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Abstract. Let C(L) be the ring of all continuous real functions on a frame
Land S CR. An o € C(L) is said to be an overlap of S, denoted by
o 4 S, whenever uN'S C v NS implies a(u) < a(v) for every open sets
u and v in R. This concept was first introduced by A. Karimi-Feizabadi,
A.A. Estaji, M. Robat-Sarpoushi in Pointfree version of image of real-valued
continuous functions (2018). Although this concept is a suitable model for
their purpose, it ultimately does not provide a clear definition of the range
of continuous functions in the context of pointfree topology. In this paper,
we will introduce a concept which is called pre-image, denoted by pim, as
a pointfree version of the image of real-valued continuous functions on a
topological space X. We investigate this concept and in addition to showing
pim(a) = ({S € R : «a <« S}, we will see that this concept is a good
surrogate for the image of continuous real functions. For instance, we prove,
under some achievable conditions, we have pim(a V 8) C pim(a) V pim(8),
pim(a A B) C pim(a) A pim(8), pim(af) C pim(a)pim(8) and pim(a + 8) C
pim(a) + pim(B).
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1 Introduction and preliminaries

A complete lattice L is said to be a frame if for any ¢ € L and B C L, we
have a A \/ B = \/,cg(a A b). We denote the top element and the bottom
element of a frame L by Top and L, respectively. For every element a of a
frame L the pseudocomplement of ¢ is a* = \/{x € L: x Aa=L1}. Let L
be a frame. The set of all prime ideals (respectively, maximal ideals) of L
is denoted by Spec(L) (respectively, (Max(L)). An element p € L is called
prime if p < Top, and a A b < p implies a < p or b < p. Clearly, a € L is
a prime element if and only if | a = {x € L : x < a} is a prime ideal of
L. We denote by SpL the set of all prime element of L. For every a € L,
define h%(a) = {p € SpL : a £ p}. It is easily seen that {h°(a) : a € L} is
a topology on SpL. Here after we use SpL equipped with this topology.
Let X and Y be two partial ordered setsand f: X - Y andg:Y — X
be two increasing maps. We say f is left adjoint of g (respectively, g is right
adjoint of f) if fg < Iy and gf > Ix. It is easy to see that g is uniquely
determined by f and vice versa. The right adjoint of a map f : X — Y
(respectively, left adjoint of a map g : Y — X)), if there exists, is denoted
by fi (resp., g*). Supposing X and Y are complete lattices, one can easily
see that f: X — Y is a left adjoint map if and only if f preserves arbitrary
joins and in this case fi(y) = V{z € X : f(z) < y} for every y € Y.
A frame homomorphism is a map f from a frame L to a frame L’ such
that it preserves finite meets and arbitrary joins; clearly in this case we
have f(L) =1 and f(Top) = Top. Obviously, every frame homomorphism
is a left adjoint map. We denote by OX and O, the frames of all open
subsets of a topological space X and the set of all open neighborhoods
of x € X, respectively. If X and Y are two topological spaces, then for
every continuous function f : X — Y we define Of : OY — OX with
(Of)(w) = f~1(w) for every w € OY. It is obvious that O is a contravariant
functor from the category Top to the category Frm. Let L and L’ be
two frames. For every frame homomorphism f : L — L' we can define
Spf : SpL’ — SpL with (Spf)(q) = f«(q). For any a € L, we can write

(Spf)~'(6°(a)) ={q € SPL’ : f.(q) € h°(a)}
={qeSpL': a £ fulq)}
={qeSpL’: f(a) £ q} =0h°(f(a)).
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Therefore, Spf is a continuous map. It is easy to see that Spl; = Ispy,
and Spfg = SpgSpf whenever fg means the composition of f and g. Thus,
Sp : Frm — Top is a contravariant functor. In fact the functor Sp is a right
adjoint of the functor O.

Recall that an ordered ring is a ring A with a partial order < such that
for every a,b,c € A, from a < b it follows that a + ¢ < b+ c and if a,b > 0,
then ab > 0. An ordered ring is called a lattice-ordered ring if A is a lattice
under the partial order on A. By an f-ring we mean a lattice-ordered ring
R with this property that a(b A ¢) = ab A ac and (b A ¢)a = ba A ca for
every a € R" and every b,c € R. An algebra (over a field F) is a structure
consisting of a set A with two operations “+" and “.", and also a scaler
multiplication such that (A, +,.) is a ring and A with addition and scaler
multiplication is a vector space (over F), and in addition, for every z,y € A
and every c € F', we have

lpr =z , c(zy) = (cx)y = x(cy).

Finally, an f-algebra (over an ordered field) is an algebra with a partial
order < such that (4, +,.,<) is an f-ring, and A with “+" and the scaler
multiplication is a vector space (over F) in which cx > 0 for every ¢ € Ft
and every x € AT,

Suppose that A is a lattice-ordered ring and a € A. The positive part

of a, negative part of a, and |a| are defined as at =a V0, a~ = —a V0
and |a| = a V —a, respectively. Clearly, if A is an f-ring, then a = a™ —a™,
la| = at +a~, aTa” = 0 and |a|? = a® for any a € A.

In the present part of this paper, for convenience of readers, we give a
short review of C'(L), at a slightly different perspective from what is stated
in the main texts.

A frame homomorphism « : OR — L is called continuous real function
on a frame L and the set of all continuous real function on a frame L is
denoted by C'(L). Although, this concept was first introduced by R.N. Ball
and A.W. Hager in [1], B. Banaschewski studied this concept deeply in [2];
he also showed in [3| that C'(L) is a class which strictly contains C'(X). Note
that we work under the axiomatic system of Z F'C and in this system, we have
L(R) ~ OR. In this axiomatic system C(L) has a simpler representation.

Supposing that A, S C L, we denote by | A the set {z € L : Ja €
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A, x < a}; we use |z instead of [{z} and |g A instead of SN | A. Clearly,
for any S C L, the map |g: L — P(S) is a meet-homomorphism but not
a join-homomorphism, see [15]. A subset B of L is said to be a base for
Lifx =\ lpx for every x € L. Let L and L' be two frames and B be
a base for L. A map f : B — L’ is said to be conditional homomorphism
if for every A C B and every finite F¥ C B we have f(\/A) = \/f(A) and
F(AF) = A f(F), provided that \/A € B and AF € B. Supposing that B is
a base for a frame L, we call B a homomorphism maker if every conditional
homomorphism from B to a frame L’ has an extension homomorphism from
Lto L.

Proposition 1.1. Let B be a base for L closed under finite meets. Then B
is homomorphism maker.

Proof. Let f : B — L' be a conditional homomorphism. We define f : L —
L' with f(x) =\/ f(I5 (z)) and prove that f is a homomorphism extension
of f. Clearly, f is order preserving, f|p = f, f(L) =L and f(Top) = Top.
Assuming that xy € L for every X € A, since f is order preserving, we have

Viea fzy) < f(\/)\eA xy). Conversely, for every b €lp (\V cp T2),

b= \/b/\x)\: \/\/{CEB: c<bAz)},

AEA AEA

which implies that

F&) =\ \{f(©): ceB, c<brm}

AEA

< \/\/{f(c) c€ B, c<zy)}

AEA

=\/ f(z),

and this shows that

FOV 20 =\{f®) : bel \/ o} < \/ flan).

AEA AEA AEA
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Therefore, f(\/ ca 2x) = Vaea f(22). Now, supposing that z,y € L, clearly

flwny)=\/{f(¢e): c€ B, c<z Ay}
=\{fle1he2): 1,2 €B, e1 <w, 2 <y}
=\{fle)Afled): cr,e2€ B, e1 <, ca <y}
=\/{f(er): e B, ev <a}A\{fle2): € B, ex<y)

O

In the above proposition, the condition “closedness under finite meets"
cannot be omitted. For example, suppose that B = {(a,b) : a,b € Q, a < b}
and f : B — L with f(a,b) = Top for every (a,b) € B. Obviously, B is a
base for OR, f is conditional homomorphism and B is not homomorphism
maker.

Corollary 1.2. Let B = {(r,s) : r,s € Q} U{R}. Clearly, B is a base for
OR and closed under finite meets. Hence, B is a homomorphism maker. In
other words, a map f : B — L has an extension homomorphism o € C(L)
if and only if f has the following properties.

(R1) f((p,@) A (r,8)) = f(p,@) A f(r,s), whenever p,q,r,s € Q and
(p,q) A (r;5) # 0.

(R2) f((p,q) V (r,5)) = f(p,q) Vv f(r,s), whenever p,q,r,s € Q and
p<r<gq<s.

(R3) f(p,q) =V{f(r,s): r,s€Q, p<r<s<q} forevery p,q € Q.

(R4) Top = f(Q) = V{f(p.q) : p.q € Q}.

Suppose that ¢ is an operation such as “+4", “." “V" and “A". For every
a, € C(L) and every p,q € Q, we define

(o B)(p,q \/{ars AB(tu): rs,t,ueQ, (r,s)o(t,u) C (p,q)},

where (r,s) o (t,u) = {aob: a € (r,s), b € (t,u)}. It can be proved that
a ¢ 3 is a conditional homomorphism on B = {(r,s) : r,s € Q} U{R} and
hence ao 8 € C(L), see |2] and [14]. Also, for every r € R it is defined that
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r(w) = Top if r € w and r(w) =L if r ¢ w. It is clear to see that r € C(L).
Now, 7.« is defined by ra. Consequently C(L) is an f-algebra with these
operations.

Proposition 1.3. For every a, 8 € C(L) and every w € OR, we have

(aofB)(w \/{a YABtu): s tueQ, (rs)o(tu) Cw}
—\/{a ) A B(wsa) @ wi,we € OR, wlowggw},

where w1 owy = {aob: a € wy, b€ wa}.

Proof. Assume that
Agp ={a(r,s) AB(tu): s, t,u€Q, (r,s)o(t,u) C (a,b)
Ay = {ar,8) A B(tu) : 75, tu €Q, (1,5) o (tu) C w)

and
By = {a(w) A B(wz) : wi,ws € OR,  w; 0w C w}.
Since (a ¢ ) € C(L), it follows that

(o B)(w) = (aoB) (U{(a,b)GOR: a,beQ, (a,b)gw})
:\/{ aofB)(a,b): a,beQ, (a,b)gw}

_\/{\/Aab Cw}

Therefore, clearly, (¢ )(w) <\ Ay <\ By. Now, suppose that a(r, s) A
B(t,u) € Ay. Obviously, there exist a, b € Q such that (r, s)o(t,u) C (a,b) C
w. Hence, a(r,s) A B(t,u) € Aqp and consequently \/ A, <V Agp < (o
B)(w) and so \/ Ay = (o f)(w). Finally, assume that a(wi) A B(ws) € By,
where wy 0wy C w. Clearly, wy = (J;c; (74, 8:) and wp = Ujej(tj,uj), where
i, 8i,tj,u; € Q for every 7 € I and every j € J. Thus,

UU i, 8i) © (tj,u5) = U(m,si)oU(tj,uj):wl owy Cw

el jed el jeJ

and so (ry,s;) © (tj,u;) € w for every i € I and every j € J. Therefore, it
is easy to see that a(wi) A B(w2) = V,e; Ve a(ris si) A B(tj,uy) <V Aw.
Hence, \/ B, < \/ Ay and so \/ By, =V Ay

O
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Throughout the paper, the notations L and C(L) stand for a frame and
the f-algebra of all continuous real functions on the frame L, respectively.
The reader is referred to [2], [14], and [12], for more information about frames
and C(L). Also, see [4], [5], [11], [15], and [10] for more information about
general lattice theory and rings of continuous functions, respectively.

We need the following proposition which can be found in the literature.

Proposition 1.4. Let a, 8 € C(L) and a € R. The following statements
hold.
(a) If « > 0, then a(—o0,x) =L for every x < 0.
b) If a > 0, then a(z,+00) = Top for every xz < 0.
c) (aV pB)(z,+00) = a(z, +00) V B(x,+00) for every z € R.
d) (aV p)(—o0,x) = a(—o00,x) A B(—o0, ) for every z € R.
)
)

(a A B)(x,+00) = ax,+00) A B(z,+00) for every x € R.
f) (a A B)(—o0,2) = a(—o0,z) V B(—00,x) for every x € R.
g) (ca)(w) = a(lw) for every w € OR and each ¢ # 0, where bw =

{bx: = € w}.

2 Pre-image of a continuous real function on L

In [13], although it does not introduce a determined definition for pointfree
version of the “image" of continuous real functions, using a concept, called
“overlap", an attempt has been made to fill the vacuum of the concept of
image of continuous real functions in pointfree topology. In this main section,
we give a determined version of the image of continuous real functions on
a topological space X in the pointfree topology and we show that this is
independent of what we see in [13].

Definition 2.1. For every a € C(L), we define pim(«), called pre-image of
a, as

pim(« ﬂ{w € OR: a(w) = Top}.

At below we provide an example in which we demonstrate that pim(«)
is an appropriate model of image of the real-valued functions in pointfree
topology.



42 A.R. Aliabad and M. Mahmoudi

Example 2.2. Let C'(X) be the ring of real-valued continuous functions on
a topological space X. We know that for all f € C(X) we have Of € C(OX)
and clearly, we can write

Im(f)=f(X)= () w=[{weOR: f(w)=X}
F(X)Cw

= m{w € OR: Of(w) = Top}.
Therefore, Im(f) = pim(Of).

Hereinafter, by R,, we mean R\ {z}.

Proposition 2.3. For every a € C(L), the following statements hold:
(a) pim(a) = ({R; : «(R;) = Top}.
(b) = ¢ pim(«) if and only if a(R,) = Top.
Proof. (a): Suppose that B = {R; : «(R;) = Top}. Obviously pim(a) C
(B. Now, assuming x ¢ pim(«), there exists w € OR such that z ¢ w
and a(w) = Top. Hence, w C R,, consequently a(R,) = Top and so
x ¢ R, € B. Therefore, (| B C pim(«) and subsequently pim(a) = (5.
(b): According to (a), it is obvious that we can write

z ¢ pim(e) = 3Ry, «o(R,)=Top, z ¢ R,.

Since x ¢ Ry, x = y and consequently «(R,) = Top. Conversely, assume
that a(R,) = Top. Thus, pim(«a) C R, and so = ¢ pim(«). O

Estaji and at al. in [8], put
R, ={reR: coz(a —r) # Top}

for every a € C'(L), and they studied some of its properties. By Proposition
2.3, it is evident that R, = pim(«).

Recall that w* = R\ w and w = R, for every w € OR.

reEw*

Proposition 2.4. For every w € OR and every a € C(L), the following
statements hold:

(a) If a(w*) =L, then a(R,) = Top for all x € w*.

(b) If a(w*) =1, then pim(«) C w.

(c) If r € pim(a) and w € Oy, then a(w) #L.
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Proof. (a): Suppose that w € OR and a € C(L). Then for every x € w*,
we can write

R,Uw* =R = aR,)=aR,)Va(w’)=aR, Uw*) = a(R) = Top.

(b): Since a(w*) =L, by part (a), for all z € w*, we have «(R,) = Top
and so
pim(a) = m{R:p : a(Ry) = Top} C ﬂ R, = .
rEw*

(c): Suppose that r € pim(«) and w € O,. Thus, there exists y €
w N pim(«) and therefore

Top = a(R) = a(Ry V w) = a(Ry) V a(w).
On the other hand, since y € pim(«), a(Ry) # Top and so a(w) #L. O
By Example 2.2, it is easy to see that if pim(Of) C w € OR, then

Of(w) = Top. Also, if Of(w) #L, for every w € O,, r € pim(a). So here
are two natural question.

Question 1: Suppose that o € C(L) and w € OR. Can we imply
a(w) = Top from pim(a) C w?

Question 2: Suppose that a(w) #.L, for every w € O,. Can we conclude
that r € pim(«)?

Example 2.8 shows that the answer to these two questions is generally
negative (in the first question, even if w is an unbounded interval in R).
But, in the following proposition, we will find that the answer to the first
question is positive under some conditions.

Proposition 2.5. Let « € C(L), w € OR and pim(a) C w, then the
following statements hold:
(a) If w is dense in R and the boundary of w is finite, then a(w) = Top.
(b) Let U C OR be such that one of these families is bounded, pim(a) C
MU and a(u) = Top for every w € U. If (), € w, then it follows that
a(w) = Top.
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Proof. (a): It is clear.

(b): Without loss of generality, we can suppose that u is compact for
all u € U. Now, it is easy to see that there exist uq,---,u, € U such that
Ni—; @ C w. Therefore,

n n

Top = Aa(ui) = of QUZ) <alw) = alw)= Top.

O

Suppose that o € C(L) and S C R. We recall from [13] that « is an
overlap of S, denoted by o € S, whenever i(u) C i(v) implies a(u) < a(v);
that is, uN.S C v NS implies a(u) < a(v). In the following propositions
and example, we will see that although this concept and pim(«) are closely
related, but they are different from each other.

Proposition 2.6. Suppose that o € C(L) and OV (a) ={S CR: a <4 S}.
Then pim(a) = (Ngeov(a) S

Proof. Let S € OV(a) and x ¢ S. Thus, R, NS = RN S and so Top =
a(R) = a(Ry); that , # ¢ pim(a). Therefore, pim(a) € Ngepy(q)S- Con-
versely, suppose z ¢ pim(«); it suffices to show that R, € OV (). To see
this, for every u,v € OR, we can write

uNR, CvNR, = au)=a(u) A Top = a(u) A a(R,)

=a(unR;) < alvNR) = a(v).
O

Proposition 2.7. Suppose that a € C(L), w € OR and a(w) = Top, then
a dw.

Proof. Let u,v € OR and uNw C v Nw. Hence
a(u) = a(u) A Top = a(u) A a(w)

=a(unw) < avNw) =av) A a(w) =a(v) A Top = a(v).
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In this way, it turns out that the following equality is in place, too.

pim(a) = ﬂ{w €OR: a qw}.

Example 2.8. There is a frame L and § € C(L) such that 8 # pim(f).
To see this, let L, 8 and the family {S.}.cz be same as in [13, Example
3.18]. Then, pim(8) C (\,ezSe = 0. Thus, 8 « pim(f) does not hold.
Furthermore, since 5(f)) =L, there exists w € OR such that f(w) # Top.
Clearly, pim(8) = ) C w whereas S(w) # Top. Thus, the answer to
Question 1 is negative. Also, since S(Top) = Top, there exists an element
r € R such that for every w € O, we have f(w) #L, whereas r ¢ () = pim(f3).
Therefore, the answer to Question 2 is also negative.

Now, we want to find the relationship between pim(|«|) and pim(«).

Lemma 2.9. For every a € C(L) and every x € R, we have
al(®) = (a(z, +00) V a(=sc,]al)) A (a(~Jal,+00) V a(=00, ~z) ).
Proof. By Proposition 1.4, the proof is straightforward. O

The following corollary is followed from the above lemma immediately.

Corollary 2.10. Assume that o € C(L) and x € R. Then the following
statements hold:

(a) If x < 0, then |a|(R;) = Top.

(b) If £ > 0, then |a|(R;) = a(Ry;) A a(R_z).

(c) pim(jal) C R*.

Proposition 2.11. pim(|a|) = {|z| : x € pim(«)} for every a € C(L).

Proof. Supposing A = {|z| : = € pim(a)}, clearly, A = {z e Rt : z €
pim(a) or —x € pim(a)}. Accordingly to Lemma 2.9, for every x > 0, we
can write

r¢ A & z,—x¢pim(a) & aRy)=aR_,)=Top <& |a(R,)

=Top < =z ¢ pim(|al).
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Proposition 2.12. The following relations are true for each o € C(L) and
each r € R:

(a) pim(r) = {r}.
(b) pim(ra) = r pim(a).
(c) pim(r + &) = r + pim(a).

Proof. (a): Clearly, for every r € R, we can write

r(R,)=Top & xz#r. .. pim(r ﬂ R, ={r}.
TH#r

(b): For every r € R, we can write (without loss of generality, assume that

r#0)
1

pim(ra) CR, < (ra)(Ry)=Top < a(-R;)=a(Rz)=Top
T ™
< pim(a) CR: < rpim(a) CR,

< pim(r).pim(a) C R,.

(c): For every r € R, we can write

pim(r+a)CR, < (r+a)(R,)=Top < a(-r+R;)=a(R,_,)
< pim(a) CRyp, =—-r+R;, & r+pim(a) CR,
& pim(r) 4+ pim(a) C R,.
0

Now, we state the relation between pim(a), pim(a™), and pim(a™) in
the following.

Proposition 2.13. For every a € C(L), the following relations hold:
(a) pim(a) N (0, +00) = pim(a™) \ {0}.
(b) pim(a) N (=00, 0) = pim(—a™) \ {0}.
(c) pim(a) \ {0} = ((pim(a™) U pim(—a™)) \ {0}

Proof. (a): For every z > 0, by Proposition 1.4, we have

at(—oo, ) = (aV 0)(—00, ¥) = a(—00, ¥) A O(—00, ) = a—00, )

= Top
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and similarly,
at(z, +00) = (a VvV 0)(x, +00) = a(z, +00) V 0(x, +00) = a(z, +00).
Therefore, for every z > 0, we can deduce that
a(R;) = a(—00, ) V a(x, +o0) = at(—o0, z) Vol (z, +o0) = o™ (R,).

Hence, (0, +00) N pim(a) = pim(a™) \ {0}.
(b): For every x < 0, by part (a), we can write
—a (Ry) = —a  [(—o0, z) V (z, +00)]

=—a (—o0, 2)V—a (x, +o0)

=a (—z,+00)Va (—oo,—x)

= ()" (~2,+00) V () (=00, —2)
= —a(—z,+00) V —a(—o0, —1)

= a(—o0, ) V a(z, +00) = a(Ry).

Therefore, (—oo,0) N pim(a) = pim(—a~) \ {0}.
(c): Straightforward from (a) and (b), it is concluded that

pim(a) \ {0} = ((pim(a ™)) Upim(—a7)) \ {0}.
O

Question 3: Now, this question arises whether the following relations, sim-
ilar to what we have for real functions on topological spaces, hold.

pim(a V §) € pim(a) Upim(3) , pim(a A ) € pim(a) N pim(5)

pim(a + ) C pim(a) + pim(5) , pim(af) C pim(a)pim(S3).

We show that under some achievable conditions, the answer is positive. But
first we need some preparations.

Definition 2.14. An ideal I in a frame L is called V-complete (countably
V-complete) if from D C I (countable set D C I), it follows that \/D € I.
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Example 2.15. (a) Every principal ideal is V-complete.

(b) Suppose that w; is the first uncountable ordinal and L =] w;. Clearly
L is a frame and if we put P = L\ {Top}, then P is a countably V-complete
ideal whereas it is not a V-complete ideal.

Definition 2.16. For every P € Spec(L), we define Ap(a) = {z € R: a(z,+o0) €
P} and Bp(a) ={x € R: a(—oo,z) € P}.

Because these two sets Ap(a) and Bp(«) are important in our work, we
discuss them briefly.

Lemma 2.17. Let P € Spec(L) and o € C(L). Then

(a) Ap(a) U Bp(a) =R.

(b) Any element of Ap(a) is an upper bound of Bp(a)) and any element
of Bp(«) is a lower bound of Ap(«).

(c) TAp(a) = Ap(a) and | Bp(a) = Bp(a).

Proof. (a): Assuming = ¢ Ap(«a), it follows that a(x,+00) ¢ P. Since P is
prime and «(z, +00) A a(—o00,z) =1L € P, we deduce that a(—o0,z) € P.
Hence = € Bp(a).

(b): Assume that z € Ap(a) and, on the contrary, there exists an ele-
ment ¢ € Bp(«) such that © < ¢. Therefore, Top = a(R) = a(—o0,c) V
a(x,+00) € P and this is a contradiction. Similarly, any element of Bp(«)
is a lower bound of Ap(«).

(c): Supposing z € TAp(«), there exists an element a € Ap(a) such that
a < z. Thus, a(z, +00) < a(a,+00) € P and consequently z € Ap(a). O

Corollary 2.18. Let P € Spec(L) and o € C(L). Then the following
statements are equivalent:
(a) inf Ap(a) € R

(b) Ap(a) # 0 # Bp(a).
(c) sup Bp(a) € R
(d) There exists an element x € R such that
(x,400) C (inf Ap(a), +0) C [x,400) and

(—00,) € (~00, 5up Bp(a)) € (~o0, 4],
(e) inf Ap(a) = sup Bp(a) € R.
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Proof. (a) = (b): By hypothesis, clearly, Ap(a) # () and there exists an
element = € R such that x ¢ Ap(«). By Lemma 2.17, z € Bp(a). Thus,
Bp(a) is also non-empty.

(b) = (c): By Lemma 2.17, it is clear.

(c) = (d): Similar to (a) = (b), it follows that Ap(a) # 0 # Bp(«).
Hence, by part (b) of Lemma 2.17, Ap(a) (respectively, Bp(«)) is non-
empty and bounded below (respectively, bounded above). Hence, inf Ap(«)
and sup Bp(«) exist. It is easy, by using Lemma 2.17, once again, to see
that inf Ap(a) = = = sup Bp(«) and in addition, we have (z,+o00) C
(inf Ap(ar), +00) C [x,+00) and (—o0,x) C (—o0,sup Bp(a)) C (—o0, z].

The implications (d) = (e) = (a) are obvious. O

Definition 2.19. P € Spec(L) is said to be real with respect to v € C'(L)
if Ap(a) and Bp(«) are non-empty closed subsets in R. If P is real with
respect to every o € C'(L), then we say P is real.

Lemma 2.20. Assume that P € Spec(L) and o € C(L). Then, the following
statements are equivalent:

(a) P is real with respect to a.

(b) inf Ap(a) € Ap(a) and sup Bp(a) € Bp(a).

(c) There is an element x € R such that Ap(a) N Bp(a) = {z}.

(d) There exists an element x € R such that a(Ry) € P.

Proof. By Corollary 2.18, it is clear. O

Lemma 2.21. Let P € Spec(L) be countably \V-complete. Then P is real.

Proof. Suppose that a € C(L). Since P is countably V-complete, it follows
that inf Ap(a) € R and so, by Corollary 2.18, there exists an element x € R
such that

(z,+00) C (inf Ap(a), +0) C [z, +00)

and

(—o0,z) C (—o0, sup Bp(a)) C (—o0, z].

By Lemma 2.20, it is enough to show that z € Ap(a) N Bp(«). This is
obvious, since P is countably V-complete and Q is dense in R. O
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By the above lemma, | p is real for each p € SpL.
We need the following lemma for the next theorem.

Lemma 2.22. Let P be prime ideal in a frame L and o € C(L). The
following statements hold:
(a) Ap(—a) = —Bp(a) and Bp(—a) = —Ap(a).

(b) Bp(a™) = (=50,0) U Bp(a)
(¢) Ap(a®) = (0, +00) N Ap(a)
(d) Bp(a™) = (~o0,0) U —Ap(a)
(e) Ap(a™) = (0, +50) N —Bp(a)

If, in addition, P(a) = inf Ap(a) € R, then
(1) P(a*) = (P(a))*;
(g) P(a™) = (P(a))”.
Proof. (a): It is clear that
Ap(—a)={zeR: —oa(z,+0) e P} ={recR: a(—o0,—z) € P}
=—{yeR: a(—oc0,y) € P} = —Bp(a).

Similarly, we conclude that Bp(—a) = —Ap(«).
(b): We can write

Bplaf)={z€R: at(-oc0,z) € P} ={z € R: 0(—00,z) A a(—o0,z) € P}
={x€R: 0(—o0,z) € PU{z €R: a(-o0,z) € P} = (—00,0) U Bp(«).

(c): We can write
Ap(at)={z €R: af(z,+0) € P} ={z € R: 0(z,+00) V a(z, +0) € P}
={zeR: 0(z,+x) € P}n{z eR: alz,+x) € P} = (0,+00) N Ap(a).
(d): By parts (a) and (b), it follows that
Bp(a™) = Bp((~a)") = (-0,0) U Bp(~a) = (~00,0) U —Ap(«).

(e): Using (a) and (c), we do similar to (d).
(f): By part (b) and Corollary 2.18, we can write

(P(a))t =0V P(a) = sup(—oo, 0) Vsup Bp(a) = sup Bp(a™) = P(a™).
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(g): By part (d) and Corollary 2.18, we can write

N

(P(a))” =0V —P(a) = sup((—o0, 0) U —Ap(a)) = sup Bp(a™) = P(a™).

O]

The following theorem is an improvement of [6, Proposition 2.3| (also,
see |7, Proposition 3.9] and |9, Proposition 2.3]).

Theorem 2.23. Assume that P € Spec(L) and is countably V-complete in
L. We define K X
P:C(L)— R, P(a)=inf Ap(a).

Then P s an f- algebm homomorphism; that is,
(a) Pla+ B) = P(a) + P(8) for every o, € C(L).
(b) P(af) = P(a)P(8) for cvery o, 8 € C(L).
(c) P(ra ) = TP( ) for every r € R and every o € C(L).
Ed)) B) = P(a) Vv P(B) for every o, 8 € C(L).
e

P(aV ) =Pl@VI
(a A B) = P(a) N P(B) for every o, 8 € C(L).

Proof. (a):

(a+ B)(z,+00) € P. Therefore,

w»g w

Let z = (a + (). Since P is countably V-complete, we have

(o + B)(x,+00) = \/ {a(r,s) AB(t,u) : (r,s)+ (t,u) C (z,+00)}
=\ {a(r,s) AB(tu) : v+t >}
=\/{a(r, +00) A B(t, +00) : 7+t >z}
—\/{04(7", JAB(x —r,+0): r€R} € P.

Hence
\/ {a(r, +00) A Bz —r,400) : < P(a), re Q} eP

Since a(r, +00) ¢ P for every r < P(a), it follows that B(z — r, +00) € P
for every rational » < P(a) and so, by countably V-completeness of P, we
can write

Bz — P(a), +00) = \/ {B(m —r,400): r< P(a), re Q} eP
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Thus,
P(B)<z—Pla) = Pla)+P(B)<a. (1)

On the other hand, it is clear that for every s > sup Bp(a) = P(a), we have
a(—o00,s) ¢ P. Therefore, similar to the above, it conclude that 5(—o0,z —
s) € P for every s > P(a)). Consequently,

B(—oco,z — P(a)) = \/ {ﬂ(—oo,x —s): s> P(a), se Q} e P.

Hence, we can write
z—Pla) <P(B) = x<Pla)+P(B). (2)

The desired equality follows from (1) and (2).

(b): Case (1): a,8 > 0 and P(af) = 0. In this case, we show that
P(a) = 0 or P(B) = 0. Since P(af) = 0, (aB)(0,+00) € P and since
a(—00,0) =0, f(—00,0) = 0, we can write

(af)(0, +00) \/{ ar,s) A B(t,u) = (r,s)(t,u) € (0,400)}
—\/{ar,s AB(tu): rt >0}

:\/{a r,+00) A B(t,+00) : 7,t > 0}
= a(0,4+00) A 5(0,4+00) € P.

Therefore, S(Ro) = B(0,+00) € P or a(Rg) = «a(0,400) € P. Thus,
P(a) =0 or P(8) =0.

Case (2): a, 8 >0 and P(a) = 2 > 0. In this case

af(x,400) € P = af(z,+0) = \/ <a(r, +00) /\B(%,—i—oo)) € P.
r>0

Since a(r,+00) ¢ P for every 0 < r < P(a), it follows that B(F,+o0) € P

for every 0 < r < P( ). Therefore, for every 0 < r < P(a), we have
> P(B) ( ) > P(B). This implies that

N

z > P(a)P(B). (3)
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Since a(—o0,s) ¢ P for every s > P(a), similar to above, we conclude that
B(—00, Z) € P for every s > P(a). Thus, £ < P(f) for every s > P(a) and

consequently, % < P(ﬁ) Hence,

z < P(a)P(p). (4)

From (3) and (4), it follows that P(a8) = P(a)P(B).
Final case: Let a,8 € C(L) be arbitrary. By previous cases, we can
write

Plaf) =P ((a™ —a7)(B" = 7))
= P(a®)P(B7) = P(a)P(87) = P(a™)P(B7) + P(a™) P(A7).
On the other hand, by Lemma 2.22, we have P(a~) = (P(a))~ and P(a™) =
(P())T. Therefore

P(af) = (P(a))H(P(B))" — (P(a))"(P(8)” — (P(a))~ (P(B) T + (P(a))~ (P(8))
= (P(a)* = P(a)")(P(B)" = P(B)7) = P(a) P(B).

(c): If r =0, the assertion is clear. If 7 > 0, then

P(ra) =inf{z: ra(z,+o00) € P} = inf {ac : a(%, +00) € P}
= inf {ry : a(y,+o0) € P} =rP(a).
Finally, if » < 0, then
P(r(a)) = inf {2 : ra(z,+o) € P} =inf{z: —ra(—oc,—z) € P}
= inf {:c eR: af(—oo, %) € P} =inf{ry: a(—oo,y) € P}
=rsup{y: a(—oc0,y) € P} =rP(a).
Therefore, P(ra) = rP(a) for every r € R.
(d): Clearly, we can write
PlaVvB)=sup{z eR: (aVp)(—oc0,z) € P}
=sup{z: a(—oco0,z) A (-0, z) € P}
= sup ({x :af—o0,z) € PYU{z: B(—o0,x) € P})
=sup{zr: a(—oo,z) € P} Vsup{z: [(—o0,x) € P}
= P(a) v P(B).
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(e): It is similar to the proof of the part (d). O

Note that, by Lemma 2.20, we obtain the following result, clearly.

(;orollary 2.24. Suppose that P € Spec(L) is countably V-complete. Then
P(a) =z if and only if a(R,) € P.

Corollary 2.25. Assume that p € SpL and
p:C(L)— R, pla)=inf{r e R: ax,+00) < p}.
Then p is an f-algebra homomorphism.

Proof. It suffices to put P = | p, then, by Theorem 2.23, we are done. [

We are now ready to answer the Question 3 which we raised earlier.

Theorem 2.26. Suppose that L is a frame in which every maximal ideal is
countable V-complete. Then for every o, 3 € C(L), we have the following
relations:

(a) pim(a + 8) C pim(a) + pim(8).

(b) pim(a3) € pim(a)pim(f3).

(c) pim(a V B) C pim(a) V pim(8).
(d) pim(a A ) C pim(a) A pim(f).
Proof. We only prove part (a); other parts are proved by the same manner.
Suppose that z € pim(a + ). Thus, (o + 8)(R;) # Top and so there
exists an element M € Max(L) such that (o + 8)(Ry) € M. Therefore, by
Theorem 2.23 and Corollary 2.24, x = M(a+ ) = M(a) + M(ﬁ) Taking
M(a) = a and M(B) = b, it is sufficient to show that a € pim(a) and
b € pim(B). To see this, by Corollary 2.24, a(R,) € M and S(Ry) € M.
Hence, a(R,) # Top # B(Ry), so a € pim(a) and b € pim(3). Therefore,
pim(a + ) € pim(«) 4 pim(f). O
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3 Comparing pim(«) with images of two real functions @ and
o

In this section, first, for any o € C(L), we introduce two real functions @
and & induced naturally by «, then we compare pim(«) with the images of
these two functions.

Definition 3.1. Suppose that a € C(L). By Corollary 2.25, we can define
@ : SpL — R with @(p) = p(«). Also, supposing

Xo ={P € Spec(L) : P is real with respect to a},
we can define & : X, — R with &(P) = P(a).

Note that the mapping p —| p is an embedding from SpL to Spec(L),
where Spec(L) is equipped with hall-kernel topology (that is, the Zariski
topology). Therefore, we can suppose that SpL is a subspace of Spec(L)
and so &l = @.

Proposition 3.2. For every a € C(L), & is continuous and so is @.
Proof. Assume that (x,y) is an open interval in R. taking a = a(z,+00)

and b = a(—o0,y), it suffices to show that (&)~'(z,y) = h5_(a) N hs_ (b),
where h§_(a) = Xo N h(a). Too see this, for every P € X,, we can write

Pe (@)Y z,y) & z<a(P)=Pla)<y
& a=oa(zr,+00) ¢ P, b=a(-o0,y) ¢ P
& P e h%. (a)Nh, ().

The following remark shows that @& is not a new concept .

Remark 3.3. Recall that SpOR = {R, : z € R} and g : SpOR — R
with g(R,) = z is a homeomorphism. For every continuous real function
a € C(L), we have Spa : SpL — SpOR with (Spa)(p) = o*(p) = V{w €
OR : a(w) < p}. Since a*(p) € SpOR, there exists a unique z € R such that
(Spa)(p) = a*(p) = Ry. In fact, (Spar)(p) = Ry if and only if a(R;) < p.
Therefore, for every a € C(L), we have a natural function @ = g Spa from
SpL to R with @(p) = x such that a(R,) < p. Also, according to this fact,
for every p € SpL, we can define a function p : C(L) — R with p(a) = a(p).
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Proposition 3.4. Assume thata € C(L). Then Im(a) C Im(&) C pim(a).

Proof. Clearly, Im(@) C Im(&). Now, suppose that = € I'm(&). Thus,
there exists a P € Spec(L) such that &(P) = z. Hence, P(a) = x and by
Corollary 2.24, it follows that a(R;) € P. Therefore, a(R;) # Top and
consequently x € pim(«). O

The first inclusion in the above proposition may be strict. To see this,
we need the following lemma.

Lemma 3.5. Suppose that L has no non-trivial complemented element.
Then for every a € C(L), there exists an element x € R such that a(R;) #
Top.

Proof. Let @ € C(L) and, on the contrary, for every x € R, we have
a(R;) = Top. By hypothesis, for every z € R, we a(—oco,z) = Top
and a(z,+00) =L or a(—oco,z) =L and a(z,+o00) = Top. It is easy
to see that there exists an element ¢ € R such that a(c,+o00) =L and
so r9 = inf{z € R : a(zr,+o0) =1} exists. Thus, a(xg,+00) =L and
a(t,+o0) = Top for every t < zp and so a(—o0,t) =L for every ¢t < xo.
Therefore, a(—o00,z9) = V{a(—oc0,t) : t < 20} =L. Hence, o(R,,) =L
and this is a contradiction. O

In the following example we introduce a frame L such that Im(a) C
pim(&) for every a € C(L).

Example 3.6. Suppose L = [0,1) x[0,1)® Top. Clearly, L is a frame, Top
is a V-prime element of L and SpL = (). Therefore, L does not have any non-
trivial complemented element and so, by Lemma 3.5, for every a € C(L) we
have a(R,) # Top for some x € R. We show that C(L) = {r: r € R}. To
see this, assume that a« € C(L). Thus, there exists an element r € R such
that «(R,) # Top. Now, for every w € O,, since Top is V-prime, we can
write

Top = a(R) = a(wUR;) = a(w) Va(R,) = o(w)= Top.

This conclude that @ = r. On the other hand, it is clear that I'm(F) = 0,
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whereas

3P € Spec(L), r(P

x€Im(r) &
& 3P e Spec(L), P(r
=
=

1P € Spec(L), r(R;) e P

r=z.
Therefore, Im(t) = {r}.

Proposition 3.7. Assume that « € C(L). Then the following statements
hold:

(a) If SpL is cofinal in L\ {Top}, then Im(a) = Im(&) = pim(«).

(b) If Xo = L\ {Top}, then Im(&) = pim(a).

Proof. (a): It is enough to prove that pim(a) C Im(@). Suppose that
x € pim(«). Thus, a(R,) # Top and by hypothesis, there exists an element
p € SpL such that a(R,) < p and this is equivalent to @(p) = p(a) = =.
Therefore, x € Im(@).

(b): Suppose that z € pim(«). Thus, a(R,) # Top and by hypothesis,
there exists an element P € X, such that a(R;) € P and this is equivalent
to &(P) = P(a) = . Therefore, z € Im(d). O
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