma 6.4, we have

g(µA(x))(a) = 1⇔ c(ω1(x(¬a))) = 1⇔ ω1(x(¬a)) = 0

⇔ ¬x(a) = x(¬a) = 0⇔ x(a) = 1⇔ ω0(x(a)) = 1

⇔ µA(x̂)(a) = 1⇔ µA(g(x))(a) = 1,
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whence g(µA(x)) = µA(g(x)). Similarly,

g(µA(x̂))(a) = 1⇔ c(ω0(x(¬a))) = 1⇔ ω1(x(¬a)) = 1

⇔ ¬x(a) = x(¬a) ∈ {0, d} ⇔ x(a) ∈ {1, d} ⇔ ω1(x(a)) = 1

⇔ µA(x)(a) = 1⇔ µA(g(x̂))(a) = 1,

whence g(µA(x̂)) = µA(g(x̂)). Thus µA preserves g. The continuity of µA

follows from the fact that, for all a ∈ A and i ∈ {0, 1},

µ−1
A (Ua,i) = {x | x ∈ T (A,T) & ω1(x(a)) = i }

∪ { x̂ | x ∈ T (A,T) & ω0(x(a)) = i }
= {x | x ∈ T (A,T) & x(a) ∈ ω−1

1 (i) }
∪ { x̂ | x ∈ T (A,T) & x(a) ∈ ω−1

0 (i) },

which is open in PD(A).

We turn now to the functor N: Y T → X T . Let Y = 〈Y ; g,v, T 〉
belong to Y T . We define N(Y) = 〈Y+;4,∼, T 〉 where

• Y+ = {x ∈ Y | Y |= g(x) v x },
• 4 = v�Y+ ,

• (∀x, y ∈ Y+) x ∼ y ⇐⇒ Y |= x w g(y), and

• T is the restriction of the topology on Y.

Given X,Y ∈ Y T and a ternary-space morphism ϕ : X → Y, it is easy to
see that ϕ(X+) ⊆ Y+, so we may define N(ϕ) := ϕ�X+ .

Theorem 6.6. N: Y T → X T is a well-defined functor with NP(X) = X,
for all X ∈X T .

Proof. It is clear that N is a functor provided N(Y) ∈X T , for all Y ∈ Y T ,
that is, provided N(Y) satisfies axioms (NT1)–(NT3) of Theorem 3.9.

(NT1): By Lemma 4.2, Y+ is a closed subset of Y and hence 〈Y+;4, T 〉
is a Priestley space.

(NT2): Since g : Y → Y is continuous and v is a closed subset of Y×Y,
by Lemma 3.13(4), the set

∼ = { (x, y) ∈ Y+ × Y+ | g(x) v y } = (g × idY)−1(v) ∩ (Y+ × Y+)
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is closed in Y+ × Y+.

(NT3)(a): Let x ∈ Y+. Then g(x) v x and hence x ∼ x.

(NT3)(b): Let x, y, z ∈ Y+ and assume that x ∼ y and y 4 z. Then,
since g is order-reversing, in Y we have

x w g(y) & y v z =⇒ x w g(y) & g(y) w g(z) =⇒ x w g(z)

and hence x ∼ z.

We now prove that NP(X) = X. It follows immediately from the defini-
tion of P(X) that P(X)+ = X, so NP(X) and X have the same underlying
set, namely X. It is immediate from the construction that 4NP(X) = 4X.
For all x, y ∈ X, we have

x ∼ y in X ⇐⇒ x̂ v y in P(X)

⇐⇒ x, y ∈ X and g(x) v y in P(X)

⇐⇒ x, y ∈ P(X)+ and x w g(y) in P(X)+

⇐⇒ x ∼ y in NP(X).

Hence NP(X) = X.

Combining these results gives the category equivalence that we seek.

Theorem 6.7. The functors P: X T → Y T and N: Y T → X T satisfy
NP = idX T

and PN ∼= idY T
, and so give a category equivalence between

X T and Y T . Moreover,

PD ∼= H and NH ∼= D.

T

X T

Y T

P N
E

D

K

H

Figure 5: The six functors
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Proof. By Theorems 6.5 and 6.6, we have PD ∼= H and NP = idX T
. Hence

NH ∼= NPD ∼= idX T
D ∼= D

and

PN ∼= PNidY T
∼= PNHK ∼= PDK ∼= HK ∼= idY T

.

We close this section with descriptions of the translation functors for the
other three varieties.

6.1 Don’t know algebras The translation functors for Dk between
X Dk and Y Dk are defined exactly as they were for T : the bounds of P(X)
are given by d ∈ X and d̂ ∈ X̂, and the element d of N(Y) is given by the
top of Y.

6.2 Kleene algebras The translation functors for K between X K

and Y K were described and generalised by Davey and Priestley [19] (see
also [13, Section 7.5]). As [19] uses a multi-sorted natural duality for K ,
the description of the translation functors in our single-sorted situation is
implicit rather than explicit and requires extraction.

Given X = 〈X;4,∼, B, T 〉 in X K , the structure 〈X;4,∼, T 〉 belongs
to X T . Thus we may define PK (X) ∈ Y K by

PK (X) = P(X)/θB,

where θB is the equivalence relation on P(X) that identifies x and x̂, for all
x ∈ B.

Given a Kleene space Y = 〈Y ; g,v, T 〉, we define NK (Y) in terms of
N(Y) via NK (Y) = 〈Y+;4,∼, B, T 〉 where

• N(Y) = 〈Y+;4,∼, T 〉, and

• B = { y ∈ Y | g(y) = y }.

6.3 Kleene lattices As in the case of don’t know algebras, the transla-
tion functors for L are defined as they were for Kleene algebras: the bounds
of PL (X) are given by d ∈ X and d̂ ∈ X̂, and the element d of NL (Y) is
given by the top of Y.
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7 Applications of the dualities and the translation functors
for T

The following simple observation will be used twice below: the relational
product of < and 4 equals the relation ∼, more formally,

< ·4 := { (a, b) ∈ T 2 | (∃c ∈ T ) a < c & c 4 b } = ∼. ($)

This extends to powers of T : let S be a non-empty set and let <TS , 4TS and
∼TS be the pointwise extensions of<, 4 and∼ to TS ; then<TS ·4TS = ∼TS .
(We saw in Subsection 3.6 that this does not work on subsets of powers.)

7.1 Term functions By the property known as (CLO), which holds
for every natural duality (see [13, Prop. 2.2.3]), for every non-empty set S,
a map ϕ : TS → T is an S-ary term function of T if and only if ϕ is a
morphism from TS to T. By ($), if ϕ : TS → T preserves 4 then it must
also preserve ∼. This gives us the following extension of Mukaidono’s [33]
description of the finitary term functions on T.

Theorem 7.1. Let S be a non-empty set and endow TS with the product
topology coming from the discrete topology on T . A map ϕ : TS → T is an
S-ary term function of T if and only if it is continuous and preserves the
uncertainty order 4. In particular, for n ∈ N, a map ϕ : Tn → T is an
n-ary term function of T if and only if it preserves the uncertainty order.

7.2 Free algebras It follows at once from Theorem 7.1 that the free
S-generated ternary algebra FT (S) can be represented as the subalgebra of

TTS consisting of the continuous, 4-preserving maps with the projections
as the free generators. As an alternative approach, we now apply the trans-
lation functor P: X T → Y T to study the ordered set of join-irreducible
elements of FT (n), for n ∈ N.

For a finite distributive lattice L, denote the ordered set of join-irreducible
elements of L by J i(L). The Priestley dual H(L) is isomorphic to the
order-theoretic dual J i(L)∂ of J i(L). Since every ternary algebra is order-
theoretically self-dual, for a finite ternary algebra A we may ignore the ∂

and hence we have J i(A) ∼= H(A). We will apply this in the case that
A = FT (n), but first we require one further order-theoretic construct.
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Let P = 〈P ;6〉 be a finite ordered set. By analogy with the definition
of P(X), we define

3(P) := 〈P̂ ∪̇ P ;v〉,
where P̂ := {x̂ | x ∈ P}. The relation v is defined on P̂ ∪̇ P by

x v y, if x 6 y, x̂ v ŷ, if x > y,
and x̂ v y, if (∃z ∈ P ) x > z & z 6 y,

for all x, y ∈ P . The relation v is easily seen to be an order: v is reflexive
as 6 is, v is antisymmetric as 6 is and since x̂ w y never holds, and
a very simple calculation with four cases shows that v is transitive. It
is very easy to convert a diagram for P into a diagram for 3(P): place
P∂ immediately below P and add a line from m̂ to m, for each minimal
element m of P (see Figures 6 and 7). Our next result is an alternative to
the descriptions of J i(FT (n)) given by Berman and Mukaidono [2, pp. 30–
33] and by Balbes [1, Thm. 5.3, Cor. 5.2] and gives additional information
on the structure of the ordered set.

Theorem 7.2. Let U = 〈{0, d, 1};4〉 be the underlying ordered set of T.
For all n ∈ N, we have

J i(FT (n)) ∼= 3(Un).

In particular, |J i(FT (n))| = 2 · 3n.

Proof. A very basic result from the theory of natural dualities [13, 2.2.4]
tells us that D(FT (n)) ∼= Tn. Since P(Tn) = 3(Un), by Theorem 6.7, we
have

J i(FT (n)) ∼= H(FT (n)) ∼= PD(FT (n)) ∼= P(Tn) ∼= 3(Un).

It follows immediately that |J i(FT (n))| = 2 · 3n.

The diagrams of 3(U) and of FT (1) are given in Figure 6, and the
diagram of 3(U2) is given in Figure 7, where we abbreviate (a, b) to ab.
Diagrams of FT (1) and J i(FT (2)) also appear in [1] and [2]. Their dia-
grams of J i(FT (2)) are slightly different from one another but, unlike our
diagram in Figure 7, both have the disadvantage that they do not expose
the role of U2 nor of the 3 construction.
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0̂

d̂

1̂
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U∂

0

x ∧ ¬x
x ∧ d ¬x ∧ d

x d ¬x
x ∨ d ¬x ∨ d

x ∨ ¬x
1

Figure 6: J (FT (1)) = 3(U) and FT (1)

While we cannot draw FT (2), we can use the structure of 3(U2) to
calculate the size of FT (2). We will use the fact that, the Priestley dual
K(P) of a finite ordered set P is isomorphic to the lattice U(P) of up-sets
of P.

Corollary 7.3. |FT (2)| = 197.

Proof. Since J i(FT (2)) ∼= 3(U2), by Theorem 7.2, we have

FT (2) ∼= KH(FT (2)) ∼= U(J i(FT (2))) ∼= U(3(U2)).

An up-set V of 3(U2) is either (A) an up-set of U2 or (B) has a non-empty

intersection with Û2.

Case (A): We shall prove that |U(U2)| = 48. Priestley duality tells us that
U(U2) is the coproduct U(U)tU(U) in D . By Davey [17], U(U)tU(U) is
isomorphic to the lattice of order-preserving maps from U into U(U). Label
U(U) as in Figure 8.

An order-preserving map ϕ from U to U(U) corresponds to choosing
ϕ(d) in U(U) and then choosing a pair of elements from ↓ϕ(d) as values for
ϕ(0) and ϕ(1). Choosing ϕ(d), in order, to be 0, a, b, c, 1 gives the following
total number of maps:

1 + 22 + 32 + 32 + 52 = 48.
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Figure 7: J (FT (2)) = 3(U2)
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Figure 8: U and U(U)

Case(B): Let V be an up-set of 3(U2) that intersects Û2. The intersection of
V with the set max(U2) = {0̂0, 0̂1, 1̂0, 1̂1} is one of the 15 non-empty subsets

of max(U2). The up-set V must contain V :=
⋃{ ↑a | a ∈ V ∩max(Û2) }.

The only possibility for V \ V is an up-set of P ∪̇Q, where

P = U \ V , and

Q = Û2 \
(

max(Û2) ∪
⋃
{ ↓b | b ∈ max(Û2) \ V }

)
.

The number of possibilities for V for a given V ∩max(Û2) will be

|U(P ∪̇Q)| = |U(P)| × |U(Q)|.
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We will consider five sub-cases.

Case (B1): |V ∩ max(Û2)| = 1. In this case P is a fence of size five and
hence |U(P)| = 13. (A fence of size n has fn+2 up-sets, where fk is the kth
Fibonacci number—see Davey and Priestley [21, Exercise 1.16].) Since Q
is empty, this case yields 4× 13 = 52 up-sets.

Case (B2): V ∩max(Û2) ∈
{
{0̂0, 0̂1}, {0̂0, 1̂0}, {0̂1, 1̂1}, {1̂0, 1̂1}

}
. In each

case P is a fence of size three, while Q has size one. Hence |U(P)|×|U(Q)| =
5× 2 = 10, and thus this case yields 4× 10 = 40 up-sets.

Case (B3): V ∩max(Û2) ∈
{
{0̂0, 1̂1}, {0̂1, 1̂0}

}
. In both cases, P is a two-

element antichain, whence |U(P)| = 4, and Q is empty. Thus this case
yields 2× 4 = 8 up-sets.

Case (B4): |V ∩max(Û2)| = 3. In this case, P has one element and Q is
a two-element antichain, so |U(P)| × |U(Q)| = 2 × 4 = 8. Thus this case
yields 4× 8 = 32 up-sets.

Case (B5): max(Ŷ2) ⊆ V . Now P is empty and Q ∼= 1⊕ 4 (the linear sum
of a one-element ordered set and a four-element antichain). This case yields
a further |U(Q)| = |U(1⊕ 4)| = 17 up-sets.

Summing the numbers from Case (A) and Cases (B1)–(B5) gives,

48 + 52 + 40 + 8 + 32 + 17 = 197

up-sets.

That |FT (2)| = 197 is stated without proof by Berman and Mukaidono [2];
they also used a computer to calculate the sizes of FT (3) and FT (4).

Remark 7.4. The Priestley dual of a coproduct of ternary algebras is easily
studied via the translation functors. For ternary algebras A and B, denote
their coproduct in T by A tB. One of the advantages of the natural dual
is that D(A t B) ∼= D(A) × D(B), with the product in X T being the
usual pointwise cartesian product. In comparison, products in Y T are not
pointwise. The translation functor gives us

H(A tB) ∼= P(D(A)×D(B)).

Alternatively, given X,Y ∈ Y T , their product X u Y in Y T is given by

X u Y ∼= P(N(X)×N(Y)).
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7.3 Process spaces and subset-pair algebras Process spaces were
introduced by R. Negulescu in 1995 as a formalism for modelling interacting
systems [35, 36]. We refer to [6, 8, 35, 36] for the background motivation.
Given a non-empty set X, a process over X is an ordered pair (U, V ) of
subsets of X such that U ∪ V = X. The set P(X) of all processes over
X is called the process space over X and yields a ternary algebra P(X) =
〈P(X);∨,∧,¬, 0, d, 1〉 with operations defined by

(U, V ) ∨ (S, T ) = (U ∩ S, V ∪ T ), (U, V ) ∧ (S, T ) = (U ∪ S, V ∩ T ),

¬(U, V ) = (V,U), 0 = (X,∅), d = (X,X), and 1 = (∅, X).

Note that

(U, V ) 6 (S, T ) in P(X) ⇐⇒ U ⊇ S & V ⊆ T. (¢)

A subalgebra of the process space ternary algebra P(X) is called a subset-
pair algebra over X. Brzozowski, Lou and Neglescu [7] proved that every
finite non-trivial ternary algebra is isomorphic to a subset-pair algebra and
Ésik [23] extended this to arbitrary ternary algebras. In both cases, the
proofs were somewhat indirect. We now apply the natural duality for T
to give a direct proof that every ternary algebra A embeds into the process
space algebra P(X), where X = T (A,T) and therefore is isomorphic to a
subset-pair algebra.

Let X = 〈X;4,∼, T 〉 be the natural dual space of a non-trivial ternary
algebra. We say that (U, V ) is a compatible process over X if (U, V ) is a
process over X (i.e., U ∪ V = X), both U and V are clopen upsets in X,
and x 6∼ y, for all x ∈ U \V and y ∈ V \U . The set Pc(X) of all compatible
processes over X forms a subalgebra Pc(X) of P(X).

The following lemma shows that compatible processes over X are in a
one-to-one correspondence with morphisms α : X → T. It follows almost
immediately from Lemma 3.14.

Lemma 7.5. Let X ∈X T . A map α : X → T is an X T -morphism if and
only if

(
α−1({0, d}), α−1({1, d})

)
is a compatible process over X.

Theorem 7.6.

(1) Let X ∈X T be the natural dual of a ternary algebra. The map

u : α 7→
(
α−1({0, d}), α−1({1, d})

)
, for all α ∈X T (X,T)
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is an isomorphism from E(X) to Pc(X).

(2) Every ternary algebra is isomorphic to a subset-pair algebra.

(3) Every finite ternary algebra A is isomorphic to a subset-pair alge-
bra over a set X with |X| = 1

2 |J i(A)|.

Proof. (1) The forward implication of Lemma 7.5 implies that the map
u is well defined. Let (U, V ) be a compatible process over X and define
α : X → T by

α(x) = 1, if x ∈ V \ U,α(x) = d, if x ∈ U ∩ V,α(x) = 0, if x ∈ U \ V.

Since
(
α−1({0, d}), α−1({1, d})

)
= (U, V ), the backward implication of

Lemma 7.5 implies that α is a morphism from X to T. Hence u is sur-
jective.

Let α 6 β in E(X). Since the order on E(X) is pointwise from the order
on T and the order in Pc(X) is given by (¢), the following equivalences are
straightforward to establish:

α 6 β in E(X)

⇐⇒ α−1({0, d}) ⊇ β−1({0, d}) & α−1({1, d}) ⊆ β−1({1, d})
⇐⇒ u(α) 6 u(β) in Pc(X).

Thus u is an order-isomorphism. Since ¬α is calculated pointwise in E(X),
we have (¬α)−1(0) = α−1(1), (¬α)−1(1) = α−1(0) and (¬α)−1(d) = α−1(d).
Thus

u(¬α) =
(
α−1({1, d}), α−1({0, d})

)
= ¬(α−1({0, d}), α−1({1, d})

)
= ¬u(α).

The three nullary operations in E(X) are the constant maps 0, d and 1, and

u(0) = (X,X) u(d) = (X,∅), and u(1) = (∅, X).

Thus u preserves the nullary operations. Hence u is an isomorphism.

Let A be a ternary algebra. Since A ∼= ED(A) by Theorem 3.8, (2)
follows immediately from (1) with X = D(A), and (3) follows from (1), again
with X = D(A), and the fact that, for a finite ternary algebra A, we have
|J i(A)| = 2|D(A)| since J i(A) ∼= H(A) ∼= PD(A), by Theorem 6.5.
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7.4 The reflection from L into T via the natural dualities
There is a natural forgetful functor U: T → L that forgets the three
nullary operations. If we view T as a subcategory of L , then the reflection
V: L → T of L into T is simply the left adjoint to U. The enrichment
functor S: X T →X L dual to U was described in the proof of Theorem 3.9
in Subsection 3.7, and a right adjoint T: X L → X T to S will be dual to
V. It is very easy to see that the right adjoint to S is given by the forgetful
functor defined on objects by

T
(
〈X; d,4,∼, B, T 〉

)
:= 〈X;4,∼, T 〉.

Put another way, the free ternary algebra generated by Kleene lattice A is
the ternary algebra dual to object 〈L (A,L);4,∼, T 〉 of X T .

The reflections of L into K and Dk and the reflections of K and Dk
into T can be obtained in the same way from the appropriate forgetful
functors between the dual categories.
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