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Quadratic structures associated to
(multi)rings

K.M.d.A. Roberto, H.R.d.O. Ribeiro, and H.L. Mariano∗

Abstract. We consider certain pairs (A, T ) where A is a (multi)ring and
T ⊆ A is a multiplicative set that generates, by a convenient quotient con-
struction, a (multi)structure that supports a quadratic form theory: with
some natural hypotheses we generalize constructions previously presented
in [3] and [6]. This also provides some steps towards an abstract formally
real quadratic form theory (non necessarily reduced) were the forms have
general coefficients (non only units).

1 Introduction

In [3], [5] and [6] are considered abstract theories of quadratic forms: spe-
cial groups and real semigroups. The former treats simultaneously reduced
and non-reduced theories but focuses on rings with a good amount of in-
vertible coefficients to quadratic forms. The latter has the advantage of
potentially consider general coefficients of a ring, but only addresses the
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reduced case. Both are first-order theory, thus they allow the use of model
theoretic methods.

M. Marshall in [11] introduced an approach to (reduced) theory of
quadratic forms trough the concept of multiring (roughly, a ring with a
multi valued sum): this seems more intuitive for an algebraist, encompass-
ing some techniques of ordinary commutative algebra, encodes copies of
special groups and real semigroups (see [14]), but still allows the use of
model-theoretic tools.

The goal of the present paper is twofold:

- to describe interesting pairs (A, T ) where A is a (multi)ring and T ⊆ A
is a certain multiplicative subset in such a way to obtain models of abstract
theories of quadratic forms (special groups and real semigroups) via natural
quotients - Marshall’s quotient construction;

- use this construction to motivate a “non reduced” expansion of the
theory of real semigroups to deal the formally real case, isolating axioms
over pairs involving multrings and a subset with some properties.

Outline: Section 2 exposes the fundamental definitions and results on
the (multi)structures that will be analysed in the present work: multirings,
special groups and (formally) real semigroups. In Section 3 we introduce the
concept of DM-multiring, that provides a generalization of the construction
of special groups by Marshall’s quotient construction obtained from certain
pairs formed by a ring and a multiplicative subset. Section 4 establishes
a relationship of our DM-multirings and the concept of quadratically pre-
sentable fields, recently introduced in [9]. In Section 5 we introduce the no-
tions of quadratic pair, DP-multiring and quadratic multiring that provide
examples of (formally) real semigroup via Marshall’s quotient construction.
We finish the work indicating some future themes of research motivated by
the present paper.

2 Preliminaries

This section contains, basically, the fundamental definitions and results on
multirings, hyperfields, special groups and real semigroups, included for
the convenience of the reader; for more details, consult [14] and [11]. We
introduce also the concepts of formally real semigroup.
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2.1 Multirings and hyperfields

Definition 2.1 (Adapted from Definition 2.1 in [11]). A multiring is a
sextuple (R,+, ·,−, 0, 1) whereR is a non-empty set, + : R×R→ P(R)\{∅},
· : R × R → R and − : R → R are functions, 0 and 1 are elements of R
satisfying:

i) (R,+,−, 0) is a commutative multigroup;

ii) (R, ·, 1) is a commutative monoid;

iii) a.0 = 0 for all a ∈ R;

iv) If c ∈ a+ b, then c.d ∈ a.d+ b.d. Or equivalently, (a+ b).d ⊆ a.d+ b.d.

Note that if a ∈ R, then 0 = 0.a ∈ (1 + (−1)).a ⊆ 1.a + (−1).a, thus
(−1).a = −a.

R is said to be an hyperring if for a, b, c ∈ R, a(b+ c) = ab+ ac.
A multring (respectively, a hyperring) R is said to be a multidomain

(hyperdomain) if it has not zero divisors. A multring R will be a multifield if
every non-zero element of R has multiplicative inverse; note that hyperfields
and multifields coincide. We will use “hyperfield” since this is the prevailing
terminology.

Example 2.2. (a) Suppose that (G,+, 0) is an abelian group. Defining a+
b = {a+b} and r(g) = −g, we have that (G,+, r, 0) is an abelian multigroup.
In this way, every ring, domain and field is a multiring, multidomain and
hyperfield, respectively.

(b) Q2 = {−1, 0, 1} is hyperfield with the usual product (in Z) and the
multivalued sum defined by relations





0 + x = x+ 0 = x, for every x ∈ Q2

1 + 1 = 1, (−1) + (−1) = −1

1 + (−1) = (−1) + 1 = {−1, 0, 1}

(c) Let K = {0, 1} with the usual product and the sum defined by
relations x+ 0 = 0 + x = x, x ∈ K and 1 + 1 = {0, 1}. This is a hyperfield
called Krasner’s hyperfield [10].

Now, another example that generalizes Q2 = {−1, 0, 1}. Since this is a
new one, we will provide the entire verification that it is a multiring:
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Example 2.3 (Kaleidoscope, Example 2.7 in [14]). Let n ∈ N and define

Xn = {−n, ..., 0, ..., n} ⊆ Z.

We define the n-kaleidoscope multiring by (Xn,+, ·,−, 0, 1), where − :
Xn → Xn is restriction of the opposite map in Z, + : Xn×Xn → P(Xn)\{∅}
is given by the rules:

a+ b =





{a}, if b 6= −a and |b| 6 |a|
{b}, if b 6= −a and |a| 6 |b|
{−a, ..., 0, ..., a} if b = −a

,

and · : Xn ×Xn → Xn is is given by the rules:

a · b =

{
sgn(ab) max{|a|, |b|} if a, b 6= 0

0 if a = 0 or b = 0
.

In this sense, X0 = {0} and X1 = {−1, 0, 1} = Q2. For X2, we have the
following “multioperation” table for the sum:

+ −2 −1 0 1 2

−2 {−2} {−2} {−2} {−2} {−2,−1, 0, 1, 2}
−1 {−2} {−1} {−1} {−1, 0, 1} {2}
0 {−2} {−1} {0} {1} {2}
1 {−2} {−1, 0, 1} {1} {1} {2}
2 {−2,−1, 0, 1, 2} {2} {2} {2} {2}

and the following operation table for the product:

· −2 −1 0 1 2

−2 2 2 0 −2 −2

−1 2 1 0 −1 −2

0 0 0 0 0 0

1 −2 −1 0 1 2

2 −2 −2 0 2 2

With the above rules we have that (Xn,+, ·,−, 0, 1) is a multiring.

Now, another example that generalizes K = {0, 1}.
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Example 2.4 (H-hyperfield, Example 2.8 in [14]). Let p > 1 be a prime in-
teger and Hp := {0, 1, ..., p−1} ⊆ N. Now, define the binary multioperation
and operation in Hp as follow:

a+ b =





Hp if a = b, a, b 6= 0

{a, b} if a 6= b, a, b 6= 0

{a} if b = 0

{b} if a = 0

a · b = k where 0 6 k < p and k ≡ ab mod p.

(Hp,+, ·,−, 0, 1) is a hyperfield such that for all a ∈ Hp, −a = a. For
example, considering H3 = {0, 1, 2}, using the above rules we obtain these
tables

+ 0 1 2

0 {0} {1} {2}
1 {1} {0, 1, 2} {1, 2}
2 {2} {1, 2} {0, 1, 2}

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

In fact, these Hp is a kind of generalization of K, in the sense that H2 = K.

We have to treat sums with some care when we are working with mul-
tirings. In order to use the multivalued sum without danger, we define
recursively for n > 2:

a1 + ...+ an :=
⋃

d∈a2+...+an

a1 + d.

In particular, for a multiring A, with a1, ..., an ∈ A and σ ∈ Sn, we have

a1 + a2 + ...+ an = aσ(1) + aσ(2) + ...+ aσ(n).

Now, we treat about morphisms:
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Definition 2.5. Let A and B multirings. A map f : A→ B is a morphism
if for all a, b, c ∈ A:

i) c ∈ a+ b⇒ f(c) ∈ f(a) + f(b);

ii) f(−a) = −f(a);

iii) f(0) = 0;

iv) f(ab) = f(a)f(b);

v) f(1) = 1.

If A and B are multirings, a morphism f : A→ B is a strong morphism
if for all a, b, c ∈ A, if f(c) ∈ f(a) + f(b), then there are a′, b′, c′ ∈ A
with f(a′) = f(a), f(b′) = f(b), f(c′) = f(c) such that c′ ∈ a′ + b′. In the
quadratic context, there is a more detailed analysis in Example 2.10 of [14].

The category of hyperfields (respectively multirings) and their mor-
phisms will be denoted by MField (respectively MRing). There are many
others weaker versions for the notion of morphism of multiring.

Example 2.6. Consider the multiring Xn defined in 2.3. In fact, for n > 1,
there is an injective morphism in : Xn → T R, on the tropical real hyperfield
defined in 7.2 of [15], induced by the inclusion map Xn ↪→ R.

There are many natural construction on the category of multrings as:
products, directed inductive limits, quotients by an ideal, localizations by
multiplicative subsets and quotients by ideals. Now, we present a con-
struction that will be used several times below, that we call “Marshall’s
quotient”:

Definition 2.7 (Example 2.6 in [11]). Fix a multiringA and a multiplicative
subset S of A such that 1 ∈ S. Define an equivalence relation ∼ on A by
a ∼ b if and only if as = bt for some s, t ∈ S. Denote by a the equivalence
class of a and set A/mS = {a : a ∈ A}. Then, we define in agreement
with Marshall’s notation, a + b = {c : cv ∈ as + bt, for some s, t, v ∈ S},
−a = −a, and ab = ab.

Then A/mS is a multiring. Moreover, if A is a hyperring, the same holds
for A/mS. The canonical projection π : A→ A/mS is a morphism.
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Proposition 2.8 (2.19 in [14]). Let A,B be a multiring and S ⊆ A a
multiplicative subset of A. Then for every morphism f : A → B such that
f [S] = {1}, there exist a unique morphism f̃ : A/mS → B such that the
following diagram commute:

A
π //

f
""

A/mS

!f̃
��

B

where π : A→ A/mS is the canonical projection π(a) = a.

Definition 2.9 (4.1 and 4.2 of [11]). A hyperfield F is said to be real
reduced if a3 = a for all a ∈ F and a ∈ 1 + 1 imply a = 1.

Definition 2.10 (7.5 and 7.6 of [11]). A multiring A is real reduced if is
semi real and the following properties holds for all a, b, c, d ∈ A:

i) 1 6= 0;

ii) a3 = a;

iii) c ∈ a+ ab2 ⇒ c = a;

iv) c ∈ a2 + b2 and d ∈ a2 + b2 implies c = d (and from (iii), we conclude
that this element c ∈ a2 + b2 is a square).

2.2 Special groups Let A be a set and ≡ a binary relation on A×A.
We extend ≡ to a binary relation ≡n on An, by induction on n > 1, as
follows:

i) ≡1 is the diagonal relation ∆A ⊆ A×A
ii) ≡2=≡.

iii) if n ≥ 3, 〈a1, ..., an〉 ≡n 〈b1, ..., bn〉 if and only there are x, y, z3, ..., zn ∈
A such that 〈a1, x〉 ≡ 〈b1, y〉, 〈a2, ..., an〉 ≡n−1 〈x, z3, ..., zn〉 and

〈b2, ..., bn〉 ≡n−1 〈y, z3, ..., zn〉.

Whenever clear from the context, we frequently abuse notation and in-
dicate the afore-described extension ≡ by the same symbol.
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Definition 2.11 (Special Group, 1.2 of [3]). A special group is an tuple
(G,−1,≡), where G is a group of exponent 2, that is, g2 = 1 for all g ∈ G;
−1 is a distinguished element of G, and ≡⊆ G × G × G × G is a relation
(the special relation), satisfying the following axioms for all a, b, c, d, x ∈ G:

SG 0 ≡ is an equivalence relation on G2;

SG 1 〈a, b〉 ≡ 〈b, a〉;
SG 2 〈a,−a〉 ≡ 〈1,−1〉;
SG 3 〈a, b〉 ≡ 〈c, d〉 ⇒ ab = cd;

SG 4 〈a, b〉 ≡ 〈c, d〉 ⇒ 〈a,−c〉 ≡ 〈−b, d〉;
SG 5 〈a, b〉 ≡ 〈c, d〉 ⇒ 〈ga, gb〉 ≡ 〈gc, gd〉, for all g ∈ G.

SG 6 (3-transitivity) the extension of ≡ for a binary relation on G3 is a
transitive relation.

A group of exponent 2, with a distinguished element −1, satisfying the
axioms SG0-SG3 and SG5 is called a proto special group; a pre special
group is a proto special group that also satisfyes SG4. Thus a special
group is a pre-special group that satisfies SG6 (or, equivalently, for each
n ≥ 1, ≡n is an equivalence relation on Gn.)

A n-form (or form of dimension n > 1) is an n-tuple of elements of
a pre-SG G. An element b ∈ G is represented on G by the form ϕ =
〈a1, ..., an〉, in symbols b ∈ DG(ϕ), if there exists b2, ..., bn ∈ G such that
〈b, b2, ..., bn〉 ≡ ϕ.

A pre-special group (or special group) (G,−1,≡) is:
• formally real if −1 /∈ ⋃n∈NDG(n〈1〉) ;
• reduced if it is formally real and, for each a ∈ G, a ∈ DG(〈1, 1〉) iff
a = 1.

Now, some examples:

Example 2.12 (The trivial special relation, 1.9 of [3]). Let G be a group of
exponent 2 and take −1 as any element of G different of 1. For a, b, c, d ∈ G,
define 〈a, b〉 ≡t 〈c, d〉 if and only if ab = cd. Then Gt = (G,≡t,−1) is a SG
( [3]). In particular 2 = {−1, 1} is a reduced special group.

Example 2.13 (Special group of a field, Theorem 1.32 of [3]). Let F be a
field. We denote Ḟ = F \ {0}, Ḟ 2 = {x2 : x ∈ Ḟ} and ΣḞ 2 = {∑i∈I x

2
i :
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I is finite and xi ∈ Ḟ 2}. Let G(F ) = Ḟ /Ḟ 2. In the case of F is be formally
real, we have ΣḞ 2 is a subgroup of Ḟ , then we take Gred(F ) = Ḟ /ΣḞ 2.
Note that G(F ) and Gred(F ) are groups of exponent 2. In [3] they prove
that G(F ) and Gred(F ) are special groups with the special relation given
by usual notion of isometry, and Gred(F ) is always reduced.

Definition 2.14 (1.1 of [3]). A map (G,≡G,−1)
f
// (H,≡H ,−1) be-

tween pre-special groups is a morphism of pre-special groups or PSG-
morphism if f : G → H is a homomorphism of groups, f(−1) = −1 and
for all a, b, c, d ∈ G

〈a, b〉 ≡G 〈c, d〉 ⇒ 〈f(a), f(b)〉 ≡H 〈f(c), f(d)〉

A morphism of special groups or SG-morphism is a pSG-morphism
between the correspondents pre-special groups. f will be an isomorphism if
is bijective and f, f−1 are PSG-morphisms.

It can be verified that a special group G is formally real iff it admites
some SG-morphism f : G→ 2.

The category of special groups (respectively reduced special groups) and
theirs morphisms will be denoted by SG (respectively RSG). Now, we will
analyze the connections between the SG and MField. For this, we need
more results about special groups and their characterization. For this, we
use the results proved in Lira’s thesis [2]. Consider these axioms concerns
about a group of exponent 2 with a distinguished element:

SG 7 ∀a∀a′ ∀x ∀t∀t′ ∀y[(a, a′) ≡ (x, t) ∧ (t, t′) ≡ (1, y)]
⇒ ∃a′′ ∃s ∃s′[(a, a′′) ≡ (y, s) ∧ (s, s′) ≡ (1, x)].

An equivalent statement for SG7 is

⋃

t∈DG(1,y)

DG(x, t) =
⋃

s∈DG(1,x)

DG(y, s)

for all x, y ∈ G.

SG 8 For all forms f1, ..., fn of dimension 3 and for all a, a2, a3, b2, b3 ∈ G,

〈a, a2, a3〉 ≡ f1 ≡ ... ≡ fn ≡ 〈a, b2, b3〉 ⇒ 〈a2, a3〉 ≡ 〈b2, b3〉.
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SG 9 ∀a ∀b∀c∀d[〈a, b, ab〉 ≡ 〈c, d, cd〉 ⇒ 〈a, b, ab〉 ≡ 〈d, c, cd〉]

Proposition 2.15 (A. de Lima, [2]). Let (G,−1,≡) be a pre-special group.
Then the following are equivalent:

(i) G |= SG6.

(ii) G |= SG7 ∧ SG8.

(iii) G |= SG9.

Proposition 2.16 (3.13 of [14]). Let (G,≡,−1) be a special group and
define M(G) = G ∪ {0} where 0 := {G}1. Then (M(G),+,−, ·, 0, 1) is a
hyperfield, where

• a · b =

{
0 if a = 0 or b = 0

a · b otherwise

• −(a) = (−1) · a

• a+ b =





{b} if a = 0

{a} if b = 0

M(G) if a = −b, and a 6= 0

DG(a, b) otherwise

Corollary 2.17 (3.14 of [14]). The correspondence G 7→ M(G) extends to
a faithful functor M : SG →MField.

Proposition 2.18 (3.15 of [14]). Let G be an SG and M(G) as above.
Then:

(i) a2 = 1 for all a ∈M(G) \ {0};
(ii) 1 ∈ 1 + a for all a ∈M(G);

(iii) 1 + a is closed by multiplication for all a ∈M(G);

(iv) If exist p ∈ Ṁ(G) such that

a ∈ c+ cp

b ∈ p+ ap

d ∈ p+ cp.

1Here, the choice of the zero element was ad hoc. Indeed, we can define 0 := {x} for
any x /∈ G.
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then exist l ∈ Ṁ(G) such that

a ∈ d+ dl

b ∈ l + al

c ∈ l + dl.

Definition 2.19 (3.16 of [14]). A hyperfield F satisfying the properties i-iv
of proposition 2.18 will be called a special hyperfield. Note that, if G is
a special group, then M(G) is a special hyperfield.

Proposition 2.20 (3.17 of [14]). Every real reduced hyperfield is a special
hyperfield.

Theorem 2.21 (3.18 of [14]). If F is a special hyperfield the (Ḟ ,≡,−1) is
a special group where 〈a, b〉 ≡ 〈c, d〉 ⇔ ab = cd and a ∈ c+ d.

Corollary 2.22 (3.19 of [14]). In the objects of SMF , define S(F ) = Ḟ
as the special group as stated in theorem 2.21. Now, let σ : F → K be a
SMF-morphism and define S(σ) = σ|Ḟ . Then S : SMF → SG is a functor.

2.3 Real semigroups

Definition 2.23 (Ternary Semigroup, Definition 1.1 of [6]). A ternary
semigroup (abbreviated TS) is a structure (S, ·, 1, 0,−1) with individual
constants 1, , 0,−1 and a binary operation “·” such that:

TS1 (S, ·, 1) is a commutative semigroup with unity;

TS2 x3 = x for all x ∈ S;

TS3 −1 6= 1 and (−1)(−1) = 1;

TS4 x · 0 = 0 for all x ∈ S;

TS5 For all x ∈ S, x = −1 · x⇒ x = 0.

We shall write −x for (−1) ·x. The semigroup verifying conditions [TS1]
and [TS2] (no extra constants) will be called 3-semigroups. We denote
Id(S) = {x ∈ S : x2 = x} = S2 and S∗ = {x ∈ S : x2 = 1}.

Example 2.24 (1.2(a) of [6]). The three-element structure 3 = {1, 0,−1}
has an obvious ternary semigroup structure.
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Here, we will enrich the language {·, 1, 0,−1} with a ternary relation D.
We shall write a ∈ D(b, c) instead of D(a, b, c). We also set:

a ∈ Dt(b, c)⇔ a ∈ D(b, c) ∧ −b ∈ D(−a, c) ∧ −c ∈ D(b,−a).

The relations D and Dt are called representation and transversal rep-
resentation respectively.

Definition 2.25 (Real Semigroup, 2.1 of [6]). A real semigroup is a
ternary semigroup together with a ternary relation D satisfying:

RS0 c ∈ D(a, b) if and only if c ∈ D(b, a).

RS1 a ∈ D(a, b).

RS2 a ∈ D(b, c) implies ad ∈ D(bd, cd).

RS3 (Strong Associativity) If a ∈ Dt(b, c) and c ∈ Dt(d, e), then there
exists x ∈ Dt(b, d) such that a ∈ Dt(x, e).

RS4 e ∈ D(c2a, d2b) implies e ∈ D(a, b).

RS5 If ad = bd, ae = be and c ∈ D(d, e), then ac = bc.

RS6 c ∈ D(a, b) implies c ∈ Dt(c2a, c2b).

RS7 (Reduction) Dt(a,−b) ∩Dt(b,−a) 6= ∅ implies a = b.

RS8 a ∈ D(b, c) implies a2 ∈ D(b2, c2).

The theory of real semigroups can be alternatively axiomatized by the
transversal relation Dt. In this case, we define

c ∈ D(a, b)⇔ c ∈ Dt(c2a, c2b).

Example 2.26 (2.2 of [6]). (a) The three-element structure 3 = {1, 0,−1}
has an obvious ternary semigroup structure.

(b) For any set X, the set 3X under pointwise operation and constant
functions with values 1, 0,−1, is a TS.

(c) The class of ternary semigroups is closed under direct product and
subestructures.

(d) Any group of exponent 2 is a 3-semigroup; the pointed group of
exponent 2 with a distinguished element −1 6= 1 underlying a RSG also
verifies [TS3]. Any such group G, becomes a ternary semigroup by adding
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a new absorbent element 0, that is, extending the operation by x · 0 = 0 for
x ∈ G ∪ {0}. Note that the set of invertible elements of a 3-semigroup is a
group of exponent 2.

(e) For any commutative ring A with 1, the set GA of all functions
a : Sper(A)→ 3, for a ∈ A, where

a(α) =





1 if a ∈ α \ (−α)

0 if a ∈ α ∩ (−α)

−1 if a ∈ (−α) \ α

with the operation induced by product in A is a TS.

Example 2.27 (RS and Rings, 2.2 of [6]). For any semi-real ring A, let the
set GA consist of all functions a : Sper(A)→ 3, for a ∈ A, where

a(α) =





1 if a ∈ α \ (−α)

0 if a ∈ α ∩ −α
−1 if a ∈ (−α) ∩ α.

with the operation induced by product in A is a TS. More generally, given a
(proper) preorder T of a ring A one can relativize the definition above to T ,
by considering functions a defined on Sper(A, T ) = {α ∈ Sper(A) : α ⊇ T},
instead of Sper(A). The corresponding ternary semigroup will be denoted
GA,T .

Now, we will equip the ternary semigroup with the representation and
transversal representation relations given by:

c ∈ DA(a, b)⇔ ∀α ∈ Sper(A)[c(α) = 0 ∨ a(α)c(α) = 1 ∨ b(α)c(α) = 1].

c ∈ Dt
A(a, b)⇔ ∀α ∈ Sper(A)[(c(α) = 0 ∧ a(α) = −b(α)) ∨ a(α)c(α) =

1 ∨ b(α)c(α) = 1]

for a, b, c ∈ A. We have that GA is a real semigroup. A similar definition
with Sper(A) replaced by Sper(A, T ) (T a proper preordering of A) also
endows the ternary semigroup GA,T with a structure of real semigroup.

Example 2.28 (RS and RSG, 2.2 of [6]). The notion of a RS generalizes
that of a reduced special group. Given a RSG G, we adding a absorbent
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element 0 to give raise to a ternary semigroup G0 = G ∪ {0}. Extending
the representation relation G to G0 by

DG0(a, b) =

{
{a, b} if a = 0 or b = 0;

DG(a, b) ∪ {0} if a, b ∈ G,

gives a representation relation to G0. The axioms RS1-RS8 are immedi-
ate consequence of the special group axioms SG0-SG6 plus the following
property: in a RSG we have

a ∈ D(b, c)⇒ −b ∈ D(−a, c),

then D and Dt coincide on binary forms with entries in G.

The definition of morphism is quite standard: f : (G, ·, 1, 0 − 1) →
(H, ·, 1, 0 − 1) is an RS-morphism if f : G → H is a morphism of semi-
groups, (that is, f(ab) = f(a)f(b), f(1) = 1 and f(0) = 0); f(−1) = −1
and a ∈ D(b, c) ⇒ f(a) ∈ D(f(b), f(c)) (hence a ∈ Dt(b, c) ⇒ f(a) ∈
Dt(f(b), f(c))). The category of real semigroups and their morphisms will
be denoted by RS.

A fundamental ingredient in the theory of real semigroups is the follow-
ing:

Theorem 2.29 (Separation Theorem, 4.4 of [6]). Let G be a RS, and
a, b, c ∈ G and XG = Hom(G,3). Then:

(i) a ∈ DG(b, c) if and only if for all h ∈ XG, h(a) ∈ D3(h(b), h(c)).

(ii) a ∈ Dt
G(b, c) if and only if for all h ∈ XG, h(a) ∈ Dt

3(h(b), h(c)).

(iii) If a 6= b, there is h ∈ XG such that h(a) 6= h(b).

The category of all real semigroups and the category of all real reduced
multirings are isomorphic ( [14]). In particular:

Theorem 2.30 (4.14 and 4.17 of [14]).
(a) Let (G, ·, 1, 0,−1, D) be a real semigroup and define + : G × G →

P(G) \ {∅}, a + b = Dt(a, b) and − : G → G by −(g) = −1 · g. Then
(G,+, ·,−, 0, 1) is a real reduced multiring.

(b) Let A be a real reduced multiring. Then (A, ·, 1, 0,−1, D) is a real
semigroup, where d ∈ D(a, b)⇔ d ∈ d2a+ d2b.
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In analogy with the theory of special groups (that contains the concepts
of reduced special groups and formally real special groups), we propose the
following “expansion” of the theory of real semigroups:

Definition 2.31. A formally real semigroup is a ternary semigroup
together with a ternary relation D satisfying [RS0]-[RS3], [RS6] and:

RS7a (Zero) Dt(0, a) = {a}.
RS7b (Semi-reality) For all n > 1, a1, ..., an ∈ G, −1 /∈ Dt(a2

1, ..., a
2
n),

with the conventions Dt(a) = {a} and

Dt(a1, ..., an) :=
⋃

c∈Dt(a2,...,an)

Dt(a, c).

The definition of morphisms of a formally real semigroup is analogous.
The category of formally real semigroups and their morphisms will be de-
noted by FRS.

As an application of Separation Theorem for RS (2.29) we obtain:

Corollary 2.32. Every real semigroup is a formally real semigroup.

In section 5 below, we will relate formally real semigroups and multir-
ings, in a very similar way of Theorem 2.30.

3 A special group associated to domains via Marshall quo-
tient

Let F be a field. There is an almost canonical way to associate a special
group to F (described in example 2.13): consider GF := Ḟ /Ḟ 2 with the
isometry given by the usual isometry provided by the algebraic theory of
quadratic forms. As we have already seen, GF is the multiplicative group
of units of a special hyperfield, and in this sense,

MF = GF ∪ {0} ∼= F/mḞ
2.

In other words, we put in correspondence special groups and special hyper-
fields just adding (or erasing) a zero element.
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One of the main purposes of this work is extend the above situation,
MA
∼= A/mT , where A is a commutative ring with unit and MA is a formally

real semigroup. This section deals with the case where A is a domain, that
is, rings without zero divisors. Of course, we fatally need to impose some
conditions to our structures:

Definition 3.1. An hiperbolic multiring is a multiring R such that 1−
1 = R.

Note that if R is hyperbolic and a ∈ R×, then R = a − a. For
a ring R (that is, the sum is univalorated), R never is hyperbolic, since
1 − 1 = {0}. However, this is not a problem, since the inclusion functor
Ring2 ↪→MRing2 is not the most natural to be considered in the quadratic
forms context. Considering the special group of a field G(F ) = Ḟ /Ḟ 2

and its special hyperfield associated, M(G(F )) = G(F ) ∪ {0}, we get that
M(G(F )) is hyperbolic. Hence, the desired functor to keep in mind is
M ◦G : Fields2 → SMF .

Let R be a ring without zero divisors. The main goal of this section is
to describe conditions for a subset T ⊆ R \ {0} of R in such a way that
R/mT is a special hyperfield and therefore, (essentially) a special group. Of
course, here is an abuse of notation: when we say that “R/mT is a special
group” we mean that “the induced structure in (R/mT ) \ {0} provides a
special group strucuture”.

We we seek for inspiration in the analogous conditions for the field case
(see for instance, definition 1.28 of [3], and in particular, the “completing
squares” lemma 1.29). After months of hard work, we obtained the following
definition:

Definition 3.2. A Dickmann-Miraglia multiring (or DM-multiring
for short) 2 is a pair (R, T ) such that R is a multiring, T ⊆ R is a multi-
plicative subset of R \ {0}, and (R, T ) satisfy the following properties:

DM0 R/mT is hyperbolic.

DM1 If a 6= 0 in R/mT , then a2 = 1 in R/mT . In other words, for all
a ∈ R \ {0}, there are r, s ∈ T such that ar = s.

2The name “Dickmann-Miraglia” is given in honor to professors Maximo Dickmann
and Francisco Miraglia, the creators of the special group theory.
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DM2 For all a ∈ R, (1− a)(1− a) ⊆ (1− a) in R/mT .

DM3 For all a, b, x, y, z ∈ R \ {0}, if
{
a ∈ x+ b

b ∈ y + z
in R/mT,

then exist v ∈ x+ z such that a ∈ y + v and vb ∈ xy + az in R/mT .

If R is a ring, we just say that (R, T ) is a DM-ring, or R is a DM-ring.
A Dickmann-Miraglia hyperfield (or DM-hyperfield) F is a hyperfield such
that (F, {1}) is a DM-multiring (satisfy DM0-DM3). In other words, F is
a DM-hyperfield if F is hyperbolic and for all a, b, v, x, y, z ∈ F ∗,

i) a2 = 1.

ii) (1− a)(1− a) ⊆ (1− a).

iii) If

{
a ∈ x+ b

b ∈ y + z
then exist v ∈ x + z such that a ∈ y + v and vb ∈

xy + az.

The condition 1 − 1 = R/mT (axiom [DM0]) can be expanded to the
realm of higher level orderings (and signatures). Various sufficient condi-
tions for this higher level relation are presented in Section 3 of [8]3.

Remark 3.3. These axioms above deserves some explanation:
(i) Since R is a domain and 0 /∈ T , a = 0 in R/mT iff a = 0.
(ii) DM1 entails that R/mT is a hyperfield.
(iii) In DM2, the expression (1 − a)(1 − a) means multiplication of

sets, that is,
(1− a)(1− a) := {x · y : x, y ∈ 1− a}.

(iv) Looking at the expression in DM3, from




v ∈ x+ z

b ∈ y + z

a ∈ x+ b

in R/mT,

3We are grateful to the referee by pointing this reference and by suggesting this expan-
sion. In particular, could be interesting investigate the relations between the Hp hyperfield
in 2.4 and the hyperfield Q2l defined in Section 10 of [8], in the context of orderings and
signatures of higher level.
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and the properties of multiring, we obtain

vb ∈ xy + (xz + yz + z2) ⊇ xy + z(x+ y + z) in R/mT

and
a ∈ x+ b ⊆ x+ y + z in R/mT.

Hence, we can interpret the condition vb ∈ xy + az in R/mT as a way of
“controlling” the product vb to “not escape so much” under the set x+y+z.
In the field case (when we can “change” ∈ by =), under the Marshall’s
quotient the condition M3 is not necessary (see theorem 1.32 of [3]).

(v) In DM3, if 0 ∈ {a, b, x, y, z} the axiom is trivially valid.

Theorem 3.4. Let (R, T ) be a DM-multiring and denote Sm(R, T ) =
(R/mT ). Then Sm(R) is a special hyperfield (thus Sm(R, T )× is a spe-
cial group).

Recall that a special hyperfield is a hyperfield F satisfying:

SMF1 a2 = 1 for all a ∈ Ḟ ;

SMF2 1 ∈ 1 + a for all a ∈ F ;

SMF3 1 + a is closed by multiplication for all a ∈ Ḟ ;

SMF4 For all a, b, c ∈ Ḟ , If ∃ p ∈ Ḟ such that





a ∈ c+ cp

b ∈ p+ ap

d ∈ p+ cp.

then

∃ l ∈ Ḟ such that





a ∈ d+ dl

b ∈ l + al

c ∈ l + dl.

Proof of Theorem 3.4. The properties [SMF1]-[SMF3] are imediately conse-
quence of the axioms of sum in a multiring and [M0]-[M2] in the definition
of DM-multirings. Then, we shall prove [SMF 4]:

We will rewrite the argument of theorem 1.32 in [3]. In order to do
this, we will use the language of special groups. If we prove that R/mT is
a special group, then we prove that it is a special hyperfield (since [SMF
4] is precisely the translation of the axiom [SG9] for special groups to the
language of hyperfields).



Quadratic structures associated to (multi)rings 123

Here, the special relation in R/mT is defined by the rule

〈a, b〉 ≡ 〈c, d〉 ⇔ [ab = cd and a ∈ c+ d] ( in R/mT ).

Translating this to a condition with coefficients in R, we have

〈a, b〉 ≡ 〈c, d〉 ⇔ [abv = cdw and ar ∈ cs+ dt] for some r, s, t, v, w ∈ R.

Using [SMF1]-[SMF3] and the multirings properties we obtain the validity
of [SG0-SG5] (for more details, see theorem 3.18 of [14]).

Hence by 2.15 we only need to deal with [SG9] (see condition (5) in
theorem 1.23 of [3]), and it is enough to show that

〈a, b, c〉 ≡ 〈x, y, z〉 implies 〈a, b, c〉 ≡ 〈y, x, z〉.

Suppose 〈a, b, c〉 ≡ 〈x, y, z〉. Then, there exist α, β, γ such that

〈a, α〉 ≡ 〈x, β〉, 〈b, c〉 ≡ 〈α, γ〉 and 〈y, z〉 ≡ 〈β, γ〉. (3.1)

Then, there exists pa, qa, ra, pβ, qβ, rβ ∈ T such that

apa ∈ xqa + βra. (3.2)

βpβ ∈ yqβ + zrβ. (3.3)

Therefore a ∈ x+ b and b ∈ y + z. Applying [DM3], there exists

v ∈ x+ z, (3.4)

such that

a ∈ y + v. (3.5)

We discuss two cases.

Case I: v = 0 . Then, from equation 3.5, we have a = y. Consequently,
the third isometry in equation 3.1 can be written as 〈a, z〉 ≡ 〈β, γ〉.
This isometry, the first one in equation 3.1 and [SG4] yeld

〈x,−α〉 ≡ 〈a,−β〉 ≡ 〈−z, γ〉,
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and so 〈x,−α〉 ≡ 〈−z, γ〉. Another application of [SG4] yelds 〈x, z〉 ≡
〈α, γ〉, which toghether with the second isometry in equation 3.1, gives
〈x, z〉 ≡ 〈b, c〉. Then, we have

〈a, x〉 ≡ 〈a, x〉, 〈b, c〉 ≡ 〈x, z〉, and 〈x, z〉 ≡ 〈x, z〉,

which shows that 〈a, b, c〉 ≡ 〈a, x, z〉, as required.

Case II: v 6= 0 . Equation 3.5 implies a ∈ y + v, while equation 3.4 yields
v ∈ x+ z. Therefore,

〈a, vay〉 ≡ 〈y, v〉 and 〈v, vxz〉 ≡ 〈x, z〉.

These isometries imply that, in order to prove that 〈a, b, c〉 ≡ 〈y, x, z〉,
it is enough to verify that 〈vay, vxz〉 ≡ 〈b, c〉. From the isometries in
equation 3.1 we get α = axβ, γ = yzβ and 〈b, c〉 ≡ 〈α, γ〉. Then, we
have 〈b, c〉 ≡ 〈axβ, zβ〉.
Hence, what is needed is equivalent to 〈axβ, zβ〉 ≡ 〈vay, vxz〉. Since
the discriminants are the same, it is enough to prove axβ ∈ vay+vxz.

axβ ∈ vay + vxz ⇔ axβaxv ∈ vayaxv + vxzaxv ⇔ vβ ∈ xy + az.

then, it is enough verify that vβ ∈ xy + az. Moreover, axiom [DM3],
already gave to us that vβ ∈ xy + az, which finalize the verification
of [SG6].

Example 3.5. Let Xn be the kaleidoscope multiring (as defined in 2.3).
Of course, if n > 2, Xn is never a DM-hyperfield. However, considering
T = X2

n \ {0}, since X2
n = {0, 1, 2, ..., n} we get

K := Xn/mT ∼= X1 = {−1, 0, 1}.

Since X1 is a special hyperfield, (Xn, T ) is a DM-multiring.

Example 3.6. Let p be a prime integer and consider the Hp as defined in
2.4 and T =

∑
H2
p \ {0}. Then (Hp, T ) is a DM-hyperfield since Hp/mT is

a real reduced hyperfield.
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The above theorem says that our DM-hyperfields are compatible with
the special group strucuture obtained using Theorem 1.32 of [3].

Theorem 3.7. Let A be a domain with 2 6= 0. Consider T ⊆ A be a proper
preordering or T = A2 and denote T ∗ = T \ {0}. Then A/mT

∗ is a special
hyperfield, and therefore GT (A) := (A/mT

∗) \ {0} is a special group with
representation given by

DGA(a, b) = a+ b = {c : cr = as+ bt for some r, s, t ∈ T ∗}.

Moreover, GT (A) is reduced if and only if T is a proper preordering.

Proof. By theorem 3.4, we only need to proof thatA/mT
∗ is a DM-hyperfield.

First of all, note that

For all a, b ∈ A∗, a, b ∈ a+ b. (3.6)

If a = ±b is immediate (for example, a(5a)2 = a(4a)2 + a(3a)2 or a(3a)2 =
a(5a)2 − a(4a)2, in the case where 3, 5 6= 0). If a 6= ±b, then

a(a+ b)2 = a(a− b)2 + b(2a)2

and a2 + b2, (a − b)2, 2a2 ∈ T ∗. Hence a ∈ a + b. Similarly we conclude
b ∈ a+ b.

Now, we verify the axioms [DM0]-[DM3].

DM0 Of course, 0 ∈ 1− 1. If a 6= 0, and a 6= ±1, then

4a = (a+ 1)2 − (a− 1)2,

and hence a ∈ 1− 1. If a = 1 or a = −1, then

9 = 52 − 42 and − 9 = 42 − 52

testimony that 1,−1 ∈ 1− 1. Therefore A/mT
∗ is hyperbolic.

DM1 Let a 6= 0 in A/mT . Then a2 ∈ T , hence a2 = 1.

DM2 Suppose whithout loss of generality that a ∈ A∗, a /∈ T (and hence
a /∈ {−1, 0, 1}). Now, let α, β ∈ 1 + a, with αx = r+ as, βy = t+ aw,
for some x, y, r, s, t, w ∈ T ∗. Then

(r + as)(t+ aw) = (rt+ a2sw) + (st+ rw)a.
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If T is a preordering, then rt+a2sw ∈ T ∗ and st+rw ∈ T ∗. If T = A2,
then r = r2

1, s = s2
1, t = t21, w = w2

1 for some r1, s1, t1, w1 ∈ A∗.
Therefore

(r + as)(t+ aw) = (rt+ a2sw) + (st+ rw)a

= a2sw + rt− 2r1s1t1w1a+ 2r1s1t1w1a+ (st+ rw)a

= (a2sw − 2r1s1t1w1a+ rt) + (st+ 2r1s1t1w1 + rw)a

= (a2s2
1w

2
1 − 2r1s1t1w1a+ r2

1t
2
1) + (s2

1t
2
1 + 2r1s1t1w1+

r2
1w

2
1)a = (as1w1 − r1t1)2 + (s1t1 + r1w1)2a.

If (as1w1−r1t1)2 = (s1t1 +r1w1)2 = 0 we have r + at = 0 or s+ aw =
0, and hence r = −at or s = −aw, and both cases imply −a = 1. If
(as1w1−r1t1)2, (s1t1+r1w1)2 6= 0 then (as1w1−r1t1)2, (s1t1+r1w1)2 ∈
T ∗ and we are done. If (as1w1 − r1t1)2 = 0, using 3.6

(r + as)(t+ aw) = (s1t1 + r1w1)2a⇒ αβ = a ∈ 1 + a.

If (s1t1 + r1w1)2 = 0, using 3.6

(r + as)(t+ aw) = (as1w1 − r1t1)2 ⇒ αβ = 1 ∈ 1 + a,

completing the proof.

DM3 Let {
a ∈ x+ b

b ∈ y + z
in A/mT,

with a, b, x, y, z 6= 0. Then, there exists pa, qa, ra, pb, qb, rb ∈ T such
that

apa = xqa + bra. (3.7)

bpb = yqb + zrb. (3.8)

Therefore

apapb = xpbqa + bpbra = xpbqa + (yqb + zrb)ra = xpbqa + yqbra + zrarb.
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Now, consider

v = xpbqa + zrarb. (3.9)

Note that v ∈ x+ z and

apapb = yqbra + v, (3.10)

with a ∈ y+ v. In order to complete the proof, we only need to verify
that vb ∈ xy + az. In fact,

vbpb = (xpbqa + zrarb)(yqb + zrb)

= xypbqaqb + xzpbqarb + yzqbrarb + z2rar
2
b

= xypbqaqb + z(xpbqarb + yqbrarb + zrar
2
b )

= xypbqaqb + z(xpbqarb + (yqb + zrb)rarb)

= xypbqaqb + z(xpbqarb + bpbrarb)

= xypbqaqb + (xqa + bra)zpbrb

= xypbqaqb + apazpbrb

= xypbqaqb + azpapbrb,

and hence, vb ∈ xy + az.

Corollary 3.8. Let D be a domain with 2 6= 0 and consider the poly-
nomial ring D[x1, ..., xn]. Let T ⊆ D[x1, ..., xn] be a preordering or T =
(D[x1, ..., xn])2. Then D[x1, ..., xn]/mT

∗ is a special group.

Theorem 3.9. Let F be a hyperfield satisfying DM0-DM2. Then F satisfy
DM3 if and only if satisfy SMF4. In other words, F is a DM-hyperfield if
and only if it is a special hyperfield.

Proof. After Theorem 3.4, we only need to prove that if F is a special
hyperfield then F satisfy DM3. Let a ∈ x + b and b ∈ y + z. Then by
definition, a ∈ x + y + z, and then, there exist some v ∈ x + z such that
a ∈ y + v. We need to prove that vb ∈ xy + az. We discuss two cases.
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Case I: v = 0 . Then a = y and z = −x. Moreover

0 = vb ∈ ax− ax = xy + az.

Case II: v 6= 0 . Here we consider the special group structure in F ∗. More-
over, for all a, b ∈ F ∗, a, b ∈ a+b. Considering a ∈ x+b and b ∈ y+z,
we get the above isometries

〈byz, x〉 ≡ 〈x, byz〉, 〈axb, a〉 ≡ 〈x, b〉 and 〈y, z〉 ≡ 〈byz, b〉.

Then by definition 〈byz, axb, a〉 ≡ 〈x, y, z〉.
Moreover, considering a ∈ y + v and v ∈ x + z, we get the above
isometries

〈vxz, y〉 ≡ 〈y, vxz〉, 〈ayv, a〉 ≡ 〈y, v〉 and 〈x, z〉 ≡ 〈vxz, v〉.

Then by definition 〈vxz, ayv, a〉 ≡ 〈y, x, z〉. Since F ∗ is a special
group, 〈x, y, z〉 ≡ 〈y, x, z〉 and the isometry relation is 3-transitive.
Then

〈byz, axb, a〉 ≡ 〈x, y, z〉 ≡ 〈y, x, z〉 ≡ 〈vxz, ayv, a〉,
and hence, 〈byz, axb, a〉 ≡ 〈vxz, ayv, a〉. Using Witt’s Cancellation,
〈byz, axb〉 ≡ 〈vxz, ayv〉. Then,

vxz ∈ byz + axb⇒ vbxz ∈ yz + ax⇒ vb ∈ xy + az,

completing the proof.

Theorem 3.10. Let (G,≡, 1,−1) be a pre-special group. Then the following
are equivalent:

(1) G is special, that is, satisfy (for example) SG6.
(2) M(G) (the hyperfield associated to G) satisfy DM3.
(3) G satisfy the following condition for all a, b, x, y, z ∈ G:

If a ∈ DG(x, b) and b ∈ DG(y, z) then there exist v ∈ DG(x, z)

such that a ∈ DG(y, v) and vb ∈ DG(xy, az).
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4 DM-multirings and quadratically presentable fields

Let (R, T ) be a DM-multiring and G(R, T ) := (R/mT )\{0}. Since G(R, T )
is a special group, we can provide a theory of quadratic forms for R inherited
from G(R, T ): Let ≡ be the isometry relation on G(R, T )2 given by 〈a, b〉 ≡
〈c, d〉 iff ab = cd in G(R, T ) and a ∈ c + d \ {0}. We extend ≡ to a binary
relation ≡n on G(R, T )n, by induction on n > 2, as follows:

i) ≡2=≡.

ii) 〈a1, ..., an〉 ≡n 〈b1, ..., bn〉 if and only there are x, y, z3, ..., zn ∈ A such
that 〈a1, x〉 ≡ 〈b1, y〉, 〈a2, ..., an〉 ≡n−1 〈x, z3, ..., zn〉 and 〈b2, ..., bn〉 ≡n−1

〈y, z3, ..., zn〉.

Since G(R, T ) is a special group, ≡n is transitive for all n > 2 (in fact,
this is the content of axiom SG6). Whenever clear from the context, we
frequently abuse notation and indicate the aforedescribed extension ≡ by
the same symbol.

A form ϕ on G(R, T ) is an n-tuple 〈a1, ..., an〉 of elements of G(R, T );
n is called the dimension of ϕ, dim(ϕ). We also call ϕ a n-form.

By convention, two forms of dimension 1 are isometric if and only if they
have the same coefficients. If ϕ = 〈a1, ..., an〉 is a form on G(R, T ), define

a) The set of elements represented by ϕ as

DG(R,T )(ϕ) := {b ∈ G(R, T ) : ∃ z2, ..., zn ∈ G(R, T ) such that ϕ ≡
〈b, z2, ..., zn〉}.

b) The discriminant of ϕ as d(ϕ) =
n∏
i=1

ai.

c) Direct sum as ϕ⊕ θ = 〈a1, ..., an, b1, ..., bm〉.
d) Tensor product as ϕ⊗ θ = 〈a1b1, ..., aibj , ..., anbm〉. If a ∈ G(R, T ),
〈a〉 ⊗ ϕ is written aϕ.

A form ϕ on G(R, T ) is isotropic if there is a form ψ over G(R, T ) such
that ϕ ≡ 〈1,−1〉 ⊕ ψ; otherwise it is said to be anisotropic. We say that
ϕ is universal if DG(R,T )(ϕ) = G(R, T ).



130 K. Roberto, H. Ribeiro, and H. Mariano

In this sense, Witt Ring W (R, T ) of (R, T ) is defined as the Witt
ring W (G(R, T )) of G(R, T ). We can go further, and define a form ϕ =
〈a1, ..., an〉 on (R, T ) by considering the form ϕ := 〈a1, ..., an〉 on G(R, T )
and so on.

Moreover, this quadratic form theory inherited from G(R, T ) is com-
patible with the more general Witt rings described by P. Gladki and K.
Worytkiewicz in [9]:

Definition 4.1 (Presentable monoid, group, ring [9]). Let (A,6, 0) be a
pointed poset (that is, a poset with a distinguished element 0 ∈ A).

a) (A,6, 0,+) is a presentable monoid if the distinguished element 0
is supercompact and + : M ×M →M is a suprema-preserving binary
operation such that for all a, b, c ∈M

(a) a+ (b+ c) = (a+ b) + c;

(b) a+ 0 = 0 + a = a;

(c) a+ b = b+ a.

b) (A,6, 0,+,−) is a presentable group if (A,6, 0,+) is a presentable
monoid and − : G→ G is a suprema preserving involutive homomor-
phism (called inversion) such that s 6 t + u imply t 6 s + (−u) for
all s, t, u ∈ SG (here SG denote the set of G’s minimal elements).

c) (A,6, 0, 1,+,−, ·) is a presentable ring if (A,6, 0,+,−) is a pre-
sentable group, (A, 1, ·) is a commutative monoid such that the ele-
ment 1 is supercompact, · is compatible with 6 and − (that is, a 6 b
imply a · c 6 b · c and a · (−b) = −(a · b) for all a, b, c ∈ A), · is
distributive with respect to +, 0 · a = 0 for all a ∈ R and · satisfy

Sa·b = {s · t : s ∈ Sa, t ∈ Sb}.

Here Sa :=↓ a ∩ SA for all a ∈ A, that is, Sa is the set of all minimal
elements below a ∈ A.

d) (A,6, 0, 1,+,−, ·) is a presentable field if is a presentable ring such
that every non-zero element is invertible.

Now we recall the concept of quadratically presentable fields (in the sense
of definitions 5.1, 5.5 and 5.7 of [9]). A presentable field (A,6, 0, 1,+,−, ·)
is pre-quadratically presentable whenever
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i) a 6 a+ b for all a ∈ S∗A, b ∈ SA;

ii) a 6 1 + b and a 6 1 + c imply a 6 1− bc for all a, b, c ∈ SA;

iii) a2 = 1 for all a ∈ SA \ {0}.

A form on a pre-quadratically presentable fieldA is an n-tuple 〈a1, ..., an〉
of elements of S∗A. The relation ∼= of isometry of forms of the same dimen-
sion is given by induction: (i) 〈a〉 ∼= 〈b〉 iff a = b; (ii) 〈a1, a2〉 ∼= 〈b1, b2〉 iff
a1a2 = b1b2 and b1 6 a1 + a2; (iii) finally, for n > 3

〈a1, ..., an〉 ∼= 〈b1, ..., bn〉 iff there exists x, y, c3, ..., cn ∈ S∗A such that 〈a1, x〉
∼= 〈b1, y〉, 〈a2, ..., an〉 ∼= 〈x, c3, ..., cn〉, 〈ab, ..., bn〉 ∼= 〈y, c3, ..., cn〉.

A pre-quadratically presentable field is quadratically presentable when-
ever the isometry relation defined above is an equivalence relation on the
set of all forms of the same dimension.

Let (R, T ) be a DM-multiring. Let K := R/mT and consider P∗(K),
the pierced powerset of the set K (that is, its set of nonempty subsets).
Then (P∗(K),⊆, {0}, {1},+,−, ·) is a presentable field ( [9], Example 4.5),
where the operations in P∗(K) are defined for A,B ∈ P∗(K) by

−A :=
⋃

a∈A
{−a}, A+B :=

⋃

a∈A, b∈B
a+ b and A ·B :=

⋃

a∈A, b∈B
{a · b}.

Following 5.18 [9], we obtain:

Theorem 4.2. Let (R, T ) be a DM-multiring. Let K := R/mT and (P∗(K),
⊆, {0}, {1},+,−, ·) be the induced presentable field. Then:

(1) P∗(K) is a quadratically presentable field.

(2) W (P∗(K)) ∼= W (K) = W (R, T ), where W (P∗(K)) is the Witt ring
defined in 5.13 [9].

Proof. (1) This follows, essentially, from the same argument of 3.4, since K
is a special hyperfield.

(2) Just repeat the arguments used in 7.1, 7.2 and 7.3 of [9].

For the readers comfortable with theory of special groups, the proof of
this theorem is just a translation of axiom SG6.
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In 7.4 of [9] it is asked:
“It is an open question when the resulting pre-quadratically presentable
field is quadratically presentable.”

We finish this section arguing that such question is, in principle, non
void. More precisely:

Proposition 4.3. There exists a pre-quadratically presentable field that is
not quadratically presentable.

Proof. We will show that pQPF is a cocomplete category but QPF is not
a cocomplete category.

• In 5.18 of [9] are established equivalences of categories:
quadratically presentable fields (QPF ) ! special groups (SG);
pre-quadratically presentable fields (pQPF ) ! pre-special groups
(pSG).

• pQPF ( ' pSG) is a cocomplete category.

According the definition of pre-special group (Definition 1.2 in [3]), it
is axiomatizatied by a universal Horn Theory (definition 5.10 in [1])
thus it is a limit theory (Definition 5.7 in [1]). By Theorem 5.9 in [1],
pSG is a finitely locally presentable category, (Definition 1.9 in [1]),
thus it is a cocomplete category.

• QPF (' SG) is not a cocomplete category.

* Consider RSG the full subcategory of SG of all reduced special
groups, that is, a special group G such that for each a ∈ G, 〈a, a〉 ≡
〈1, 1〉 iff a = 1. This is a slightly variation on the notion of reduced
special group (Definition 1.2 in [3]) since we not exclude the case where
G = {1} (equivalently, we not impose −1 6= 1). Following the proofs
of the results in Chapter 10, Section 3, in [3], the category RSG of
all reduced special groups (including the trivial special group {1}))
misses some binary coproducts, thus is not cocomplete.

* The full subcategory ι : RSG ↪→ SG is reflexive, that is, it has a left
adjoint S : SG → RSG, G ∈ Obj(SG) 7→ G/Sat(G) ∈ Obj(RSG),

where the unity of adjunction is (G
qG� S(G) := G/Sat(G))G∈Obj(SG).

This follows from a combination of results in [3]: Remark (iii) just
below Definition 2.7; Remark 2.16 and Proposition 2.21.



Quadratic structures associated to (multi)rings 133

* Let Γ : I → RSG be a small diagram that does not have a colimit
in RSG. Suppose that ι ◦ Γ : I → SG has a colimit (γi : Γ(i) →
G∞)i∈obj(I) in SG. Then it is easy to check that (qG∞ ◦ γi : Γ(i) →
S(G∞))i∈Obj(I) satisfies the universal property of being the colimit of
Γ : I → RSG in RSG, a contradiction.

5 Quadratic multirings and (formally) real semigroup asso-
ciated to semi real rings via Marshall quotient

Paraphrasing M. Marshall, “when we change fields for rings, we are in deep
water” ( [12])! For example, let R be a generic commutative ring and T ⊆ R
be a multiplicative set containing 1. From now on, we denote

zd(R) := {a ∈ R : a is a zero divisor}
nzd(R) := R \ zd(R) = {a ∈ R : a is not a zero divisor}.

If a, b ∈ T\{0} with ab = 0 (that is, a, b are zero-divisors), thenR/mT
∗ ∼=

{0}: in fact for all x ∈ R, x(ab) = 0 · 1 with ab, 1 ∈ T , and hence x = 0.

Even in the case T ⊆ nzd(R), if a ∈ zd(R), say ab = 0 for some b ∈ zd(R)
then ab = 0, so (ab)2 = 0 6= 1, and in particular, R/mT is not a hyperfield.

Then, if zd(R) 6= ∅, R/mT ∗ will never be a special group, since will
never be a hyperfield. Because this, we will seek for conditions for a pair
(R, T ) with R a ring and T ⊆ nzd(R) multiplicative provide a (formally)
real semigroup structure in R/mT .

In this context we christen the following definition:

Definition 5.1. Let R be a multiring and T ⊆ nzd(R) be a multiplicative
subset containing 1. We say that (R, T ) is a quadratic pair if

Q1 R/mT is semi real.

Q2 If a ∈ R and a2 /∈ zd(R), then a2 ∈ T .

Q3 For all a ∈ R, then a3 = a in R/mT .

Q4 For all a, b ∈ R, there exists r, s, t ∈ T such that ar ∈ a3s+ a2bt.
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Let’s look closey to the axioms in definition 5.1. In this sense, Q1 is
a kind of generalization of the semireal condition and Q2 is a weakness of
A2 ⊆ T . Q4 is saying that “a+ab2 = {a} in A/mT”. The following theorem
is immediate:

Theorem 5.2. Let (R, T ) be a quadratic pair and define for all a, b, c ∈ R
the following relations:

c ∈ Dt(a, b) if and only if c ∈ a+ b

c ∈ D(a, b) if and only if c ∈ Dt(c2a, c2b).

Then (R/mT,D,D
t) is a formally real semigroup. Conversely, if (G,D,Dt)

is a formally real semigroup such that a2 is a zero divisor or a2 = 1. Define

c ∈ a+ b if and only if c ∈ Dt(a, b).

Then (G, {1}) is a quadratic pair.

Proof. Let (R, T ) be a quadratic pair. Axiom RS7b is consequence of Q1
and axiom RS1 is consequence of Q4. The other axioms of formally re-
alsemigroup are consequence of basic properties of multiring and so on.

Conversely, if (G,D,Dt) is a formally real semigroup such that a2 is
a zero divisor or a2 = 1, we automatically have Q2. Q1 is consequence of
RS7b, Q3 is consequence of G be a ternary semigroup and Q4 is consequence
of RS1. The fact of (G,+, ·, 0, 1) be a multiring is consequence of the another
axioms of formally realsemigroup (and ternary semigroup).

Now is time to deal with the real semigroup case. We define the follow-
ing:

Definition 5.3. A Dickmann-Petrovich multiring (or DP-multiring
for short)4 is a quadratic pair (R, T ) satisfy the following properties:

DP1 1 + T ⊆ T .

DP2 For all a ∈ R, exist t ∈ T such that 1 + a2t ∈ T .

DP3 For all a, b ∈ R, a2 + b
2

is a singleton set in R/mT .

4The name “Dickmann-Petrovich” is given in honor to professors Max Dickmann and
Alejandro Petrovich, who are the creators of realsemigroup theory.
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Theorem 5.4. Let (R, T ) be a DP-ring and denote Rs(R) = (R/mT ).
Then Rs(R) is a real reduced multiring (thus it is a real semigroup).

Proof. Since T ⊆ nzd(R), 1 6= 0 in Rs(R). Moreover, by (Q4) we get a3 = a
in Rs(R).

Note that since T is multiplicative, [Q0] and [DP1] imply T ·T = T and

T + T = T + T · T = T · (1 + T ) ⊆ T · T = T,

then we have that T+T ⊆ T which imply that a+a = {a} for all a ∈ Rs(R).

From (DP2) we get 1+b
2

= {1} for all b ∈ R, which imply a+ab2 = {a}
for all a, b ∈ R. Finally, [DP3] says that a2 + b

2
is a singleton set in R/mT ,

completing the proof that R/mT is a real semigroup.

Example 5.5. Let (R, T ) be a DM-multiring. Then (R, T ) is also a quadratic
pair.

Example 5.6. Let (R, T ) be a DM-ring such that T +T ⊆ T . Then (R, T )
is also a DP-ring.

With definition 5.1 and theorem 5.2, we generalize the real reduced
multirings:

Definition 5.7. A multiring A is said to be quadratic if it satisfies the
following properties:

QM0 −1 /∈∑A2.

QM1 for all a ∈ A, a ∈ 1− 1.

QM2 for all a ∈ A, a3 = a.

QM3 for all a, b ∈ A, a ∈ a+ a2b.

Example 5.8. Let p be a prime integer and consider Hp as in 2.4. Since
a2 = 1 and a = −a for all a ∈ Hp and a + a = Hp for all a 6= 0, we have
that Hp is not a quadratic multiring.

But Hp satisfy QM1, QM2 and QM3. Then, consider the produt mul-
tiring R = X1 × Hp, where X1 = {−1, 0, 1}. Since X1 is a DM-hyperfield
(and hence a DP-multiring) and the operations and multioperation in R is
defined coordinatewise, we have that R satisfy QM1, QM2 and QM3. Since
(a, b) ∈ R2 if and only if a ∈ {0, 1} and b ∈ Hp, we have −1R = (−1, 1) /∈ R2.
Hence R is a quadratic multiring.
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Example 5.9 (Constructions). (i) (Products) Let {Ri}i∈I be a class of
quadratic multiring and let R =

∏
i∈I Ri. Since the operations and mul-

tioperation in R is defined coordinatewise, we have that R is a quadratic
multiring. More generally, suposse that Ri satisfy QM1, QM2 and QM3 for
all i ∈ I. If there is an index i0 ∈ I such that Ri0 is a quadratic multiring,
then R is a quadratic multiring.

(ii) (Directed Colimits) If (I,≤) is an upward directed poset and (fij :
Ri → Rj)i≤j is a diagram of quadratic multirings, then colimi∈IRi is a
quadratic multring. More generaly, if (fij : Ri → Rj)i≤j is an upward
directed diagram of multirings such that {i ∈ I : Ri is a quadratic multring}
is a cofinal subset of I, then colimi∈IRi is a quadratic multring.

(iii) (Reduced Products and Ultraproducts) The class of quadratic mul-
tirings can be axiomatized by certain kind of first-order formulas (in a con-
venient relational language) that shows that this subclass of the class of
multirings is closed under reduced products (and ultraproducts, in particu-
lar). This result can be achieved more directly by the description of reduced
product of a family of (quadratic) multirings, modulo some filter on the in-
dex set, as the directed colimit of products of the members of the family
indexed by some member of the filter:

∏
i∈I Ri/F ∼= colimJ∈F

∏
i∈J Ri.

Example 5.10 (Special Groups). Let G be a special group, and consider
F = M(G) := G∪{0} its special hyperfield associated. Of course, F satisfy
conditions QM1-QM3 in 5.7. F satisfy DM0 iff F is formally real, that is,
if −1 /∈∑F 2, which occurs iff G is formally real, that is,

−1 /∈ DG(n⊗ 〈1〉) for all n > 1.

Example 5.11. Let A be a von Neumann regular semi-real ring such that
2 ∈ A×. Then A/mA

×2 is a quadratic multiring. In fact, first observe that

(i) If F is a field with 2 ∈ F×, then F/mF
×2 is a multiring that satisfies

QM1-QM3 as indicate examples 2.13 and 5.10. This means that F satisfies
the following Horn-geometric sentences:

• ∀a∃x, y, x′, y′(xx′ = yy′ = 1 ∧ a = x2 − y2).

• ∀a∃x, y, x′, y′(xx′ = yy′ = 1 ∧ a3x2 = ay2).

• ∀a, b∃x, y, z, x′, y′, z′(xx′ = yy′ = zz′ = 1 ∧ ax2 = ay2 + a2bz2).



Quadratic structures associated to (multi)rings 137

(ii) The Proposition 5.6 of [4] shows that the von Neumann regular ring
A is the ring of global sections over a Boolean space where the sheaf has
fields with 2 invertible as stalks.

Thus, the Proposition 3.2-(d), [4], applied to the sheaf of item ii) above
implies that formulas of item i) are valid in A. Therefore A/mA

×2 is a
quadratic multiring.

Example 5.12 (Faithfully Quadratic Rings). Now, we relate our DM-
multrings, DP-multrings and quadratic multirings with faithfully quadratic
rings as presented in [5]: let A be a semi-real ring with 2 ∈ Ȧ, T be a
preordering of A or T = A2. A T-subgroup of A is a multiplicative subset
S of Ȧ containing {−1} ∪ Ṫ . For a, b ∈ S, denote

Dv
S,T (a, b) := {c ∈ S : c = as+ bt for some s, t ∈ T}.

Dt
S,T (a, b) := {c ∈ S : c = as+ bt for some s, t ∈ Ṫ}.

The triple (A, T, S) is faithfully quadratic if (among other things) satisfy
Dv
S,T (a, b) = Dt

S,T (a, b) for all a, b ∈ S (see for instance, definition 3.1 in [5]).
Denote

aT = bT iff ab ∈ Ṫ iff b = at for some t,

and consider GT (S) = {aT : a ∈ S}. Define the binary isometry ≡ST by

〈aT , bT 〉 ≡ 〈cT , dT 〉 iff aT bT = cTdT and Dv
S,T (a, b) = Dv

S,T (c, d).

In general, (GT (S),≡ST ,−1T ) is a proto-special group If (A, T, S) is faithfully
quadratic, then Dickmann and Miraglia showed (see theorem 3.5 [5]) that
GT (S) is a special group.

Now, consider (A, T, S) and letR = A/m(T∩nzd(A)). ThenDt
S,T (a, b) ⊆

a+ b for all a, b ∈ A. Moreover, if A2 ⊆ nzd(A), or more generally, if (A, T )
is a quadratic ring, then R is a quadratic multiring containing the proto
special group GT (S). This is particularly useful given that (A, T, S) is not
necessarily faithfully quadratic.

Definition 5.13. Let (X, τ) be a topological space. The topology τ is
called perfectly normal if it is normal and every closed set is Gδ-set. The
topology τ is called T6 if it is Hausdorff and perfectly normal.
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Example 5.14. • A T1 topological space X is perfectly normal if, and only
if, for every closed set F exists a continuous function f : X → R such that
F = f−1(0) (Theorem 1.5.19 of [7]).

• Every metric space is T6 (Corollary 4.1.13 of [7]).

Example 5.15 (The ring of continuous functions). Let X be T6 topological
space and consider A = C(X,R), the ring of continuous functions f : X →
R. Let T = A2 ∩ nzd(A). In the following, is proved that C(X,R)/mT is a
real reduced multiring (in particular, a quadratic multiring). Before that,
consider the remarks:

• Since X is perfectly normal, given a open set U ⊆ X there is a con-
tinuous function g : X → R such that g

∣∣
U

is strictly positive and
Z(g) = U c.

• f ∈ C(X,R) is zero divisor if, and only if, Z(f) has non-empty interior.
In fact, if U ⊆ Z(f) is non-empty interior, then exists g ∈ C(X,R)
such that Z(g) = U c; thus g is a non-zero function and fg = 0.
Reciprocally, if Z(f) has empty interior and g ∈ C(X,R) satisfies
fg = 0, then Z(f)c is open and dense while Z(f)c ⊆ Z(g). Since g is
continous, g = 0 and so f is non-zero divisor.

• By the preceding item,

T = {f ∈ C(X,R) : f is non-negative and Z(f) has empty interior}.

Before proceding with the proof, a notation: given h ∈ C(X,R), denote
by ph ∈ C(X,R) any function satisfying:

• Z(ph) has empty interior (that is, ph is a non-zero divisor).

• ph is non-negative over Z(h).

• For all x /∈ Z(h), ph(x) = h(x).

A possible construction is to consider a positive function p ∈ C(X,R)
with Z(p) = (int(Z(h)))c and set ph := h+ p.

Claim. Let f, g ∈ C(X,R) be two functions and D ⊆ X a dense subset such
that for all x ∈ D, sgn(f(x)) = sgn(g(x)). Then f = g in C(X,R)/mT .
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Proof. Assume that for all x ∈ D, sgn(f(x)) = sgn(g(x)). Then for all
x ∈ D we have f(x) · p|g|(x) = g(x) · p|f |(x) (∗) Since D is a dense subset of
X, the equality (∗) is true for all real number. Thus, since p|f |, p|g| ∈ T , we

have f = g in A/mT .

To finalize this example, we have to prove the axioms of real reduced
multiring:

• Since 0 /∈ T , we have 1 6= 0 in A/mT .

• For all x ∈ R, we have sgn(f3(x)) = sgn(f(x)). Thus by the above

claim f
3

= f in A/mT .

• Let f, g ∈ A and h ∈ f +fg2 in A/mT . Then exists s1, s2, s3 ∈ T such
that hs1 = fs2 + fg2s3. Thus, for all x ∈ Z(s1)c ∩Z(s2)c∩Z(s3)c, we
have

. if f(x) = 0, then h(x) = 0;

. if f(x) > 0, then h(x) > 0;

. if f(x) < 0, then h(x) < 0.

Since Z(s1)c∩Z(s2)c∩Z(s3)c is a dense subset, by above claim, h = f .

• Let f, g ∈ A and h1, h2 ∈ f + g in A/mT . By an argument similiar of
the preceding item, the signals of h1, h2 are equal in dense subset and
thus h1 = h2.

6 Final remarks and future works

We emphasize that DM-multirings and DP-multirings provide a new way
to look at the abstract theories of quadratic forms.

In fact, for special groups (or more generally, theories that generalizes
the field case), we obtain an easy way to describe the axiom SG6 in the the-
ory of special groups (3.10). For real semigroups (or theories that generalizes
the ring case), we obtain a new example of real semigroup (Example 5.15) in
addition with an entire new quadratic structure, the quadratic multirings,
that are categorically equivalent to formally real semigroup. We hope that
quadratic multirings could give a raise a non reduced theory of quadratic
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forms for more general rings (maybe, with some controlling restrictions in
the set of nonzero divisors).

After that, we glance these roads to follow:

1. We intend to analyse further the introduced notions of formally real
semigroups, formally real multirings and quadratic multirings.

2. With Example 5.15 as a prototype, specialize the study of quadratic
multirings where every element is the product of a non-zero divisor
and an idempotent. This could give some hint about the structure of
invertible elements in real semigroups, which until today is not known
to be a reduced special group in general.

3. In [13] is constructed a von Neumann hull functor from multiring cate-
gory and that, when restricted to in semi-real rings, it commutes with
real semigroup functor. This allows us to obtain some quadratic forms
properties of a semi-real ring by looking to its von Neumann regular
hull. It would be interesting to determine what kind of property in
the von Neumann hull of a quadratic multiring return to the original
structure.

4. The definition and analysis of the structure of Witt ring of more gen-
eral quadratic structures (non only obtained from special groups): this
subject have already appeared in section 4, in connection with [9].
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Paulo, Brazil.

Email: hugor@ime.usp.br
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