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On epimorphisms and structurally regular
semigroups

A.H. Shah*, S. Bano, S.A. Ahanger, and W. Ashraf

Abstract. In this paper we study epimorphisms, dominions and related
properties for some classes of structurally (n,m)-regular semigroups for any
pair (n,m) of positive integers. In Section 2, after a brief introduction of
these semigroups, we prove that the class of structurallly (n,m)-generalized
inverse semigroups is closed under morphic images. We then prove the main
result of this section that the class of structurally (n,m)-generalized inverse
semigroups is saturated and, thus, in the category of all semigroups, epimor-
phisms in this class are precisely surjective morphisms. Finally, in the last
section, we prove that the variety of structurally (o, n)-left regular bands is
saturated in the variety of structurally (o, k)-left regular bands for all positive
integers k and n with 1 6 k 6 n.

C Introduction and preliminaries

A morphism α : S → T in the category of all semigroups is called an epi-
morphism (epi for short) if for all morphisms β, γ with αβ = αγ implies
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β = γ. In any category C, one can easily verify that every surjective mor-
phism is epi but the converse is not true in general. In the category of
semigroups, there do exist non-surjective epimorphisms; for example, the
inclusion i : (0, 1] → (0,∞), where both intervals are multiplicative semi-
groups, is an epimorphism. In semigroups, epimorphisms are studied via
dominions whose notion was first introduced by Isbell in [6].

Let U be a subsemigroup of a semigroup S. We say that U dominates
an element d ∈ S if for every semigroup T and all morphisms β, γ : S → T ,
uβ = uγ for all u ∈ U implies dβ = dγ. The set of all such elements
is called the dominion of U in S and is denoted by Dom(U, S). It is a
subsemigroup of S containing U . A subsemigroup U of a semigroup S is
said to be closed and epimorphically embedded in S if Dom(U, S) = U and
Dom(U, S) = S, respectively. A semigroup U is said to be saturated if
Dom(U, S) 6= S for every properly containing semigroup S . It can be easily
seen that α : S → T is epi if and only if the inclusion map i : Sα→ T is epi
if and only if Dom(Sα, T ) = T .

If C is a class of semigroups, then every epi from a member of C is onto
if C is closed under morphic images and each member of C is saturated. A
semigroup U is said to be C − saturated if for all S ∈ C with U as a proper
subsemigroup of S, Dom(U, S) 6= S. Let C1 and C2 be classes of semigroups
with C1 ⊆ C2. We say that C1 is C2 − saturated if every member of C1 is C2-
saturated. A class C of semigroups is said to be saturated if every member
of C is saturated.

Isbell provided the most useful characterization of semigroup dominions
which is called as the Isbell’s Zigzag Theorem and is as follows:

Theorem C.1. ([5], Theorem 8.3.5) Let U be subsemigroup of a semigroup
S and d ∈ S. Then d ∈ Dom(U, S) if and only if d ∈ U or there exists a
system of equalities for d as follows:

d = a0y1 a0 = x1a1

a1y1 = a2y2 x1a2 = x2a3

...
... (C.1)

a2i−1yi = a2iyi+1 xia2i = xi+1a2i+1

a2m−1ym = a2m xma2m = d
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where ai ∈ U(0 6 i 6 2m) and xi, yi ∈ S(1 6 i 6 m).

The above system (C.1) of equalities is called as the zigzag of length m
in S over U with value d. In whatever follows, by zigzag equations, we shall
mean a system of equations of type (C.1). We further mention that the
bracketed statements shall mean the statements dual to other.

Following results are also useful for our investigation:

Theorem C.2. ([7], Result 3) Let U be a subsemigroup of a semigroup S.
Take any d ∈ S \ U such that d ∈ Dom(U, S) and let (1) be a zigzag of
minimal length m over U with value d. Then xi, yi ∈ S \ U(1 6 i 6 m).

Theorem C.3. ([7], Result 4) Let U be a subsemigroup of a semigroup S
and Dom(U, S) = S. Then for any d ∈ S \ U and any positive integer k,
there exist b1, b2, . . . , bk ∈ U and dk ∈ S \ U such that d = b1b2 · · · bkdk
[d = dkbkbk−1 · · · b1]. In particular, d ∈ Sk for every positive integer k.

An element x of a semigroup S is said to be (von Neumann) regular if
there exists an (inverse) element y in S such that xyx = x and yxy = y and
semigroups consisting entirely of such elements are called regular. The set
of all inverses of a regular element x is denoted by V (x). An element x of
S is said to be an idempotent if x2 = x. The set of all idempotent elements
of a semigroup S will be denoted by E(S). Semigroups consisting entirely
of idempotent elements are called bands. A band is called as a normal band
if it satisfies the identity axyb = ayxb. A band is said to be left [right]
regular if it satisfies the identity xax = xa [xax = ax]. Inverse semigroups
are the regular semigroups with unique inverses, or equivalently, they are
regular semigroups with commuting idempotents ( [5], Theorem 5.1.1). A
generalised inverse semigroup is a regular semigroup S whose idempotents
form a normal band; that is, E(S) is a subsemigroup of S satisfying the
identity efgh = egfh [2].

The following countable family of congruences on a semigroup S was
introduced by Samuel J. L. Kopamu in [8]. For each ordered pair (n,m) of
non-negative integers, the congruence θ(n,m) is defined as

θ(n,m) = {(a, b) : zaw = zbw, for all z ∈ Sn and w ∈ Sm},



234 A.H. Shah, S. Bano, S.A. Ahanger, W. Ashraf

where S1 = S and S0 denotes the set containing the empty word. In partic-
ular,

θ(0,m) = {(a, b) : av = bv, for all v ∈ Sm},

while θ(0, 0) is the identity relation on S.

The concept of structurally regular semigroups was first given by Kopamu
in [9]. He gave its characterization, presented some examples and explored
its relationship with other known generalizations of the class of regular semi-
groups. A semigroup S is said to be structurally regular if there exists some
ordered pair (n,m) of non-negative integers such that S/θ(n,m) is regu-
lar. The class of structurally regular semigroups is much larger than the
class of regular semigroups. In fact it is different from each of the following
well known extensions of the class of regular semigroups: eventually regular
semigroups, locally regular semigroups, nilpotent extensions of regular semi-
groups and weakly regular semigroups (see [9], for details). Clearly every
regular semigroup is structurally (structurally (0, 0)) regular.

As in [8], for any class C of semigroups, H(C), S(C), Sr(C), Pf (C) and
P (C) denote, respectively, the classes of homomorphic images, subsemi-
groups, regular subsemigroups, finite direct products and direct products
of members of C. A class C is said to be an existence variety or an e-variety
if it is closed under H(C), Sr(C), and Pf (C). Let RS denote the e-variety of
all regular semigroups. A class C is said to be a pseudovariety if and only if
it is closed under H(C), S(C), and Pf (C). Let Fin denote the pseudovariety
of all finite semigroups.

For any class V of regular semigroups, we say that a semigroup S is a
structurally (n,m)-V semigroup if S/θ(n,m) belongs to V. In particular,
a semigroup S is said to be structurally (n,m)-generalised inverse [inverse,
band] if S/θ(n,m) is generalised inverse [inverse, band]. More precisely, for
any class V of semigroups and any (n,m) ∈ N{0} × N{0}, we define class
of semigroups V(n,m) = {S : S/θ(n,m) ∈ V}. Now, we have the following
result.

Theorem C.4. ([8], Theorem 4.2) We have the following statements about
certain types of varieties of semigroups:

(a) If V is a variety of semigroups, then so is V(n,m).
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(b) If V ia an existence variety of regular semigroups, then the class
RS ∩ V(n,m) is also an existence variety.

(c) If V is a generalized variety, then so is V(n,m).
(d) If V is pseudovariety, then so is Fin ∩ V(n,m).

An element a of a semigroup S is said to be an (n,m)− idempotent if it
is θ(n,m) related to a2; that is, if za2w = zaw for all z ∈ Sn and w ∈ Sm.
We denote the set of all (n,m)-idempotents of S by

E(n,m)(S) = {a ∈ S : (a, a2) ∈ θ(n,m)}
= {a ∈ S : zaw = za2w ∀z ∈ Sn, w ∈ Sm}.

Note that, to say that a is an (n,m)-idempotent in S is equivalent to say
that, aθ(n,m) is idempotent in S/θ(n,m), so E(n,m)(S) = E(S/θ(n,m)).
Also, since every idempotent of S is clearly an (n,m)-idempotent of S, so
E(S) ⊆ E(n,m)(S). A semigroup S is strucuturally (n,m)-band if every
element of S/θ(n,m) is idempotent, that is, every element of S is (n,m)-
idempotent.

The next result gives the more useful characterization of structurally regular
semigroups.

Theorem C.5. ([9], Theorem 2.1) Let (n,m) be an ordered pair of non-
negative integers. For any semigroup S, S/θ(n,m) is regular (and hence, S
is structurally regular) if and only if for each element a of S, there exists a′

in S such that

zaa
′
aw = zaw and za

′
aa
′
w = za

′
w, for all z ∈ Sn and w ∈ Sm.

The condition that for each element a there exists b such that zaw = zabaw
for all z in Sn and w in Sm implies that there exists an element a∗ = bab
such that zaw = zaa∗aw and za∗w = za∗aa∗w. Therefore the set

VS(a;n,m) = {a∗ ∈ S : (aa∗a, a), (a∗aa∗, a∗) ∈ θ(n,m)}

is non-empty. We refer to each element of the set VS(a;n,m) as an (n,m)−
inverse of a. Clearly V (a) ⊆ VS(a;n,m) and S is structurally (n,m)-regular
if every element of S has an (n,m)-inverse in S. Note that, if a∗ is an (n,m)
inverse of a in a semigroup S, then aa∗ and a∗a are in E(n,m)(S).
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C Epis and structurally (n,m)-generalized inverse semigroups

In [2], Higgins proved that epis are onto for generalized inverse semigroups
generalizing the well known result of Howie and Isbell [4] that inverse semi-
groups were absolutely closed. A corollary of Higgins result showed that nor-
mal bands were saturated. This result generalizes the result of Schebilch [11]
that normal bands were closed. In this section, we prove that epis are onto
for structurally (n,m)-generalized inverse semigroups by showing that such
semigroups are saturated, thus extending the above mentioned results of
Higgins [2] and Schebilch [11].

Let U and S be any semigroups. Then

θS(n,m) = {(a, b) ∈ S × S : zaw = zbw ∀z ∈ Sn, w ∈ Sm},
θU (n,m) = {(a, b) ∈ U × U : zaw = zbw ∀z ∈ Un, w ∈ Um}.

Before proving the main result of this section, we first prove that the class of
structurally (n,m)-generalized inverse semigroups is closed under morphic
images.

Proposition C.1. If α : U → S be an onto homomorphism. Then β :
U/θU (n,m) → S/θS(n,m) given by (uθU (n,m))β = (uα)θS(n,m) is also
an onto homomorphism.

Proof. Clearly the natural homomorphism ν : S → S/θS(n,m) is onto. So,
αν : U → S/θS(n,m) is onto. Now, for any (u, u′) ∈ θU (n,m), we have

uθU (n,m) = u′θU (n,m)

⇒ (uθU (n,m))β = (u′θU (n,m))β

⇒ (uα)θS(n,m) = (u′α)θS(n,m)

⇒ uαν = u′αν.

This implies that (u, u′) ∈ (αν) ◦ (αν)−1. Therefore θU (n,m) ⊆ ker(αν).
Thus, by ([5], Theorem 1.5.3), we have a commutative diagram

U
αν //

ν|U
��

S/θS(n,m)

U/θU (n,m)

β

88
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such that imβ = im(αν) = S/θS(n,m). Hence β is onto, as required.

From Proposition C.1, we have the following immediate corollaries.

Corollary C.2. Any morphic image of structurally (n,m)-regular semi-
group is structurally (n,m)-regular.

Proof. The proof follows from Proposition C.1, as homomorphic images of
regular semigroups are regular.

Corollary C.3. Any morphic image of structurally (n,m)-generalized in-
verse semigroup is structurally (n,m)-generalized inverse.

Proof. The proof follows from Propsition C.1, as homomorphic image of
generalized inverse semigroup is generalized inverse semigroup ([2], Result
2).

Following result gives a more useful characterisation of structurally (n,m)-
generalized inverse semigroups.

Theorem C.4. A semigroup S is structurally (n,m)-generalized inverse
semigroup if and only if S is structurally (n,m)-regular and for any e, f, g
and h ∈ E(n,m)(S),

zefghw = zegfhw for all z ∈ Sn, w ∈ Sm. (C.1)

Proof. Suppose S is structurally (n,m)-generalised inverse semigroup. Then
S/θ(n,m) is generalized inverse and, thus, regular. So, for any e, f, g, h ∈
E(n,m)(S), we have eθ(n,m), fθ(n,m), gθ(n,m) and hθ(n,m) are inE(S/θ(n,m))
such that

eθ(n,m)fθ(n,m)gθ(n,m)hθ(n,m) = eθ(n,m)gθ(n,m)fθ(n,m)hθ(n,m).

This implies that (efgh, egfh) ∈ θ(n,m) and so

zefghw = zegfhw for all z ∈ Sn, w ∈ Sm,

as required.
Conversely, if S is structurally (n,m)-regular and satisfies (C.1), then

S/θ(n,m) is clearly generalized inverse semigroup and, so, S is structurally
(n,m)-generalized inverse semigroup.
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Also, by ([10], Corollary 2.2), it follows that a semigroup S is structurally
(n,m) inverse if and only if S is structurally (n,m)-regular and for any
e, f ∈ E(n,m)(S),

zefw = zfew for all z ∈ Sn, w ∈ Sm.

In Lemma C.5, U is a structurally (n,m)-regular proper subsemigroup of a
semigroup S such that Dom(U, S) = S. For any semigroup S, S(1) denotes
the semigroup S with identity adjoined.

Lemma C.5. For any x, y ∈ S \ U and u, v ∈ U (1)

xuavy = xuaa∗avy, and xua∗vy = xua∗aa∗vy for all a ∈ U.

Proof. We outline the proof of only the first equality as the proof of the
second equality follows on the similar lines. Since x, y ∈ S \U , by Theorem
C.3, we can write

x = x
′
z, y = wy

′
(C.2)

for some x′ , y′ ∈ S \ U and z ∈ Un, w ∈ Um. Now

xuavy = x
′
zuavwy

′
(by equalities (C.2))

= x
′
zuaa∗avwy

′
(since U is structurally (n,m)-regular)

= xuaa∗avy (by equalities (C.2)),

as required.

In order to prove the main result of this section, we first prove the follow-
ing lemmas in which U is a proper structurally (n,m)-regular subsemigroup
of a semigroup S satisfying

zseftw = zsfetw (C.3)

for all z ∈ Un, w ∈ Um, s, t ∈ S and e, f ∈ E(n,m)(U).

Lemma C.6. If a∗ ∈ VS(a;n,m) and e ∈ E(n,m)(U), then aea∗, a∗ea ∈
E(n,m)(U).
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Proof. For any z ∈ Un, w ∈ Um, we have

z(aea∗)2w = za(ea∗a)ea∗w

= zaa∗aeea∗w (by Equation (C.3))
= zaea∗w (since U is structurally (n,m)-regular).

Thus aea∗ ∈ E(n,m)(U) and similarly a∗ea ∈ E(n,m)(U).

Lemma C.7. If any d ∈ S \U has zigzag equations of type (C.1) in S over
U of length m, then for each r = 1, 2, . . . ,m− 1,

u2r = a∗2ra2r−1a
∗
2r−2a2r−3 · · · a∗2a1a

∗
1a2a

∗
3a4 · · · a∗2r−1a2r ∈ E(n,m)(U). (C.4)

Proof. We will prove this by induction on r. For r = 1 and for all z ∈
Un, w ∈ Um, we have

z(u2)2w = z(a∗2a1a
∗
1a2)2w

= za∗2a1a
∗
1a2w (as a∗2a1a

∗
1a2 ∈ E(n,m)(U) by Lemma C.6)

= zu2w.

Thus the result holds for r = 1. Assume inductively that the result holds
for r = k < m− 1; that is, u2k ∈ E(n,m)(U). We shall show that the result
holds for r = k + 1. Now

z(u2(k+1))
2w

= z(a∗2k+2a2k+1a
∗
2ka2k−1 · · · a∗2a1a

∗
1a2a

∗
3a4 · · · a∗2k+1a2k+2)2w

= z(a∗2k+2a2k+1(a∗2ka2k−1 · · · a∗2a1a
∗
1a2 · · · a∗2k−1a2k)a

∗
2k+1a2k+2)2w

= z(a∗2k+2a2k+1u2ka
∗
2k+1a2k+2)2w

= za∗2k+2(a2k+1u2ka
∗
2k+1)(a2k+2a

∗
2k+2)(a2k+1u2ka

∗
2k+1)a2k+2w

= za∗2k+2(a2k+2a
∗
2k+2)(a2k+1u2ka

∗
2k+1)(a2k+1u2ka

∗
2k+1)a2k+2w

(by (C.3) as a2k+1u2ka
∗
2k+1 ∈ E(n,m)(U) by Lemma C.6

together with inductive hypothesis)
= z(a∗2k+2a2k+2a

∗
2k+2)(a2k+1u2ka

∗
2k+1)(a2k+1u2ka

∗
2k+1)a2k+2w

= za∗2k+2(a2k+1u2ka
∗
2k+1)2a2k+2w

(as U is structurally (n,m)-regular)
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= za∗2k+2(a2k+1u2ka
∗
2k+1)a2k+2w (as a2k+1u2ka

∗
2k+1 ∈ E(n,m)(U)

by Lemma C.6 together with inductive hypothesis)
= z(a∗2k+2a2k+1a

∗
2ka2k−1 · · · a∗2a1a

∗
1a2a

∗
3a4 · · · a∗2k−1a2ka

∗
2k+1a2k+2)w

= zu2(k+1)w.

Thus the result also holds for r = k + 1 and, so by induction, the result
follows.

Lemma C.8. If any d ∈ S \U has zigzag equations of type (1) in S over U
of length m and u2r = a∗2ra2r−1a

∗
2r−2a2r−3 · · · a∗2a1a

∗
1a2a

∗
3a4 · · · a∗2r−1a2r

∈ E(n,m)(U) (1 6 r 6 m− 1), then the following are in E(n,m)(U):
(i) v2j = a∗2ja2j−1u2j−2a

∗
2j−1a2j (2 6 j 6 m);

(ii) w2j = a2j+1u2ja
∗
2j+1 (1 6 j 6 m− 1).

Proof. We will prove the lemma for case (i); the other case follows by ap-
plying Lemma C.7 and Lemma C.6, respectively. We prove it by induction
on j. For j = 2 and for all z ∈ Un, w ∈ Um, we have

z(v4)2w = z(a∗4a3u2a
∗
3a4)2w

= z(a∗4a3u2a
∗
3a4)(a∗4a3u2a

∗
3a4)w

= za∗4(a3u2a
∗
3)(a4a

∗
4)(a3u2a

∗
3)a4w

= za∗4(a4a
∗
4)(a3u2a

∗
3)(a3u2a

∗
3)a4w (by (C.3) as a4a

∗
4, a3u2a

∗
3

∈ E(n,m)(U) by Lemma C.6)

= z(a∗4a4a
∗
4)(a3u2a

∗
3)(a3u2a

∗
3)a4w

= za∗4(a3u2a
∗
3)a(a3u2a

∗
3)a4w (as U is structurally (n,m)-regular)

= za∗4(a3u2a
∗
3)2a4w

= za∗4(a3u2a
∗
3)a4w (as a3u2a

∗
3 ∈ E(n,m)(U) by Lemma C.6)

= z(a∗4a3u2a
∗
3a4)w

= zv4w.

Thus the result is true for j = 2. Assume that the result is true for j = k
(2 6 k < m). Then, we have

v2k = a∗2ka2k−1u2k−2a
∗
2k−1a2k ∈ E(n,m)(U).
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From this, we show that the result also holds for j = k + 1. Now

z(v2(k+1))
2w

= z(a∗2k+2a2k+1u2ka
∗
2k+1a2k+2)2w

= z(a∗2k+2a2k+1(a∗2ka2k−1 · · · a∗2a1a
∗
1a2 · · · a∗2k−1a2k)a

∗
2k+1a2k+2)2w

(as u2k = a∗2ka2k−1 · · · a∗2a1a
∗
1a2 · · · a∗2k−1a2k)

= z(a∗2k+2a2k+1(a∗2ka2k−1u2k−2a
∗
2k−1a2k)a

∗
2k+1a2k+2)2w

(as u2k−2 = a∗2k−2a2k−3 · · · a∗2a1a
∗
1a2 · · · a∗2k−3a2k−2)

= z(a∗2k+2a2k+1v2ka
∗
2k+1a2k+2)2w

= za∗2k+2(a2k+1v2ka
∗
2k+1)(a2k+2a

∗
2k+2)(a2k+1v2ka

∗
2k+1)a2k+2w

= za∗2k+2(a2k+2a
∗
2k+2)(a2k+1v2ka

∗
2k+1)(a2k+1v2ka

∗
2k+1)a2k+2w

(by (C.3) as a2k+1v2ka
∗
2k+1 ∈ E(n,m)(U) by Lemma C.6

together with inductive hypothsesis)
= z(a∗2k+2a2k+2a

∗
2k+2)(a2k+1v2ka

∗
2k+1)(a2k+1v2ka

∗
2k+1)a2k+2w

= za∗2k+2(a2k+1v2ka
∗
2k+1)2a2k+2w (as U is structurally (n,m)-regular)

= za∗2k+2(a2k+1v2ka
∗
2k+1)a2k+2w (as a2k+1v2ka

∗
2k+1 ∈ E(n,m)(U) by

Lemma C.6 together with inductive hypothsesis)
= za∗2k+2a2k+1(a∗2ka2k−1u2k−2a

∗
2k−1a2k)a

∗
2k+1a2k+2w

= za∗2k+2a2k+1(a∗2ka2k−1a
∗
2k−2a2k−3 · · · a∗2a1a

∗
1a2 · · · a∗2k−3a2k−2a

∗
2k−1a2k)

a∗2k+1a2k+2w

= z(a∗2k+2a2k+1u2ka
∗
2k+1a2k+2)w

= zv2(k+1)w.

Therefore, the result also holds for j = k+1 and, so by induction, the result
follows.

Lemma C.9. If Dom(U, S) = S, then for any x, y ∈ S \U and for any e, f
in E(n,m)(U),

xuefy = xufey [xefvy = xfevy] for all u, v ∈ U.

Proof. Suppose that Dom(U, S) = S. Since x, y ∈ S \ U , by Theorem C.3,
we can write x, y as

x = x̄zb, y = cwȳ, (C.5)
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for some z ∈ Un, w ∈ Um, b, c ∈ U and x̄, ȳ ∈ S \ U . Now

xuefy = x̄zbuefcwȳ (by equalities (C.5))
= x̄zbufecwȳ (by Equation (C.3))
= xufey. (by equalities (C.5))

Theorem C.10. Let U be a structurally (n,m)-regular proper subsemigroup
of a semigroup S such that zseftw = zsfetw for all z ∈ Un, w ∈ Um,
s, t ∈ S and e, f ∈ E(n,m)(U). Then Dom(U, S) 6= S.

Proof. Suppose on the contrary that Dom(U, S) = S. Take any d ∈ S \ U .
Then by Theorem C.1, there exists a zigzag of type (C.1) in S over U with
value d of minimum length m. In order to prove the theorem, we first prove
the following lemma.

Lemma C.11. For each k = 1, 2, . . . ,m, d = (
∏k−1
i=0 a2ia

∗
2i+1)a2k−1yk.

Proof. We will prove this by induction on k. For k = 1, we have

d = a0y1

= x1a1y1 (by zigzag equations)
= x1a1a

∗
1a1y1 (by Lemma C.5 as x1, y1 ∈ S \ U)

= a0a
∗
1a1y1 (by zigzag equations).

Thus the result is true for k = 1. Assume, inductively that the result is
true for k = j for 1 < j < m. We now show that the result also holds for
k = j + 1. For this, we have
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d = (

j−1∏

i=0

a2ia
∗
2i+1)a2j−1yj (by inductive hypothesis)

= a0a
∗
1a2a

∗
3(

j−1∏

i=2

a2ia
∗
2i+1)a2j−1yj

= x1a1a
∗
1a2a

∗
3(

j−1∏

i=2

a2ia
∗
2i+1)a2j−1yj (by zigzag equations)

= x1a1a
∗
1a2a

∗
2a2a

∗
3(

j−1∏

i=2

a2ia
∗
2i+1)a2j−1yj(by Lemma C.5 as x1, yj ∈ S \ U)

= x1a2a
∗
2a1a

∗
1a2a

∗
3(

j−1∏

i=2

a2ia
∗
2i+1)a2j−1yj (by Lemma C.9 as x1, yj ∈

S \ U and a1a
∗
1, a2a

∗
2 ∈ E(n,m)(U))

= x2a3(a∗2a1a
∗
1a2)a∗3(

j−1∏

i=2

a2ia
∗
2i+1)a2j−1yj (by zigzag equations)

= x2a3u2a
∗
3(

j−1∏

i=2

a2ia
∗
2i+1)a2j−1yj (as u2 = a∗2a1a

∗
1a2)

= x2(a3u2a
∗
3)a4a

∗
5(

j−1∏

i=3

a2ia
∗
2i+1)a2j−1yj

= x2w2a4a
∗
4a4a

∗
5(

j−1∏

i=3

a2ia
∗
2i+1)a2j−1yj (by Lemma C.5 as x2, yj ∈ S \ U)

= x2a4a
∗
4w2a4a

∗
5(

j−1∏

i=3

a2ia
∗
2i+1)a2j−1yj (by Lemma C.9 as x2, yj ∈

S \ U and a4a
∗
4, w2 ∈ E(n,m)(U))

= x3a5(a∗4a3u2a
∗
3a4)a∗5(

j−1∏

i=3

a2ia
∗
2i+1)a2j−1yj (by zigzag equations)

= x3a5v4a
∗
5(

j−1∏

i=3

a2ia
∗
2i+1)a2j−1yj (by Lemma C.8 (i))

...
= xja2j−1v2j−2a

∗
2j−1a2j−1yj

= xja2j−1v2j−2a
∗
2j−1a2jyj+1 (by zigzag equations)

= xja2j−1(a∗2j−2a2j−3u2j−4a
∗
2j−3a2j−2)a∗2j−1a2jyj+1 (by Lemma C.8 (i))
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= xja2j−1(a∗2j−2a2j−3a
∗
2j−4a2j−5 · · · a1a

∗
1 · · · a∗2j−5a2j−4a

∗
2j−3a2j−2)

a∗2j−1a2jyj+1

= xj(a2j−1u2j−2a
∗
2j−1)a2jyj+1 (by Lemma C.7)

= xjw2j−2a2jyj+1 (by Lemma C.8 (ii))
= xjw2j−2a2ja

∗
2ja2jyj+1 (by Lemma C.5 as xj , yj+1 ∈ S \ U)

= xja2ja
∗
2jw2j−2a2jyj+1 (by Lemma C.9 as xj , yj+1 ∈ S \ U and

w2j−2, a2ja
∗
2j ∈ E(n,m)(U))

= xj+1a2j+1a
∗
2jw2j−2a2jyj+1 (by zigzag equations)

= xj+1a2j+1(a∗2ja2j−1u2j−2a
∗
2j−1a2j)yj+1 (by Lemma C.8 (ii))

= xj+1a2j+1v2jyj+1 (by Lemma C.8 (i))
= xj+1a2j+1a

∗
2j+1a2j+1v2jyj+1 (by Lemma C.5 as xj+1, yj+1 ∈ S \ U)

= xj+1a2j+1v2ja
∗
2j+1a2j+1yj+1 (by Lemma C.9 as xj+1, yj+1 ∈ S \ U

and v2j , a∗2j+1a2j+1 ∈ E(n,m)(U))

= xja2jv2ja
∗
2j+1a2j+1yj+1 (by zigzag equations)

= xja2ja
∗
2j(a2j−1u2j−2a

∗
2j−1)a2ja

∗
2j+1a2j+1yj+1 (by Lemma C.8 (i))

= xja2ja
∗
2jw2j−2a2ja

∗
2j+1a2j+1yj+1 (by Lemma C.8 (ii))

= xjw2j−2a2ja
∗
2ja2ja

∗
2j+1a2j+1yj+1 (by Lemma C.9 as xj , yj+1 ∈ S \ U

and w2j−2, a2ja
∗
2j ∈ E(n,m)(U))

= xjw2j−2a2ja
∗
2j+1a2j+1yj+1 (by Lemma C.5 as xj , yj+1 ∈ S \ U)

= xja2j−1u2j−2a
∗
2j−1a2ja

∗
2j+1a2j+1yj+1 (by Lemma C.8 (ii))

= xj−1a2j−2u2j−2a
∗
2j−1a2ja

∗
2j+1a2j+1yj+1 (by zigzag equations)

= xj−1a2j−2a
∗
2j−2a2j−3 · · · a1a

∗
1 · · · a∗2j−3a2j−2a

∗
2j−1a2ja

∗
2j+1a2j+1yj+1

= xj−1a2j−2a
∗
2j−2(a2j−3u2j−4a

∗
2j−3)a2j−2a

∗
2j−1a2ja

∗
2j+1a2j+1yj+1

= xj−1a2j−2a
∗
2j−2w2j−4a2j−2a

∗
2j−1a2ja

∗
2j+1a2j+1yj+1

= xj−1w2j−4(a2j−2a
∗
2j−2a2j−2)a∗2j−1a2ja

∗
2j+1a2j+1yj+1 (by Lemma C.9

as xj−1, yj+1 ∈ S \ U and a2j−2a
∗
2j−2, w2j−4 ∈ E(n,m)(U))

= xj−1w2j−4a2j−2a
∗
2j−1a2ja

∗
2j+1a2j+1yj+1 (by Lemma C.5 as xj−1, yj+1 ∈ S \ U)

= xj−1a2j−3u2j−4a
∗
2j−3(

j∏

i=j−1

a2ia
∗
2i+1)a2j+1yj+1

...

= x2a3u2a
∗
3(

j∏

i=2

a2ia
∗
2i+1)a2j+1yj+1

= x1a2u2a
∗
3(

j∏

i=2

a2ia
∗
2i+1)a2j+1yj+1 (by zigzag equations)
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= x1a2a
∗
2a1a

∗
1a2a

∗
3(

j∏

i=2

a2ia
∗
2i+1)a2j+1yj+1 (as u2 = a∗2a1a

∗
1a2)

= x1a1a
∗
1(a2a

∗
2a2)a∗3(

j∏

i=2

a2ia
∗
2i+1)a2j+1yj+1 (by Lemma C.9 as x1,

yj+1 ∈ S \ U and a1a
∗
1, a2a

∗
2 ∈ E(n,m)(U))

= x1a1a
∗
1(

j∏

i=1

a2ia
∗
2i+1)a2j+1yj+1 (by Lemma C.5 as x1, yj+1 ∈ S \ U)

= a0a
∗
1(

j∏

i=1

a2ia
∗
2i+1)a2j+1yj+1 (by zigzag equations)

= (

j∏

i=0

a2ia
∗
2i+1)a2j+1yj+1.

This shows that the result also holds for k = j + 1. Hence by induction
the lemma follows.

Now to complete the proof of the theorem, letting k = m in Lemma
C.11, we have

d = (
m−1∏

i=0

a2ia
∗
2i+1)a2m−1ym

= (
m−1∏

i=0

a2ia
∗
2i+1)a2m (by zigzag equations).

Thus d ∈ U , a contradiction. Hence Dom(U, S) 6= S, as required.

Theorem C.12. For any pair (n,m) of positive integers, the class V(n,m)

of structurally (n,m)-generalized inverse semigroups is saturated.

Proof. Suppose that U ∈ V(n,m) and S be any semigroup containing U
properly such that Dom(U, S) = S. Let s, t ∈ S and e, f ∈ E(n,m)(U). If
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s, t ∈ U , then for all z ∈ Un, w ∈ Um, we have

zseftw = zss∗seftw

(as eftw ∈ Um and U is structurally (n,m)-regular)
= zss∗seftt∗tw

(as ss∗sef ∈ Un and U is structurally (n,m)-regular)
= zss∗sfett∗tw

(as U is structurally (n,m)-generalised inverse)
= zsfetw (as U is structurally (n,m)-regular).

Now, if s ∈ S \ U , then by the Theorem C.1, there exist a ∈ U , x ∈ S such
that s = xa. Similarly if t ∈ T \ U , then, again, by the Theorem C.1, there
exist b ∈ U , y ∈ S such that t = by. By Theorems C.2 and C.3, we can have
x = x̄u and y = vȳ for some u ∈ Un and v ∈ Um. Then, we have

zseftw = z(xa)ef(byw)

= z(xa)ef(by)w

= zx̄u(aefb)vȳw

= zx̄u(aa∗aefbb∗b)vȳw (as U is structurally (n,m)-regular)
= zx̄ua(a∗aefbb∗)bvȳw

= zx̄ua(a∗afebb∗)bvȳw

(as U is structurally (n,m)-generalised inverse)
= zx̄uafebvȳw (as U is structurally (n,m)-regular)
= (xa)fe(by)

= zsfetw.

Thus zseftw = zsfetw for all z ∈ Un, w ∈ Um and s, t ∈ S. Therefore, by
Theorem C.10, we deduce that Dom(U, S) 6= S for all S containing U as a
proper subsemigroup. Hence U is saturated, as required.

One can easily see that for any pair (n,m) of positive integers, struc-
turally (n,m)-inverse semigroup is also structurally (n,m)-generalised in-
verse semigroup. So, we have the following corollaries.

Corollary C.13. The class V(n,m) of structurally (n,m)-inverse semigroups
is saturated for each pair (n,m) of positive integers.
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Corollary C.14. The class V(n,m) of structurally (n,m)-normal bands is
saturated for each pair (n,m) of positive integers.

Corollary C.15. In the category of all semigroups, for each pair (n,m)
of positive integers, any epi from a structurally (n,m)-generalised inverse
semigroup is surjective.

C Epis and structurally (0, k)-bands

In [1], Alam and Khan proved that the variety of left [right] regular bands is
closed. In this section, we show that the varieties of structurally (o, n)-left
regular bands are saturated in the varieties of structurally (o, k)-left regular
bands for any k and n with 1 6 k 6 n. This partially generalizes the result
of Alam and Khan and Corollary C.14 of previous section.

One can easily see that for each k and n with 1 6 k 6 n, the class of
structurally (0, n) semigroups is contained in the class of structurally (0, k)
semigroups.

A semigroup S is said to be structurally (0, k)-band, if S/θ(0, k) is a band;
that is, for any a in S, we have

aw = a2w for all w ∈ Sk.

A structurally (0, k)-band B is said to be structurally (0, k)-left regular band,
if B/θ(0, k) is left regular band; that is, for any a, x ∈ S, we have

xaw = xaxw for all w ∈ Bk.

Dually, a structurally (k, 0)-right regular band may be defined.

Note that, by Theorem C.4, the class V(0,n) of structurally (0, n)-left regular
bands is a variety for each positive integer n. Also V(0,n) ⊆ V(0,k) for each
positive integers k and n.

In the following lemma, U and S are any (0, n)-bands with U as a proper
subband of S such that Dom(U, S) = S.

Lemma C.1. For any x, y ∈ S \ U and a ∈ U , xay = xa2y.
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Proof. Since x, y ∈ S \ U , by Theorem C.3, we may write y as

y = wȳ (C.1)

for some w ∈ Un and ȳ ∈ S \ U . Now

xay = xawȳ (by Equation (C.1))
= xaawȳ (as U is structurally (0, n)-band)

= xa2y (by Equation (C.1)),

as required.

In the next lemma, U is a structurally (0, n)-left regular proper subband
of a structurally (0, k)-left regular band S such that Dom(U, S) = S.

Lemma C.2. Let x, y ∈ S \ U and let u ∈ U . Then

xauy = xaxuy for all a ∈ U.

Proof. Since y ∈ S \ U , by Theorem C.3, we have

y = wȳ (C.2)

for some w ∈ Uk and ȳ ∈ S \ U . Now

xauy = xauwȳ (by Equation (C.2))
= xaxuwȳ (as S is structurally (0, k)-left regular band)
= xaxuy,

as required.

Theorem C.3. For each positive integers k and n with 1 6 k 6 n the variety
V(0,n) of structurally (o, n)-left regular bands is saturated in the variety V(0,k)

of structurally (o, k)-left regular bands.

Proof. Suppose on the contrary that the variety of structurally (o, n)-left
regular bands is not saturated in the variety of structurally (o, k)-left regular
bands, (k 6 n). So, there exists a structurally (o, n)-left regular band U and
a structurally (o, k)-left regular band S containing U as a subband and such
that Dom(U, S) = S. Take any d ∈ S \ U , then by Theorem C.1, d has a
zigzag of type (C.1) in S over U of minimum length m. In order to prove
the theorem we first prove the following lemma.
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Lemma C.4. For each k = 1, 2, . . . ,m, d = (
∏k−1
i=0 a2i)a2k−1yk.

Proof. We will prove this by induction on k. For k = 1, we have

d = a0y1

= x1a1y1 (by zigzag equations)
= x1a1a1y1 (by Lemma C.1 as x1, y1 ∈ S \ U)
= a0a1y1 (by zigzag equations).

Thus the result holds for k = 1. Assume, inductively that the result holds
for k = j with 1 < j < m. We now show that the result also holds for
k = j + 1. For this, we have

d = (

j−1∏

i=0

a2i)a2j−1yj (by inductive hypothesis)

= x1a1a2(

j−1∏

i=2

a2i)a2jyj+1 (by zigzag equations)

= x1a1x1a2(

j−1∏

i=2

a2i)a2jyj+1 (by Lemma C.2 as x1, yj+1 ∈ S \ U)

= x1a1x2a3(

j−1∏

i=2

a2i)a2jyj+1 (by zigzag equations)

= (
2∏

i=1

xia2i−1)a4(

j−1∏

i=3

a2i)a2jyj+1

= (
2∏

i=1

xia2i−1)x2a4(

j−1∏

i=3

a2i)a2jyj+1

(by Lemma C.2 as x2, yj+1 ∈ S \ U)

= (

2∏

i=1

xia2i−1)x3a5(

j−1∏

i=3

a2i)a2jyj+1 (by zigzag equations)
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= (
3∏

i=1

xia2i−1)(

j−1∏

i=3

a2i)a2jyj+1

...

= (

j∏

i=1

xia2i−1)a2jyj+1

= (

j∏

i=1

xia2i−1)xja2jyj+1 (by Lemma C.2 as xj , yj+1 ∈ S \ U)

= (

j∏

i=1

xia2i−1)xj+1a2j+1yj+1 (by zigzag equations)

= (

j∏

i=1

xia2i−1)xj+1a2j+1a2j+1yj+1

(by Lemma C.1 as xj+1, yj+1 ∈ S \ U)

= (

j∏

i=1

xia2i−1)xja2ja2j+1yj+1 (by zigzag equations)

= (

j−1∏

i=1

xia2i−1)xja2j−1a2ja2j+1yj+1

(by Lemma C.2 as xj , yj+1 ∈ S \ U)

= (

j−1∏

i=1

xia2i−1)xj−1a2j−2a2ja2j+1yj+1 (by zigzag equations)

= (

j−1∏

i=1

xia2i−1)(

j∏

i=j−1

a2i)a2j+1yj+1

(by Lemma C.2 as xj , yj+1 ∈ S \ U)

= (

j−2∏

i=1

xia2i−1)xj−1a2j−3(

j∏

i=j−1

a2i)a2j+1yj+1

= (

j−2∏

i=1

xia2i−1)xj−2a2j−4(

j∏

i=j−1

a2i)a2j+1yj+1 (by zigzag equations)
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= (

j−2∏

i=1

xia2i−1)(

j∏

i=j−2

a2i)a2j+1yj+1

(by Lemma C.2 as xj−1, yj+1 ∈ S \ U)
...

= (
2∏

i=1

xia2i−1)(

j∏

i=2

a2i)a2j+1yj+1

= x1a1x2a3(

j∏

i=2

a2i)a2j+1yj+1

= x1a1x1a2(

j∏

i=2

a2i)a2j+1yj+1 (by zigzag equations)

= x1a1a2(

j∏

i=2

a2i)a2j+1yj+1 (by Lemma C.2 as x1, yj+1 ∈ S \ U)

= a0a2(

j∏

i=2

a2i)a2j+1yj+1 (by zigzag equations)

= (

j∏

i=0

a2i)a2j+1yj+1.

This shows that the result also holds for k = j + 1. Hence by induction the
lemma follows.

Now to complete the proof of the theorem, letting k = m in Lemma C.4,
we have

d = (

m−1∏

i=0

a2i)a2m−1ym

= (
m−1∏

i=0

a2i)a2m (by zigzag equations)

=
m∏

i=0

a2i.
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Thus d ∈ U , a contradiction. This completes the proof of the theorem.

Dually, we may prove the following:

Theorem C.5. For each positive integers k and n with 1 6 k 6 n. The
variety V(n,0) of structurally (n, 0)-right regular bands is saturated in the
variety V(k,0) of structurally (k, 0)-right regular bands.
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