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Algebraic models of cubical weak higher
structures

Camell Kachour

Abstract. In this article we recast some of the results developped in arti-
cles [19, 22] but in the setup of cubical geometry. Thus we define a monad on
CSets whose algebras are models of cubical weak ∞-groupoids with connec-
tions. In addition, we define a monad on the category CSets × CSets whose
algebras are models of cubical weak∞-functors, and a monad on the category
CSets × CSets × CSets × CSets whose algebras are models of cubical weak
∞-natural transformations.

1 Introduction and preliminaries

This article follows [21]; in it we explain how to build algebraic models of :

• cubical weak ∞-groupoids with connections (see 2.3)

• cubical weak ∞-functors (see 3.1)
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• cubical weak ∞-natural transformations (see 3.2)

In particular cubical weak (∞, 0)-categories known as cubical weak ∞-
groupoids are very important for us because although other models of cubical
weak ∞-groupoids exist, they are defined in a non-algebraic way [7, 8, 10,
11, 13], i.e defined as kind of cubical Kan complexes.

We believe that our models of cubical weak ∞-groupoids should open
new perspectives on the Grothendieck conjecture on homotopy types of
spaces 2.3, which is stated in the globular setting, and is as follow:

Conjecture 1.1 (Grothendieck). The category of (some) models of globular
weak ∞-groupoids is equipped with a Quillen model structure such that its
localisation is equivalent to the category of CW-spaces.

As [21], this article is mainly concerned with cubical stretchings and to
the cubical higher structures they provide. Our main steps are as follows:

• We start to define cubical (∞, 0)-sets, using as a main tool the cubical
reversors. These are the cubical analogue of the globular (∞, 0)-sets1

which have been defined in [22]. More precisely they are built by
using cubical analogue of minimal (∞, 0)-structures in the sense of
[22]. Then we define the categories of cubical reflexive (∞, 0)-magmas
and the category of cubical (∞, 0)-groupoidal stretchings, which is
the cubical analogue of the globular (∞, 0)-categorical stretchings, as
defined in [22]. The introduction of these new sketches inside cubical
stretchings allows us to build a monad on the category of cubical sets
whose algebras are our models of cubical weak ∞-groupoids. This
monad is the cubical analogue of the monad on globular sets built
in [22] and whose algebras are globular models of weak ∞-groupoids.

• In the sections 3.1 and 3.2 we extend globular weak ∞-functors and
globular weak ∞-natural transformations to the cubical setting. In
particular we shall see that the monad of cubical weak∞-functors acts
on the category CSets × CSets and the monad of cubical weak natu-
ral ∞-transformations acts on the category CSets× CSets× CSets×
CSets. In these last sections some interesting internal 2-cubes appear
in ∞-CCAT which are in fact all classical cubical strict 2-categories.

1Also called (∞, 0)-graphs in [22]
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We finish our article by sketching the construction of an expected
cocubical object of monads which should be a W -coalgebra2, which
leads to an operadic approach of the cubical weak ∞-category of cu-
bical weak ∞-categories.

In this article the reader has to take care to not confuse (∞,m)-structures
and (n,∞)-structures: (∞,m)-structures as described in [22] are some kind
of higher categories with invertible cells; (n,∞)-structures as described in
3.1 and 3.2 lead to n-cells in the cubical weak∞-category of cubical weak∞-
categories3; for example, (0,∞)-structures in 3.1 refers to all higher struc-
tures surrounding cubical weak ∞-functors, and (1,∞)-structures in 3.2
refers to all higher structures which surround cubical weak∞-natural trans-
formations. Forgetful functors are generically written with the letter U plus
some variations of it: exponents on right side are used in 2.3, and left side
are used in 3.1 and 3.2.

2 Cubical weak ∞-groupoids

The author doesn’t know of any work on cubical weak ∞-categories with
some kind of inverses involved. However such work exists in the strict
case, see [27]. In low dimensions, simplicial methods have been used in
[7, 8, 10, 11, 13] to study it. Some applications of it to homology have been
considered in [9–11], and other applications in algebraic topology have also
been carried out in [12]. As we said in the beginning of this article our first
aim is to provide these higher cubical notions with the perspective to carry
on applications of these cubical higher structures to homological algebra,
algebraic topology and computer sciences.

The models of cubical weak∞-groupoids that we are going to define are
algebras for a monad W0 on the category CSets of cubical sets. This monad
is built with adapted stretchings: the cubical ∞-groupoidal stretchings 2.3,
which themselves are built with cubical strict∞-groupoids with connections
2.2 which has been characterized by Lucas in [27], and with cubical reflexive
(∞, 0)-magmas 2.3. As in [21] these cubical ∞-groupoidal stretchings are
tools which fill with cubical coherences cells their underlying cubical reflex-

2W is the monad of cubical weak ∞-categories built in [21] but seen as an S-operad.
3We discuss some important progress for its existence in [25].
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ive (∞, 0)-magmas, and such fills are controlled by their underlying cubical
strict ∞-groupoids.

2.1 Cubical (∞, 0)-sets. Cubical (∞, 0)-sets underlie a new sketch
(see diagrams below) which we use in 2.3 to define algebraic models of
cubical weak ∞-groupoids.

Here we define cubical version of the formalism developed in [22] for
globular (∞, 0)-sets. The formalism of this cubical world is similar to its
globular analogue.

Consider a cubical set C = (Cn, s
n
n−1,j , t

n
n−1,j)1≤j≤n. If n ≥ 1 and 1 ≤

j ≤ n, then a (n, j)-reversor on it is given by a map Cn Cn
jnj

such that the following two diagrams commute:

Cn Cn

Cn−1

jnj

snn−1,j tnn−1,j

Cn Cn

Cn−1

jnj

tnn−1,j snn−1,j

If for each n > 0 and for each 1 ≤ j ≤ n, there are such (n, j)-reversor
jnj on C, then we say that C is a cubical (∞, 0)-set. The family of maps
(jnj )n>0,1≤j≤n for all (n ∈ N∗) is called an (∞, 0)-structure and in that case
we shall say that C is equipped with the (∞, 0)-structure (jnj )n>0,1≤j≤n.
When we speak about such (∞, 0)-structure (jnj )n>0,1≤j≤n on C, it means
that it is for all integers n ∈ N∗ such that Cn is non-empty. Seen as cubical
(∞, 0)-set we denote it by:

C = ((Cn, s
n
n−1,j , t

n
n−1,j)1≤j≤n, (jnj )n>0,1≤j≤n)

and if

C′ = ((C ′n, s
′n
n−1,j , t

′n
n−1,j)1≤j≤n, (j′nj )n>0,1≤j≤n)

is another (∞, 0)-set, then a morphism of (∞, 0)-sets:

C C′f
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is given by a morphism of cubical sets such that for each n > 0 and for
each 1 ≤ j ≤ n we have the following commutative diagrams:

Cn Cn

C ′n C ′n

jnj

fn fn

j′nj

The category of cubical (∞, 0)-sets is denoted by (∞, 0)-CSets.

Remark 2.1. A cubical set C = (Cn, s
n
n−1,j , t

n
n−1,j)1≤j≤n can be equipped

with other operations giving the inverse for degeneracies which come from
connections. These operations are called connectors in [20]. For each integer
n ∈ N∗ such that Cn is non-empty, we define connectors on C as maps:

Cn Cn
jn,γj

such that we have the following commutative diagrams:

Cn Cn

Cn−1

snn−1,j

jn,γj

snn−1,j+1

Cn Cn

Cn−1

tnn−1,j

jn,γj

tnn−1,j+1

where j ∈ {1, · · · , n − 1}. This provides on C another kind of struc-
ture of (∞, 0)-set, which could be used to define cubical inverses related
to connections. But we prefer to avoid such structure, though very inter-
esting, because our scope is first to define cubical weak ∞-groupoids with
connections, which use (through adapted stretchings, see 2.3) the character-
ization in [27] of cubical strict ∞-groupoids with connections, just by using
reversors as above. Such cubical set C can be also equipped with reversors
and connectors, which is still another kind of structure of (∞, 0)-set that
deserves more investigations in the future. It is also important to notice
that the different kinds of inverses for strict cubical∞-categories have been
invested by Lucas in [27] but without our level of structures.
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Remark 2.2. This structural approach of inverses is much more powerful
than the simplicial methods because with it we are able to build any kind
of reversible higher structure. For example in our framework it is a simple
exercise to build some exotic one which could be difficult to build with
simplicial method.

2.2 Cubical strict ∞-groupoids In this section we use the char-
acterization of Lucas [27] for cubical strict ∞-groupoids with connections.
Thus cubical strict ∞-groupoids are just cubical strict ∞-categories with
connections such that all n-cells for n > 0 are ◦nj -isomorphisms for 1 ≤
j ≤ n. The studies of cubical strict structures using inverses has been done
in [7, 8, 10, 11, 13, 27], especially in the aim to generalize many known
results involving low dimensional groupoids and algebraic topology. For ex-
ample, a generalization of the notion of cubical strict fundamental groupoids
to higher dimensions has been undertaken in [9, 10] in order to obtain higher
version of Van Kampen type Theorem.

In this article we use cubical strict ∞-groupoids as an underlying part
of the structure of the cubical (∞, 0)-groupoidal stretchings (see 2.3) which
are the adapted stretchings to weakened cubical strict ∞-groupoids. Thus
they are an important step in our approach of cubical weak ∞-groupoids.

Consider a cubical strict∞-category C as defined in [21]. We say that it
is a cubical strict ∞-groupoid if its underlying cubical set is equipped with
an (∞, 0)-structure (jnj )n>0,1≤j≤n satisfying the following identities: ∀j, n
such that 1 ≤ j ≤ n and 0 < n,

∀α ∈ Cn, α ◦nj jnj (α) = 1n−1
n,j (tnn−1,j(α)) and jnj (α) ◦nj α = 1n−1

n,j (snn−1,j(α))

Proposition 2.3. A cubical strict ∞-groupoids C as above has a unique
underlying (∞, 0)-set.

A cubical strict ∞-functor preserve (k, j)-reversors. Thus morphisms
between cubical strict ∞-groupoids are just cubical strict ∞-functors. The
category of cubical strict ∞-groupoids is denoted ∞-CGrp. Also we have
the following proposition

Proposition 2.4. The evident forgetful functor:

∞-CGrp CSetsU
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is right adjoint and monadic.

Proof. Write EC0 for the sketch of the cubical strict ∞-groupoids with con-
nections. It is based on the sketch EC of the cubical strict ∞-categories
with connections, plus diagrams of the (∞, 0)-structure with the easy di-
agrammatical form of the axioms just above. But the sketch EC was de-
scribed in [21]. Thus EC0 is projectively sketchable and it contains the
sketch ES (which is also projective) of cubical sets. Thus we just apply the
Foltz theorem [17] for its right adjointness. The fact that it is monadic is
straightforward.

The monad of cubical strict ∞-groupoids on cubical sets is denoted:

S0 = (S0, λ0, µ0)

Here λ0 is the unit map of S0:

1CSets S0λ0

and µ0 is the multiplication of S0:

(S0)2 S0µ0

2.3 The category of cubical weak∞-groupoids A cubical reflex-
ive (∞, 0)-magma is an object of∞-CMagr such that its underlying cubical
set is equipped with an (∞, 0)-structure. Morphisms between cubical re-
flexive (∞, 0)-magmas are those of ∞-CMagr which are also morphisms of
(∞, 0)-CSets, that is, they preserve the underlying (∞, 0)-structures. The
category of cubical reflexive (∞, 0)-magmas is denoted (∞, 0)-CMagr.

The category (∞, 0)-CEtG of cubical ∞-groupoidal stretchings has as
objects quintuples:

E = (M,C, π, ([−;−]nn+1,j)n∈N;j∈{1,...,n}, ([−;−]n,γn+1,j)n∈N;j∈{1,...,n};γ∈{−,+})

where M is a cubical reflexive (∞, 0)-magma, C is a cubical strict ∞-
groupoid, π is a morphism in (∞, 0)-CMagr:

M Cπ
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and

([−;−]nn+1,j)n∈N;j∈{1,...,n}, ([−;−]n,γn+1,j)n∈N;j∈{1,...,n};γ∈{−,+}

are the cubical bracketing structures which have already been defined in [21].
A morphism of cubical groupoidal stretchings:

E E′(m,c)

is given by commutative squares in (∞, 0)-CMagr:

M M ′

C C ′

π

m

π′

c

such that for all n ∈ N, and for all (α, β) ∈ M̃n,

mn+1([α, β]nn+1,j) = [mn(α),mn(β)]nn+1,j (j ∈ {1, ..., n+ 1})

and

mn+1([α, β]n,γn+1,j) = [mn(α),mn(β)]n,γn+1,j (j ∈ {1, ..., n}, γ ∈ {−,+})

The category of cubical groupoidal stretchings is denoted (∞, 0)-CEtG.
Consider the forgetful functor:

(∞, 0)-CEtG CSetsU0

defined on objects by:

(M,C, π, ([−;−]nn+1,j)n∈N;j∈{1,...,n}, ([−;−]n,γn+1,j)n∈N;j∈{1,...,n};γ∈{−,+}) M

This functor is right adjoint which produces a monad W0 = (W 0, η0, ν0)
on the category of cubical sets. Its right adjointness comes from the fact
that the category (∞, 0)-CEtG is projectively sketchable and contains the
sketch ES . Main parts of this sketch have been already described in [21].
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Definition 2.5. Cubical weak ∞-groupoids are algebras for the monad
W0 = (W 0, η0, ν0) defined above on the category CSets of cubical sets.

Thus the category of our models of cubical weak∞-groupoids is denoted
W0-Alg.

If it is evident to see that we have ”an embedding” of ∞-CGrp in
∞-CCat, this is also true in the weak case, but it is a bit more subtle;
it comes from the forgetful functor:

(∞, 0)-CEtG ∞-CEtCU

which forgets the underlying (∞, 0)-structures (see [21] for the descrip-
tion of the category ∞-CEtC). We also have the following morphism of the
category Adj of adjunctions:

(∞, 0)-CEtG ∞-CEtC

CSets CSets

V

a U0 a U

id

F 0 F

because U ◦ V = U0 (see [19]), thus it produces a morphism V ∗ in the
category Mnd of monads:

(CSets,W) (CSets,W0)V ∗

and passing to algebras, gives the following functor Alg(V ∗) which is the
expected ”embedding”:

W0-Alg W-Alg
Alg(V ∗)

In [1] it is proved that the category of cubical strict ∞-categories with
connections is equivalent to the category of globular strict ∞-categories.
In [27] it is proved that the category of cubical strict (∞,m)-categories
with connections is equivalent to the category of globular strict (∞,m)-
categories (which were first defined in [22]) and in particular he proved that
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the category of cubical strict∞-groupoids with connections is equivalent to
the category of globular strict ∞-groupoids.

Our models of cubical weak∞-groupoids with connections are the direct
analogue of globular weak∞-groupoids (models of it are built in [4, 22, 30]).
Thus the conjecture of Batanin in [3] which says that his globular weak ∞-
categories are ”equivalent” to Penon globular weak ∞-categories, plus the
recent result of Bourke [5] which resolves the conjecture of Ara [2] which says
that Batanin’s globular weak ∞-categories are equivalent to Grothendieck
weak ∞-categories, leads us to put formulate the following hypothesis:

Conjecture 2.6 (1). The category W0-Alg of cubical weak ∞-groupoids
with connections, is equipped with a Quillen model structure, and such
a model structure is Quillen equivalent to the category of globular weak
∞-groupoids also equipped with a genuine Quillen model structure

Conjecture 2.7 (2). The category W0-Alg of cubical weak ∞-groupoids
with connections, is equiped with a Quillen model structure, the one of the
first conjecture, such that its localization is equivalent to the category of
CW -spaces.

This second conjecture is inspired by the result in [29] which says that
the category Cr defined in [21] is a test category, that is the category of
presheaves on Cr is equipped with a Quillen model structure (the Cisinski
one, see [29]), such that its localization is equivalent to the category of
CW -spaces.

These hypotheses together must solve the Grothendieck conjecture on
homotopy types:

Conjecture 2.8 (Grothendieck). The category of globular weak∞-groupoids
is equipped with a Quillen model structure such that its localization is equiv-
alent to the category of CW -spaces.

3 Steps toward the cubical weak ∞-category of cubical weak
∞-categories.

In this last section we are going to show how cubical stretchings give al-
gebraic models of cubical weak ∞-functors and cubical weak ∞-natural
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transformations. We can go further as it was done for the globular paradigm
in [19], but just with this level 2 of cubical algebras we obtain some inter-
esting canonical 2-cubes in 3.2.1, 3.2.2 and 3.2.3. In the end of this section
3.2.3 we draw the cocubical object in some category of monads that we
hope to describe with more precision in the future and which contains all
cubical analogue of globular algebras of [19]. This cocubical object4 should
be an important step to obtain the expected cubical weak ∞-category of
cubical weak ∞-categories, and this lead to accurate formulation of cubi-
cal Grothendieck ∞-topos, cubical ∞-stacks, etc. More details on such a
cubical higher structure can be found in [25].

3.1 The category of cubical weak ∞-functors In Theoretical
Physics basic data of an Extended Topological Quantum Field Theory
(ETQFT ) [16, 28] is given by a weak monoidal∞-functor between a higher
monoidal category of cobordisms and some kind of higher categorification
of the monoidal category of Hilbert spaces. For example in [28] the simpli-
cial geometry is used to define ETQFT, while in [16] they use instead the
multiple geometry of Charles Ehresmann [15]. In this section we are going
to define algebraic model of cubical weak ∞-functors with the hope that in
the future it can be used for accurate algebraic models of cubical ETQFT.

In [32] Jacques Penon proposed algebraic models of globular weak ∞-
functors which were extended to all kind of globular weak higher transfor-
mations in [19]. The methods used in [19, 32] consists in the use of different
kinds of stretchings in order to weaken different kinds of strict higher struc-
tures. For example in [32] Penon has built a category of stretchings 5 (called
the category of (0,∞)-categorical stretchings in [19]) which were adapted
to weakened strict ∞-functors. And in [19] the author used the category
of (n,∞)-categorical stretchings to weaken all kinds of globular strict n-
transformations for all n ≥ 2 (strict natural ∞-transformations correspond
to n = 2 and strict ∞-modifications correspond to n = 3, etc.). As we are
going to see, our models of cubical weak∞-functors are built with a similar
technology: we are going to define cubical functorial stretchings which con-

4This cocubical object should be a W -coalgebra, where W means the cubical operad
which algebras are cubical weak ∞-categories with connections. See [25].

5(0,∞)-categorical stretchings must not be confused with (∞, 0)-categorical stretch-
ings used in 2.3 to weaken cubical strict (∞, 0)-categories and which were used in [22] to
weaken globular strict (∞, 0)-categories.
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tain all the ”information”6 on the structure behind cubical weak∞-functors.
This structure produces a monad on the category CSets×CSets whose alge-
bras are our models of cubical weak ∞-functors. In 3.2 we shall investigate
similar constructions for models of cubical weak∞-natural transformations.

Cubical strict ∞-functors have been defined in [21]. A morphism be-

tween two cubical strict∞-functors C DF and C ′ D′F ′

is given by a commutative 2-cube in CCAT:

C C ′

D D′

F

c

F ′

d

The category of cubical strict ∞-functors is denoted ∞-CFunct.

3.1.1 The category of cubical (0,∞)-magmas

A cubical (0,∞)-magma is given by a morphism M0 M1
FM of

CSets such that M0 and M1 are objects of∞-CMagr (defined in [21]). This
object is denoted (M0, FM ,M1).

A morphism between (0,∞)-magmas:

(M0, FM ,M1) (M ′0, F
′
M ,M

′
1)m

is given by two morphisms of ∞-CMagr:

M0 M ′0
m0 , M1 M ′1

m1

such that the following diagram commutes in CSets:

6here we put these brackets, because these structural informations must be thought
of as up to some weak equivalences, following the idea of models developed in any higher
category theory



Algebraic models of cubical weak higher structures 201

M0 M1

M ′0 M ′1

m0

FM

m1

F ′M

The category of cubical (0,∞)-magmas is denoted by (0,∞)-CMagr

3.1.2 The category of cubical (0,∞)-categorical stretchings

A (0,∞)-stretching is given by a quadruple:

E = (E0,E1, FM , FC)

such that E0, E1 are cubical categorical stretchings (defined in [21]) given
by:

E0 = (M0, C0, π0, (
0[−;−]nn+1,j)n∈N;j∈{1,...,n}, (

0[−;−]n,γn+1,j)n∈N;j∈{1,...,n};γ∈{−,+})

and

E1 = (M1, C1, π1, (
1[−;−]nn+1,j)n∈N;j∈{1,...,n}, (

1[−;−]n,γn+1,j)n∈N;j∈{1,...,n};γ∈{−,+})

where (M0, FM ,M1) is an object of (0,∞)-CMagr and C0 C1
FC

is a strict cubical ∞-functor, such that the following square is commutative
in CSets:

M0 M1

C0 C1

π0

FM

π1

FC

A morphism of (0,∞)-stretchings:
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E = (E0,E1, FM , FC) E′ = (E′0,E′1, F ′M , F ′C)

is given by the following commutative diagram in CSets:

M ′0 M ′1

M0 M1

C ′0 C ′1

C0 C1

F ′M

π′0 π′1

m0

FM

π0

m1

F ′C

c0

FC

c1

π1

such that (m0,m1) is a morphism of (0,∞)-CMagr, (m0, c0) and (m1, c1)
are morphisms of ∞-CEtC. The category of (0,∞)-stretchings is denoted
(0,∞)-CEtC.

Consider the forgetful functor:

(0,∞)-CEtC CSets× CSets
0U

defined on objects by:

E = (E0,E1, FM , FC) (M0,M1)

It is not difficult to show that the category (0,∞)-CEtC is projectively
sketchable and that its sketch contains the projective sketch of CSets ×
CSets. Thus this functor has a left adjoint 0F which produces a monad
T0 = (T 0, λ0, µ0) on the category CSets× CSets.

Definition 3.1. Cubical weak ∞-functors are algebras for the monad T0

above.

Thus a cubical weak ∞-functor is given by a quadruple (C0, C1, v0, v1)
such that if we note T 0(C0, C1) = (T 0

0 (C0, C1), T 0
1 (C0, C1) then we get its

underling morphisms of CSets:
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T 0
0 (C0, C1) C0

v0 T 0
1 (C0, C1) C1

v1

and these morphisms of CSets put on (C0, C1) a structure of cubical

weak ∞-functor C0 C1
F , defined by:

F = v1 ◦ FM ◦ λ0
0(C0, C1)

with:

C0

T 0
0 (C0, C1) T 0

1 (C0, C1)

C0 C1

λ0
0(C0,C1)

v0

F

v1

v1◦FM◦λ0
0

3.2 The category of cubical weak∞-natural transformations
Now we describe a monad on the category

(CSets)4 = CSets× CSets× CSets× CSets

whose algebras are our models of cubical weak ∞-natural transforma-
tions. In [19] we defined globular ∞-natural transformations by using the
structure given by an adapted category of globular stretchings, namely the
category of (1,∞)-stretchings. Here we use similar technology by defining
first the category of cubical (1,∞)-stretchings which contains the underlying
structure needed to weaken cubical strict ∞-natural transformations. This
last monad T1 (see below) gives some 2-cubes in 3.2.3 and a first flavor of
an expected cocubical object of operads described in the end of this article.
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3.2.1 The category of cubical strict ∞-natural transformations

Cubical strict natural transformations were introduced in [18]. Here we
give the evident strict and higher version of it. A cubical strict ∞-natural
transformation is given by a 2-cube in ∞-CCAT:

C0,0 C1,0

C0,1 C1,1

τ ⇓H

F

G

K

whose 0-cells correspond to four cubical strict ∞-categories C0,0, C0,1,
C1,0, C1,1, whose 1-cells correspond to four cubical strict ∞-functors F , G,
H, K, and whose only 2-cell τ corresponds, for all 0-cells a in C0,0, to a
1-cell:

G(F (a)) K(H(a))
τ(a)

such that for all 1-cells a b
f

of C0,0 we have the following
commutative diagram:

G(F (a)) K(H(a))

G(F (b)) K(H(b))

G(F (f))

τ(a)

K(H(f))

τ(b)

A morphism between two cubical strict ∞-natural transformations τ
and τ ′ is given by a 3-cube in ∞-CCAT:
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C ′0,0 C ′1,0

C0,0 C1,0

C ′0,1 C ′1,1

C0,1 C1,1

τ ′ ⇓

F ′

H′ G′

τ ⇓

c0,0

F

H

c1,0

K′c0,1

K

c1,1

G

such that c1,0F = F ′c0,0, c1,1G = G′c1,0, c0,1H = H ′c0,0 and c1,1K =
K ′c0,1. The category of cubical strict∞-natural transformations is denoted
(1,∞)-CTrans, and we obtain an internal 2-cube in CAT:

(1,∞)-CTrans ∞-CFunct CCAT

σ2
1,1

σ2
1,2

τ2
1,1

τ2
1,2

σ1
0

τ1
0

Proposition 3.2. The internal 2-cube of CAT just above can be structured
in a strict cubical 2-category

Proof. Consider the following object τ ∈ (1,∞)-CTrans:

C0,0 C1,0

C0,1 C1,1

τ ⇓H

F

G

K

such that σ2
1,1(τ) = F , σ2

1,2(τ) = H, τ2
1,1(τ) = K and τ2

1,2(τ) = G, and

such that σ1
0 and τ1

0 are clearly defined.
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Definition of the classical reflexivity:

(1,∞)-CTrans ∞-CFunct CCAT
11

2,2

11
2,1 10

1

11
2,1(F ) is given by:

C0,0 C1,0

C0,0 C1,0

11
2,1(F ) ⇓1C0,0

F

1C1,0

F

and is such that 11
2,1(F )(a) = 10

1(F (a)) for all 0-cells a ∈ C0,0(0),

and also 11
2,2(F ) is given by:

C0,0 C0,0

C1,0 C1,0

11
2,2(F ) ⇓F

1C0,0

F

1C1,0

and is such that 11
2,2(F )(a) = 10

1(F (a)) for all 0-cells a ∈ C0,0(0).

Definition of the connections:

(1,∞)-CTrans ∞-CFunct
11,−

2,2

11,+
2,1

11,−
2,1 (F ) is given by:
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C0,0 C1,0

C1,0 C1,0

11,−
2,1 (F ) ⇓F

F

1C1,0

1C1,0

and is such that 11,−
2,1 (F )(a) = 10

1(F (a)) for all 0-cells a ∈ C0,0(0),

and 11,+
2,1 (F ) is given by:

C0,0 C0,0

C0,0 C1,0

11,+
2,1 (F ) ⇓1C0,0

1C0,0

F

F

and is such that 11,+
2,1 (F )(a) = 10

1(F (a)) for all 0-cells a ∈ C0,0(0).

The following shape of 2-cells:
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C0,0 C1,0

C0,1 C1,1

C0,2 C1,2

τ ⇓H

F

G

ρ ⇓H′

K

G′

K′

allows to define the composition ρ ◦21,1 τ :

C0,0 C1,0

C0,2 C1,2

ρ ◦21,1 τ ⇓H′◦H

F

G′◦G

K

by the formula:

(ρ ◦21,1 τ)(a) = ρ(H(a)) ◦G′(τ(a))

and the following shape of 2-cells:
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C0,0 C1,0 C2,0

C0,1 C1,1 C2,1

τ ⇓H

F

G ρ ⇓

F ′

G′

K K′

allows to define the composition ρ ◦21,2 τ :

C0,0 C2,0

C0,1 C2,1

ρ ◦21,2 τ ⇓H

F ′◦F

G

K′◦K

by the formula:

(ρ ◦21,2 τ)(a) = K ′(τ(a)) ◦ ρ(F (a)).

The proof that these datas put a structure of cubical strict 2-categories
on the internal 2-cube of the proposition is left to the reader.

3.2.2 The category of cubical (1,∞)-magmas

A cubical (1,∞)-magma is an object with shape:
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M0,0 M1,0

M0,1 M1,1

τM ⇓HM

FM

GM

KM

such that:

(M0,0, FM ,M1,0), (M1,0, GM ,M1,1), (M0,0, HM ,M0,1) and (M0,1,KM ,M1,1)

are objects of (0,∞)-CMagr, and such that τM is a map:

M0,0(0) M1,1(1)
τM

which sends each 0-cells a of M0,0 to an 1-cell τM (a) ∈ M1,1(1) such
that:

s1
0(τM (a)) = GM (FM (a)) and t10(τM (a)) = KM (HM (a))

We prefer to avoid heavy notations and shall denote usually just by τM
such object of a category (1,∞)-CMagr, where we have to think this greek
letter τ as the variable usually used for natural transformations and the
subscript M in it just means ”Magmatic”.

Given τM and τ ′M two objects of (1,∞)-CMagr, a morphism between
them is given by a commutative diagram in ∞-CSets:
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M ′0,0 M ′1,0

M0,0 M1,0

M ′0,1 M ′1,1

M0,1 M1,1

τ ′M ⇓

F ′M

H′M G′M

τM ⇓

m0,0

FM

HM

m1,0

K′Mm0,1

KM

m1,1

GM

such that (m0,0,m1,0), (m1,0,m1,1), (m0,0,m0,1), (m0,1,m1,1) are mor-
phisms of (0,∞)-CMagr. It is important to note that commutativity of this
diagram means also the equality m1,1 ◦ τM = τ ′M ◦m0,0.

We obtain an internal 2-cube in CAT:

(1,∞)-CMagr (0,∞)-CMagr ∞-CMagr

σ2
1,1

σ2
1,2

τ2
1,1

τ2
1,2

σ1
0

τ1
0

Proposition 3.3. The internal 2-cube of CAT just above can be structured
in a cubical reflexive 2-magma

Proof. The proof is easy and basic datas have been already defined in 3.2.

3.2.3 The category of cubical (1,∞)-categorical stretchings

A cubical (1,∞)-categorical stretching is given by a commutative diagram
in ∞-CSets:
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M0,1 M1,1

M0,0 M1,0

C0,1 C1,1

C0,0 C1,0

KM

π0,1 π1,1

τM ⇒HM

FM

π0,0

GM

KC

τC ⇒HC

FC

GC

π1,0

such that (π0,0, FM , FC , π1,0), (π1,0, GM , GC , π1,1), (π0,0, HM , HC , π0,1)
and (π0,1,KM ,KC , π1,1) are objects of (0,∞)-CEtC, and also τM is an ob-
ject of (1,∞)-CMagr and τC is an object of (1,∞)-CTrans. It is important
to note that commutativity of this diagram means also that the equality
π1,1 ◦ τM = τC ◦ π0,0 holds. Such cubical (1,∞)-categorical stretching can
be denoted (τM , τC). Given an other cubical (1,∞)-categorical stretching
(τ ′M , τ

′
C):

M ′0,1 M ′1,1

M ′0,0 M ′1,0

C ′0,1 C ′1,1

C ′0,0 C ′1,0

K′M

π′0,1 π′1,1

τ ′M ⇒
H′M

F ′M

π′0,0

G′M

K′C

τ ′C ⇒
H′C

F ′C

G′C

π′1,0

a morphism (τM , τC) (τ ′M , τ
′
C) of such cubical (1,∞)-categorical

stretchings is given by:

• a morphism of (1,∞)-CMagr underlied by (m0,0,m1,0,m0,1,m1,1), a



Algebraic models of cubical weak higher structures 213

morphism of (1,∞)-CTrans underlied by (c0,0, c1,0, c0,1, c1,1):

M ′0,0 M ′1,0

M0,0 M1,0

M ′0,1 M ′1,1

M0,1 M1,1

τ ′M ⇓

F ′M

H′M G′M

τM ⇓

m0,0

FM

HM

m1,0

K′Mm0,1

KM

m1,1

GM

C ′0,0 C ′1,0

C0,0 C1,0

C ′0,1 C ′1,1

C0,1 C1,1

τ ′C ⇓

F ′C

H′C G′C

τC ⇓

c0,0

FC

HC

c1,0

K′Cc0,1

KC

c1,1

GC

• the following morphisms:

((m0,0, c0,0), (m1,0, c1,0)), ((m1,0, c1,0), (m1,1, c1,1)), ((m0,0, c0,0), (m0,1, c0,1))

and ((m0,1, c0,1), (m1,1, c1,1)), of (0,∞)-CEtC:
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M ′0,0 M ′1,0

M0,0 M1,0

C ′0,0 C ′1,0

C0,0 C1,0

F ′M

π′0,0 π′1,0

m0,0

FM

π0,0

m1,0

F ′C

c0,0

FC

c1,0

π1,0

M ′0,0 M ′0,1

M0,0 M0,1

C ′0,0 C ′0,1

C0,0 C0,1

H′M

π′0,0 π′0,1

m0,0

HM

π0,0

m0,1

H′C

c0,0

HC

c0,1

π0,1

M ′1,0 M ′1,1

M1,0 M1,1

C ′1,0 C ′1,1

C1,0 C1,1

G′M

π′1,0 π′1,1

m1,0

GM

π1,0

m1,1

G′C

c1,0

GC

c1,1

π1,1
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M ′0,1 M ′1,1

M0,1 M1,1

C ′0,1 C ′1,1

C0,1 C1,1

K′M

π′0,1 π′1,1

m0,1

KM

π0,1

m1,1

K′C

c0,1

KC

c1,1

π1,1

We denote (1,∞)-CEtC the category of cubical (1,∞)-categorical stretch-
ings.

Consider the forgetful functor:

(1,∞)-CEtC (CSets)4
1U

defined on objects by:

(τM , τC) (M0,0,M1,0,M0,1,M1,1)

This functor has a left adjoint7: 1F , which produces a monad T1 =
(T 1, λ1, µ1) on the category (CSets)4.

Definition 3.4. Cubical weak natural ∞-transformations are algebras for
the monad T1 above.

Thus we obtain a 2-cube in the category Adj of pairs of adjunctions
defined in [19]:

7We carry on the use of Foltz theorem: indeed we are in the situation where the
category (1,∞)-CEtC is projectively sketchable and contains the projective sketch of the
category (CSets)4.
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(1,∞)-CEtC (0,∞)-CEtC ∞-CEtC

(CSets)4 (CSets)2 CSets

σ2
1,1

a 1U

σ2
1,2

τ2
1,1

τ2
1,2

a 0U

σ1
0

τ1
0

a U

σ2
1,1

1F

σ2
1,2

τ2
1,1

τ2
1,2

0F

σ1
0

τ1
0

F

which allow to obtain a 2-cocube in the category Mnd of categories
equipped with monads defined in [19]:

((CSets)4,T1) ((CSets)2,T0) (CSets,W)

σ2
1,1

σ2
1,2

τ2
1,1

τ2
1,2

σ1
0

τ1
0

And finally it gives the following 2-cube in CAT:

T1-Alg T0-Alg W-Alg

σ2
1,1

σ2
1,2

τ2
1,1

τ2
1,2

σ1
0

τ1
0

Proposition 3.5. The internal 2-cube of CAT just above can be structured
in a cubical weak 2-category with connections.
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Proof. The details of the proof are quite long but not difficult. For example
basic datas of such structure are similar to those built in 3.2.

We finish this article by drawing the cocubical shape of monads for all
cubical weak higher transformations that we hope to describe in a future
work. For clarity we change the denotation of the monads W, T0 and T1

described in this article with: W0 := W, W1 := T0 and W2 := T1:

W0 W1 W2 W3 · · ·Wn−1 Wn · · ·
s01

t01

s21,1

t21,1

s21,2

t21,2

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

snn−1,n−1

tnn−1,n−1

snn−1,i

tnn−1,i

snn−1,1

tnn−1,1

For exampleW3-algebras are cubical weak∞-modifications8. This cocu-
bical object of monads should be a cocubical object of operads [25] and we
believe that it is in fact a W0-coalgebra or at least a B0

C-coalgebra in the
sense of [24] where B0

C-algebras are the operadic models of cubical weak
∞-categories described in [24]. If this cocubical object is a W0-coalgebra
then it means that the cubical weak ∞-category with connections of cubi-
cal weak ∞-categories with connections exists, by using this technology of
cubical stretchings. Thus this result opens the perspective of an accurate
approach of the cubical weak ∞-topos of Grothendieck with connections
and to the cubical weak ∞-stacks with connections.
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