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Pre-image of functions in C(L)

Ali Rezaei Aliabad* and Morad Mahmoudi

Abstract. Let C(L) be the ring of all continuous real functions on a frame
L and S ⊆ R. An α ∈ C(L) is said to be an overlap of S, denoted by
α J S, whenever u ∩ S ⊆ v ∩ S implies α(u) 6 α(v) for every open sets
u and v in R. This concept was first introduced by A. Karimi-Feizabadi,
A.A. Estaji, M. Robat-Sarpoushi in Pointfree version of image of real-valued
continuous functions (2018). Although this concept is a suitable model for
their purpose, it ultimately does not provide a clear definition of the range
of continuous functions in the context of pointfree topology. In this paper,
we will introduce a concept which is called pre-image, denoted by pim, as
a pointfree version of the image of real-valued continuous functions on a
topological space X. We investigate this concept and in addition to showing
pim(α) =

⋂{S ⊆ R : α J S}, we will see that this concept is a good
surrogate for the image of continuous real functions. For instance, we prove,
under some achievable conditions, we have pim(α ∨ β) ⊆ pim(α) ∨ pim(β),
pim(α ∧ β) ⊆ pim(α) ∧ pim(β), pim(αβ) ⊆ pim(α)pim(β) and pim(α+ β) ⊆
pim(α) + pim(β).
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1 Introduction and preliminaries

A complete lattice L is said to be a frame if for any a ∈ L and B ⊆ L, we
have a ∧ ∨B =

∨
b∈B(a ∧ b). We denote the top element and the bottom

element of a frame L by Top and ⊥, respectively. For every element a of a
frame L the pseudocomplement of a is a∗ =

∨{x ∈ L : x ∧ a =⊥}. Let L
be a frame. The set of all prime ideals (respectively, maximal ideals) of L
is denoted by Spec(L) (respectively, (Max(L)). An element p ∈ L is called
prime if p < Top, and a ∧ b 6 p implies a 6 p or b 6 p. Clearly, a ∈ L is
a prime element if and only if ↓ a = {x ∈ L : x 6 a} is a prime ideal of
L. We denote by SpL the set of all prime element of L. For every a ∈ L,
define hc(a) = {p ∈ SpL : a 66 p}. It is easily seen that {hc(a) : a ∈ L} is
a topology on SpL. Here after we use SpL equipped with this topology.

Let X and Y be two partial ordered sets and f : X → Y and g : Y → X
be two increasing maps. We say f is left adjoint of g (respectively, g is right
adjoint of f) if fg 6 IY and gf > IX . It is easy to see that g is uniquely
determined by f and vice versa. The right adjoint of a map f : X → Y
(respectively, left adjoint of a map g : Y → X), if there exists, is denoted
by f∗ (resp., g∗). Supposing X and Y are complete lattices, one can easily
see that f : X → Y is a left adjoint map if and only if f preserves arbitrary
joins and in this case f∗(y) =

∨{x ∈ X : f(x) 6 y} for every y ∈ Y .
A frame homomorphism is a map f from a frame L to a frame L′ such
that it preserves finite meets and arbitrary joins; clearly in this case we
have f(⊥) =⊥ and f(Top) = Top. Obviously, every frame homomorphism
is a left adjoint map. We denote by OX and Ox the frames of all open
subsets of a topological space X and the set of all open neighborhoods
of x ∈ X, respectively. If X and Y are two topological spaces, then for
every continuous function f : X → Y we define Of : OY → OX with
(Of)(w) = f−1(w) for every w ∈ OY . It is obvious that O is a contravariant
functor from the category Top to the category Frm. Let L and L′ be
two frames. For every frame homomorphism f : L → L′ we can define
Spf : SpL′ → SpL with (Spf)(q) = f∗(q). For any a ∈ L, we can write

(Spf)−1(hc(a)) = {q ∈ SpL′ : f∗(q) ∈ hc(a)}
= {q ∈ SpL′ : a 66 f∗(q)}
= {q ∈ SpL′ : f(a) 66 q} = hc(f(a)).
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Therefore, Spf is a continuous map. It is easy to see that SpIL = ISpL

and Spfg = SpgSpf whenever fg means the composition of f and g. Thus,
Sp : Frm→ Top is a contravariant functor. In fact the functor Sp is a right
adjoint of the functor O.

Recall that an ordered ring is a ring A with a partial order 6 such that
for every a, b, c ∈ A, from a 6 b it follows that a+ c 6 b+ c and if a, b > 0,
then ab > 0. An ordered ring is called a lattice-ordered ring if A is a lattice
under the partial order on A. By an f -ring we mean a lattice-ordered ring
R with this property that a(b ∧ c) = ab ∧ ac and (b ∧ c)a = ba ∧ ca for
every a ∈ R+ and every b, c ∈ R. An algebra (over a field F ) is a structure
consisting of a set A with two operations “+" and “.", and also a scaler
multiplication such that (A,+, .) is a ring and A with addition and scaler
multiplication is a vector space (over F), and in addition, for every x, y ∈ A
and every c ∈ F , we have

1Fx = x , c(xy) = (cx)y = x(cy).

Finally, an f -algebra (over an ordered field) is an algebra with a partial
order 6 such that (A,+, .,6) is an f -ring, and A with “+" and the scaler
multiplication is a vector space (over F) in which cx > 0 for every c ∈ F+

and every x ∈ A+.
Suppose that A is a lattice-ordered ring and a ∈ A. The positive part

of a, negative part of a, and |a| are defined as a+ = a ∨ 0, a− = −a ∨ 0
and |a| = a ∨−a, respectively. Clearly, if A is an f -ring, then a = a+ − a−,
|a| = a+ + a−, a+a− = 0 and |a|2 = a2 for any a ∈ A.

In the present part of this paper, for convenience of readers, we give a
short review of C(L), at a slightly different perspective from what is stated
in the main texts.

A frame homomorphism α : OR → L is called continuous real function
on a frame L and the set of all continuous real function on a frame L is
denoted by C(L). Although, this concept was first introduced by R.N. Ball
and A.W. Hager in [1], B. Banaschewski studied this concept deeply in [2];
he also showed in [3] that C(L) is a class which strictly contains C(X). Note
that we work under the axiomatic system of ZFC and in this system, we have
L(R) ' OR. In this axiomatic system C(L) has a simpler representation.

Supposing that A,S ⊆ L, we denote by ↓A the set {x ∈ L : ∃ a ∈
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A, x 6 a}; we use ↓x instead of ↓{x} and ↓S A instead of S ∩ ↓A. Clearly,
for any S ⊆ L, the map ↓S : L → P (S) is a meet-homomorphism but not
a join-homomorphism, see [15]. A subset B of L is said to be a base for
L if x =

∨ ↓B x for every x ∈ L. Let L and L′ be two frames and B be
a base for L. A map f : B → L′ is said to be conditional homomorphism
if for every A ⊆ B and every finite F ⊆ B we have f(

∨
A) =

∨
f(A) and

f(
∧
F ) =

∧
f(F ), provided that

∨
A ∈ B and

∧
F ∈ B. Supposing that B is

a base for a frame L, we call B a homomorphism maker if every conditional
homomorphism from B to a frame L′ has an extension homomorphism from
L to L′.

Proposition 1.1. Let B be a base for L closed under finite meets. Then B
is homomorphism maker.

Proof. Let f : B → L′ be a conditional homomorphism. We define f̄ : L→
L′ with f̄(x) =

∨
f(↓B (x)) and prove that f̄ is a homomorphism extension

of f . Clearly, f̄ is order preserving, f̄ |B = f , f(⊥) =⊥ and f(Top) = Top.
Assuming that xλ ∈ L for every λ ∈ Λ, since f̄ is order preserving, we have∨
λ∈Λ f̄(xλ) 6 f̄(

∨
λ∈Λ xλ). Conversely, for every b ∈↓B (

∨
λ∈Λ xλ),

b =
∨

λ∈Λ

b ∧ xλ =
∨

λ∈Λ

∨
{c ∈ B : c 6 b ∧ xλ},

which implies that

f(b) =
∨

λ∈Λ

∨
{f(c) : c ∈ B, c 6 b ∧ xλ}

6
∨

λ∈Λ

∨
{f(c) : c ∈ B, c 6 xλ}

=
∨

λ∈Λ

f̄(xλ),

and this shows that

f̄(
∨

λ∈Λ

xλ) =
∨
{f(b) : b ∈↓

∨

λ∈Λ

xλ} 6
∨

λ∈Λ

f̄(xλ).
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Therefore, f̄(
∨
λ∈Λ xλ) =

∨
λ∈Λ f̄(xλ). Now, supposing that x, y ∈ L, clearly

f̄(x ∧ y) =
∨
{f(c) : c ∈ B, c 6 x ∧ y}

=
∨
{f(c1 ∧ c2) : c1, c2 ∈ B, c1 6 x, c2 6 y}

=
∨
{f(c1) ∧ f(c2) : c1, c2 ∈ B, c1 6 x, c2 6 y}

=
∨
{f(c1) : c1 ∈ B, c1 6 x} ∧

∨
{f(c2) : c2 ∈ B, c2 6 y}

= f̄(x) ∧ f̄(y).

In the above proposition, the condition “closedness under finite meets"
cannot be omitted. For example, suppose that B = {(a, b) : a, b ∈ Q, a < b}
and f : B → L with f(a, b) = Top for every (a, b) ∈ B. Obviously, B is a
base for OR, f is conditional homomorphism and B is not homomorphism
maker.

Corollary 1.2. Let B = {(r, s) : r, s ∈ Q} ∪ {R}. Clearly, B is a base for
OR and closed under finite meets. Hence, B is a homomorphism maker. In
other words, a map f : B → L has an extension homomorphism α ∈ C(L)
if and only if f has the following properties.

(R1) f((p, q) ∧ (r, s)) = f(p, q) ∧ f(r, s), whenever p, q, r, s ∈ Q and
(p, q) ∧ (r, s) 6= ∅.

(R2) f((p, q) ∨ (r, s)) = f(p, q) ∨ f(r, s), whenever p, q, r, s ∈ Q and
p 6 r < q 6 s.

(R3) f(p, q) =
∨{f(r, s) : r, s ∈ Q, p < r < s < q} for every p, q ∈ Q.

(R4) Top = f(Q) =
∨{f(p, q) : p, q ∈ Q}.

Suppose that � is an operation such as “+", “.", “∨" and “∧". For every
α, β ∈ C(L) and every p, q ∈ Q, we define

(α � β)(p, q) =
∨
{α(r, s) ∧ β(t, u) : r, s, t, u ∈ Q, (r, s) � (t, u) ⊆ (p, q)},

where (r, s) � (t, u) = {a � b : a ∈ (r, s), b ∈ (t, u)}. It can be proved that
α � β is a conditional homomorphism on B = {(r, s) : r, s ∈ Q} ∪ {R} and
hence α � β ∈ C(L), see [2] and [14]. Also, for every r ∈ R it is defined that
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r(w) = Top if r ∈ w and r(w) =⊥ if r /∈ w. It is clear to see that r ∈ C(L).
Now, r.α is defined by rα. Consequently C(L) is an f -algebra with these
operations.

Proposition 1.3. For every α, β ∈ C(L) and every w ∈ OR, we have

(α � β)(w) =
∨{

α(r, s) ∧ β(t, u) : r, s, t, u ∈ Q, (r, s) � (t, u) ⊆ w
}

=
∨{

α(w1) ∧ β(w2) : w1, w2 ∈ OR, w1 � w2 ⊆ w
}
,

where w1 � w2 = {a � b : a ∈ w1, b ∈ w2}.
Proof. Assume that

Aa,b = {α(r, s) ∧ β(t, u) : r, s, t, u ∈ Q, (r, s) � (t, u) ⊆ (a, b)} ,

Aw = {α(r, s) ∧ β(t, u) : r, s, t, u ∈ Q, (r, s) � (t, u) ⊆ w}
and

Bw = {α(w1) ∧ β(w2) : w1, w2 ∈ OR, w1 � w2 ⊆ w}.
Since (α � β) ∈ C(L), it follows that

(α � β)(w) = (α � β)
(⋃{

(a, b) ∈ OR : a, b ∈ Q, (a, b) ⊆ w
})

=
∨{

(α � β)(a, b) : a, b ∈ Q, (a, b) ⊆ w
}

=
∨{∨

Aa,b : (a, b) ⊆ w
}
.

Therefore, clearly, (α � β)(w) 6
∨
Aw 6

∨
Bw. Now, suppose that α(r, s)∧

β(t, u) ∈ Aw. Obviously, there exist a, b ∈ Q such that (r, s)�(t, u) ⊆ (a, b) ⊆
w. Hence, α(r, s) ∧ β(t, u) ∈ Aa,b and consequently

∨
Aw 6

∨
Aa,b 6 (α �

β)(w) and so
∨
Aw = (α �β)(w). Finally, assume that α(w1)∧β(w2) ∈ Bw,

where w1 �w2 ⊆ w. Clearly, w1 =
⋃
i∈I(ri, si) and w2 =

⋃
j∈J(tj , uj), where

ri, si, tj , uj ∈ Q for every i ∈ I and every j ∈ J . Thus,
⋃

i∈I

⋃

j∈J
(ri, si) � (tj , uj) =

⋃

i∈I
(ri, si) �

⋃

j∈J
(tj , uj) = w1 � w2 ⊆ w

and so (ri, si) � (tj , uj) ⊆ w for every i ∈ I and every j ∈ J . Therefore, it
is easy to see that α(w1) ∧ β(w2) =

∨
i∈I
∨
j∈J α(ri, si) ∧ β(tj , uj) 6

∨
Aw.

Hence,
∨
Bw 6

∨
Aw and so

∨
Bw =

∨
Aw
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Throughout the paper, the notations L and C(L) stand for a frame and
the f -algebra of all continuous real functions on the frame L, respectively.
The reader is referred to [2], [14], and [12], for more information about frames
and C(L). Also, see [4], [5], [11], [15], and [10] for more information about
general lattice theory and rings of continuous functions, respectively.

We need the following proposition which can be found in the literature.

Proposition 1.4. Let α, β ∈ C(L) and a ∈ R. The following statements
hold.

(a) If α > 0, then α(−∞, x) =⊥ for every x 6 0.
(b) If α > 0, then α(x,+∞) = Top for every x < 0.
(c) (α ∨ β)(x,+∞) = α(x,+∞) ∨ β(x,+∞) for every x ∈ R.
(d) (α ∨ β)(−∞, x) = α(−∞, x) ∧ β(−∞, x) for every x ∈ R.
(e) (α ∧ β)(x,+∞) = α(x,+∞) ∧ β(x,+∞) for every x ∈ R.
(f) (α ∧ β)(−∞, x) = α(−∞, x) ∨ β(−∞, x) for every x ∈ R.
(g) (cα)(w) = α(1

cw) for every w ∈ OR and each c 6= 0, where bw =
{bx : x ∈ w}.

(h) (c + α)(w) = α(w − c) for each w ∈ OR and each c ∈ R, where
w + b = {x+ b : x ∈ w}.

2 Pre-image of a continuous real function on L

In [13], although it does not introduce a determined definition for pointfree
version of the “image" of continuous real functions, using a concept, called
“overlap", an attempt has been made to fill the vacuum of the concept of
image of continuous real functions in pointfree topology. In this main section,
we give a determined version of the image of continuous real functions on
a topological space X in the pointfree topology and we show that this is
independent of what we see in [13].

Definition 2.1. For every α ∈ C(L), we define pim(α), called pre-image of
α, as

pim(α) =
⋂
{w ∈ OR : α(w) = Top}.

At below we provide an example in which we demonstrate that pim(α)
is an appropriate model of image of the real-valued functions in pointfree
topology.
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Example 2.2. Let C(X) be the ring of real-valued continuous functions on
a topological spaceX. We know that for all f ∈ C(X) we haveOf ∈ C(OX)
and clearly, we can write

Im(f) = f(X) =
⋂

f(X)⊆w
w =

⋂
{w ∈ OR : f−1(w) = X}

=
⋂
{w ∈ OR : Of(w) = Top}.

Therefore, Im(f) = pim(Of).

Hereinafter, by Rx, we mean R \ {x}.
Proposition 2.3. For every α ∈ C(L), the following statements hold:

(a) pim(α) =
⋂{Rx : α(Rx) = Top}.

(b) x /∈ pim(α) if and only if α(Rx) = Top.

Proof. (a): Suppose that B = {Rx : α(Rx) = Top}. Obviously pim(α) ⊆⋂B. Now, assuming x /∈ pim(α), there exists w ∈ OR such that x /∈ w
and α(w) = Top. Hence, w ⊆ Rx, consequently α(Rx) = Top and so
x /∈ Rx ∈ B. Therefore,

⋂B ⊆ pim(α) and subsequently pim(α) =
⋂B.

(b): According to (a), it is obvious that we can write

x /∈ pim(α) ⇒ ∃Ry, α(Ry) = Top, x /∈ Ry.

Since x /∈ Ry, x = y and consequently α(Rx) = Top. Conversely, assume
that α(Rx) = Top. Thus, pim(α) ⊆ Rx and so x /∈ pim(α).

Estaji and at al. in [8], put

Rα = {r ∈ R : coz(α− r) 6= Top}
for every α ∈ C(L), and they studied some of its properties. By Proposition
2.3, it is evident that Rα = pim(α).

Recall that w∗ = R \ w and w =
⋂
x∈w∗ Rx for every w ∈ OR.

Proposition 2.4. For every w ∈ OR and every α ∈ C(L), the following
statements hold:

(a) If α(w∗) =⊥, then α(Rx) = Top for all x ∈ w∗.
(b) If α(w∗) =⊥, then pim(α) ⊆ w.
(c) If r ∈ pim(α) and w ∈ Or, then α(w) 6=⊥.
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Proof. (a): Suppose that w ∈ OR and α ∈ C(L). Then for every x ∈ w∗,
we can write

Rx ∪ w∗ = R ⇒ α(Rx) = α(Rx) ∨ α(w∗) = α(Rx ∪ w∗) = α(R) = Top.

(b): Since α(w∗) =⊥, by part (a), for all x ∈ w∗, we have α(Rx) = Top
and so

pim(α) =
⋂
{Rx : α(Rx) = Top} ⊆

⋂

x∈w∗
Rx = w.

(c): Suppose that r ∈ pim(α) and w ∈ Or. Thus, there exists y ∈
w ∩ pim(α) and therefore

Top = α(R) = α(Ry ∨ w) = α(Ry) ∨ α(w).

On the other hand, since y ∈ pim(α), α(Ry) 6= Top and so α(w) 6=⊥.

By Example 2.2, it is easy to see that if pim(Of) ⊆ w ∈ OR, then
Of(w) = Top. Also, if Of(w) 6=⊥, for every w ∈ Or, r ∈ pim(α). So here
are two natural question.

Question 1: Suppose that α ∈ C(L) and w ∈ OR. Can we imply
α(w) = Top from pim(α) ⊆ w?

Question 2: Suppose that α(w) 6=⊥, for every w ∈ Or. Can we conclude
that r ∈ pim(α)?

Example 2.8 shows that the answer to these two questions is generally
negative (in the first question, even if w is an unbounded interval in R).
But, in the following proposition, we will find that the answer to the first
question is positive under some conditions.

Proposition 2.5. Let α ∈ C(L), w ∈ OR and pim(α) ⊆ w, then the
following statements hold:

(a) If w is dense in R and the boundary of w is finite, then α(w) = Top.
(b) Let U ⊆ OR be such that one of these families is bounded, pim(α) ⊆⋂U and α(u) = Top for every u ∈ U . If

⋂
u∈U u ⊆ w, then it follows that

α(w) = Top.
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Proof. (a): It is clear.
(b): Without loss of generality, we can suppose that u is compact for

all u ∈ U . Now, it is easy to see that there exist u1, · · · , un ∈ U such that⋂n
i=1 ui ⊆ w. Therefore,

Top =
n∧

i=1

α(ui) = α
( n⋂

i=1

ui
)
6 α(w) ⇒ α(w) = Top.

Suppose that α ∈ C(L) and S ⊆ R. We recall from [13] that α is an
overlap of S, denoted by α J S, whenever i(u) ⊆ i(v) implies α(u) 6 α(v);
that is, u ∩ S ⊆ v ∩ S implies α(u) 6 α(v). In the following propositions
and example, we will see that although this concept and pim(α) are closely
related, but they are different from each other.

Proposition 2.6. Suppose that α ∈ C(L) and OV (α) = {S ⊆ R : α J S}.
Then pim(α) =

⋂
S∈OV (α) S.

Proof. Let S ∈ OV (α) and x /∈ S. Thus, Rx ∩ S = R ∩ S and so Top =
α(R) = α(Rx); that , x /∈ pim(α). Therefore, pim(α) ⊆ ⋂S∈OV (α) S. Con-
versely, suppose x /∈ pim(α); it suffices to show that Rx ∈ OV (α). To see
this, for every u, v ∈ OR, we can write

u ∩ Rx ⊆ v ∩ Rx ⇒ α(u) = α(u) ∧Top = α(u) ∧ α(Rx)

= α(u ∩ Rx) 6 α(v ∩ R) = α(v).

Proposition 2.7. Suppose that α ∈ C(L), w ∈ OR and α(w) = Top, then
α J w.

Proof. Let u, v ∈ OR and u ∩ w ⊆ v ∩ w. Hence

α(u) = α(u) ∧Top = α(u) ∧ α(w)

= α(u ∩ w) 6 α(v ∩ w) = α(v) ∧ α(w) = α(v) ∧Top = α(v).
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In this way, it turns out that the following equality is in place, too.

pim(α) =
⋂
{w ∈ OR : α J w}.

Example 2.8. There is a frame L and β ∈ C(L) such that β 6J pim(β).
To see this, let L, β and the family {Sc}c∈I be same as in [13, Example
3.18]. Then, pim(β) ⊆ ⋂

c∈I Sc = ∅. Thus, β J pim(β) does not hold.
Furthermore, since β(∅) =⊥, there exists w ∈ OR such that β(w) 6= Top.
Clearly, pim(β) = ∅ ⊆ w whereas β(w) 6= Top. Thus, the answer to
Question 1 is negative. Also, since β(Top) = Top, there exists an element
r ∈ R such that for every w ∈ Or we have β(w) 6=⊥, whereas r /∈ ∅ = pim(β).
Therefore, the answer to Question 2 is also negative.

Now, we want to find the relationship between pim(|α|) and pim(α).

Lemma 2.9. For every α ∈ C(L) and every x ∈ R, we have

|α|(Rx) =
(
α(x,+∞) ∨ α(−∞, |x|)

)
∧
(
α(−|x|,+∞) ∨ α(−∞,−x)

)
.

Proof. By Proposition 1.4, the proof is straightforward.

The following corollary is followed from the above lemma immediately.

Corollary 2.10. Assume that α ∈ C(L) and x ∈ R. Then the following
statements hold:

(a) If x < 0, then |α|(Rx) = Top.
(b) If x > 0, then |α|(Rx) = α(Rx) ∧ α(R−x).
(c) pim(|α|) ⊆ R+.

Proposition 2.11. pim(|α|) = {|x| : x ∈ pim(α)} for every α ∈ C(L).

Proof. Supposing A = {|x| : x ∈ pim(α)}, clearly, A = {x ∈ R+ : x ∈
pim(α) or − x ∈ pim(α)}. Accordingly to Lemma 2.9, for every x > 0, we
can write

x /∈ A ⇔ x,−x /∈ pim(α) ⇔ α(Rx) = α(R−x) = Top ⇔ |α|(Rx)

= Top ⇔ x /∈ pim(|α|).
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Proposition 2.12. The following relations are true for each α ∈ C(L) and
each r ∈ R:

(a) pim(r) = {r}.
(b) pim(rα) = r pim(α).
(c) pim(r + α) = r + pim(α).

Proof. (a): Clearly, for every r ∈ R, we can write

r(Rx) = Top ⇔ x 6= r. ∴ pim(r) =
⋂

x 6=r
Rx = {r}.

(b): For every r ∈ R, we can write (without loss of generality, assume that
r 6= 0)

pim(rα) ⊆ Rx ⇔ (rα)(Rx) = Top ⇔ α(
1

r
Rx) = α(Rx

r
) = Top

⇔ pim(α) ⊆ Rx
r
⇔ r.pim(α) ⊆ Rx

⇔ pim(r).pim(α) ⊆ Rx.

(c): For every r ∈ R, we can write

pim(r + α) ⊆ Rx ⇔ (r + α)(Rx) = Top ⇔ α(−r + Rx) = α(Rx−r) = Top

⇔ pim(α) ⊆ Rx−r = −r + Rx ⇔ r + pim(α) ⊆ Rx
⇔ pim(r) + pim(α) ⊆ Rx.

Now, we state the relation between pim(α), pim(α+), and pim(α−) in
the following.

Proposition 2.13. For every α ∈ C(L), the following relations hold:
(a) pim(α) ∩ (0, +∞) = pim(α+) \ {0}.
(b) pim(α) ∩ (−∞, 0) = pim(−α−) \ {0}.
(c) pim(α) \ {0} = ((pim(α+) ∪ pim(−α−)) \ {0}.

Proof. (a): For every x > 0, by Proposition 1.4, we have

α+(−∞, x) = (α ∨ 0)(−∞, x) = α(−∞, x) ∧ 0(−∞, x) = α(−∞, x)



Pre-image of functions in C(L) 47

and similarly,

α+(x, +∞) = (α ∨ 0)(x, +∞) = α(x, +∞) ∨ 0(x, +∞) = α(x, +∞).

Therefore, for every x > 0, we can deduce that

α(Rx) = α(−∞, x) ∨ α(x, +∞) = α+(−∞, x) ∨ α+(x, +∞) = α+(Rx).

Hence, (0, +∞) ∩ pim(α) = pim(α+) \ {0}.
(b): For every x < 0, by part (a), we can write

−α−(Rx) = −α−[(−∞, x) ∨ (x, +∞)]

= −α−(−∞, x) ∨ −α−(x, +∞)

= α−(−x,+∞) ∨ α−(−∞,−x)

= (−α)+(−x,+∞) ∨ (−α)+(−∞,−x)

= −α(−x,+∞) ∨ −α(−∞,−x)

= α(−∞, x) ∨ α(x, +∞) = α(Rx).

Therefore, (−∞, 0) ∩ pim(α) = pim(−α−) \ {0}.
(c): Straightforward from (a) and (b), it is concluded that

pim(α) \ {0} =
(
(pim(α+)) ∪ pim(−α−)

)
\ {0}.

Question 3: Now, this question arises whether the following relations, sim-
ilar to what we have for real functions on topological spaces, hold.

pim(α ∨ β) ⊆ pim(α) ∪ pim(β) , pim(α ∧ β) ⊆ pim(α) ∩ pim(β)

pim(α+ β) ⊆ pim(α) + pim(β) , pim(αβ) ⊆ pim(α)pim(β).

We show that under some achievable conditions, the answer is positive. But
first we need some preparations.

Definition 2.14. An ideal I in a frame L is called ∨-complete (countably
∨-complete) if from D ⊆ I (countable set D ⊆ I), it follows that ∨D ∈ I.
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Example 2.15. (a) Every principal ideal is ∨-complete.
(b) Suppose that ω1 is the first uncountable ordinal and L =↓ ω1. Clearly

L is a frame and if we put P = L\{Top}, then P is a countably ∨-complete
ideal whereas it is not a ∨-complete ideal.

Definition 2.16. For every P ∈ Spec(L), we defineAP (α) = {x ∈ R : α(x,+∞) ∈
P} and BP (α) = {x ∈ R : α(−∞, x) ∈ P}.

Because these two sets AP (α) and BP (α) are important in our work, we
discuss them briefly.

Lemma 2.17. Let P ∈ Spec(L) and α ∈ C(L). Then
(a) AP (α) ∪BP (α) = R.
(b) Any element of AP (α) is an upper bound of BP (α) and any element

of BP (α) is a lower bound of AP (α).
(c) ↑AP (α) = AP (α) and ↓ BP (α) = BP (α).

Proof. (a): Assuming x /∈ AP (α), it follows that α(x,+∞) /∈ P . Since P is
prime and α(x,+∞) ∧ α(−∞, x) =⊥∈ P , we deduce that α(−∞, x) ∈ P .
Hence x ∈ BP (α).

(b): Assume that x ∈ AP (α) and, on the contrary, there exists an ele-
ment c ∈ BP (α) such that x < c. Therefore, Top = α(R) = α(−∞, c) ∨
α(x,+∞) ∈ P and this is a contradiction. Similarly, any element of BP (α)
is a lower bound of AP (α).

(c): Supposing x ∈ ↑AP (α), there exists an element a ∈ AP (α) such that
a 6 x. Thus, α(x,+∞) 6 α(a,+∞) ∈ P and consequently x ∈ AP (α).

Corollary 2.18. Let P ∈ Spec(L) and α ∈ C(L). Then the following
statements are equivalent:

(a) inf AP (α) ∈ R
(b) AP (α) 6= ∅ 6= BP (α).
(c) supBP (α) ∈ R
(d) There exists an element x ∈ R such that

(x,+∞) ⊆ (inf AP (α),+∞) ⊆ [x,+∞) and

(−∞, x) ⊆ (−∞, supBP (α)) ⊆ (−∞, x].

(e) inf AP (α) = supBP (α) ∈ R.
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Proof. (a) ⇒ (b): By hypothesis, clearly, AP (α) 6= ∅ and there exists an
element x ∈ R such that x /∈ AP (α). By Lemma 2.17, x ∈ BP (α). Thus,
BP (α) is also non-empty.

(b) ⇒ (c): By Lemma 2.17, it is clear.
(c) ⇒ (d): Similar to (a) ⇒ (b), it follows that AP (α) 6= ∅ 6= BP (α).

Hence, by part (b) of Lemma 2.17, AP (α) (respectively, BP (α)) is non-
empty and bounded below (respectively, bounded above). Hence, inf AP (α)
and supBP (α) exist. It is easy, by using Lemma 2.17, once again, to see
that inf AP (α) = x = supBP (α) and in addition, we have (x,+∞) ⊆
(inf AP (α),+∞) ⊆ [x,+∞) and (−∞, x) ⊆ (−∞, supBP (α)) ⊆ (−∞, x].

The implications (d) ⇒ (e) ⇒ (a) are obvious.

Definition 2.19. P ∈ Spec(L) is said to be real with respect to α ∈ C(L)
if AP (α) and BP (α) are non-empty closed subsets in R. If P is real with
respect to every α ∈ C(L), then we say P is real.

Lemma 2.20. Assume that P ∈ Spec(L) and α ∈ C(L). Then, the following
statements are equivalent:

(a) P is real with respect to α.
(b) inf AP (α) ∈ AP (α) and supBP (α) ∈ BP (α).
(c) There is an element x ∈ R such that AP (α) ∩BP (α) = {x}.
(d) There exists an element x ∈ R such that α(Rx) ∈ P .

Proof. By Corollary 2.18, it is clear.

Lemma 2.21. Let P ∈ Spec(L) be countably ∨-complete. Then P is real.

Proof. Suppose that α ∈ C(L). Since P is countably ∨-complete, it follows
that inf AP (α) ∈ R and so, by Corollary 2.18, there exists an element x ∈ R
such that

(x,+∞) ⊆ (inf AP (α), +∞) ⊆ [x,+∞)

and
(−∞, x) ⊆ (−∞, supBP (α)) ⊆ (−∞, x].

By Lemma 2.20, it is enough to show that x ∈ AP (α) ∩ BP (α). This is
obvious, since P is countably ∨-complete and Q is dense in R.
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By the above lemma, ↓ p is real for each p ∈ SpL.

We need the following lemma for the next theorem.

Lemma 2.22. Let P be prime ideal in a frame L and α ∈ C(L). The
following statements hold:

(a) AP (−α) = −BP (α) and BP (−α) = −AP (α).
(b) BP (α+) = (−∞, 0) ∪BP (α).
(c) AP (α+) = (0,+∞) ∩AP (α).
(d) BP (α−) = (−∞, 0) ∪ −AP (α).
(e) AP (α−) = (0,+∞) ∩ −BP (α).

If, in addition, P̂ (α) = inf AP (α) ∈ R, then
(f) P̂ (α+) = (P̂ (α))+;
(g) P̂ (α−) = (P̂ (α))−.

Proof. (a): It is clear that

AP (−α) = {x ∈ R : − α(x,+∞) ∈ P} = {x ∈ R : α(−∞,−x) ∈ P}
= −{y ∈ R : α(−∞, y) ∈ P} = −BP (α).

Similarly, we conclude that BP (−α) = −AP (α).
(b): We can write

BP (α+) = {x ∈ R : α+(−∞, x) ∈ P} = {x ∈ R : 0(−∞, x) ∧ α(−∞, x) ∈ P}
= {x ∈ R : 0(−∞, x) ∈ P} ∪ {x ∈ R : α(−∞, x) ∈ P} = (−∞, 0) ∪BP (α).

(c): We can write

AP (α+) = {x ∈ R : α+(x,+∞) ∈ P} = {x ∈ R : 0(x,+∞) ∨ α(x,+∞) ∈ P}
= {x ∈ R : 0(x,+∞) ∈ P} ∩ {x ∈ R : α(x,+∞) ∈ P} = (0,+∞) ∩AP (α).

(d): By parts (a) and (b), it follows that

BP (α−) = BP ((−α)+) = (−∞, 0) ∪BP (−α) = (−∞, 0) ∪ −AP (α).

(e): Using (a) and (c), we do similar to (d).
(f): By part (b) and Corollary 2.18, we can write

(P̂ (α))+ = 0 ∨ P̂ (α) = sup(−∞, 0) ∨ supBP (α) = supBP (α+) = P̂ (α+).
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(g): By part (d) and Corollary 2.18, we can write

(P̂ (α))− = 0 ∨ −P̂ (α) = sup((−∞, 0) ∪ −AP (α)) = supBP (α−) = P̂ (α−).

The following theorem is an improvement of [6, Proposition 2.3] (also,
see [7, Proposition 3.9] and [9, Proposition 2.3]).

Theorem 2.23. Assume that P ∈ Spec(L) and is countably ∨-complete in
L. We define

P̂ : C(L)→ R , P̂ (α) = inf AP (α).

Then P̂ is an f -algebra homomorphism; that is,
(a) P̂ (α+ β) = P̂ (α) + P̂ (β) for every α, β ∈ C(L).
(b) P̂ (αβ) = P̂ (α)P̂ (β) for every α, β ∈ C(L).
(c) P̂ (rα) = rP̂ (α) for every r ∈ R and every α ∈ C(L).
(d) P̂ (α ∨ β) = P̂ (α) ∨ P̂ (β) for every α, β ∈ C(L).
(e) P̂ (α ∧ β) = P̂ (α) ∧ P̂ (β) for every α, β ∈ C(L).

Proof. (a): Let x = P̂ (α + β). Since P is countably ∨-complete, we have
(α+ β)(x,+∞) ∈ P . Therefore,

(α+ β)(x,+∞) =
∨
{α(r, s) ∧ β(t, u) : (r, s) + (t, u) ⊆ (x,+∞)}

=
∨
{α(r, s) ∧ β(t, u) : r + t > x}

=
∨
{α(r,+∞) ∧ β(t,+∞) : r + t > x}

=
∨
{α(r,+∞) ∧ β(x− r,+∞) : r ∈ R} ∈ P.

Hence
∨{

α(r,+∞) ∧ β(x− r,+∞) : r < P̂ (α), r ∈ Q
}
∈ P.

Since α(r,+∞) /∈ P for every r < P̂ (α), it follows that β(x − r,+∞) ∈ P
for every rational r < P̂ (α) and so, by countably ∨-completeness of P , we
can write

β(x− P̂ (α),+∞) =
∨{

β(x− r,+∞) : r < P̂ (α), r ∈ Q
}
∈ P.
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Thus,
P̂ (β) 6 x− P̂ (α) ⇒ P̂ (α) + P̂ (β) 6 x. (1)

On the other hand, it is clear that for every s > supBP (α) = P̂ (α), we have
α(−∞, s) /∈ P . Therefore, similar to the above, it conclude that β(−∞, x−
s) ∈ P for every s > P̂ (α). Consequently,

β(−∞, x− P̂ (α)) =
∨{

β(−∞, x− s) : s > P̂ (α), s ∈ Q
}
∈ P.

Hence, we can write

x− P̂ (α) 6 P̂ (β) ⇒ x 6 P̂ (α) + P̂ (β). (2)

The desired equality follows from (1) and (2).
(b): Case (1): α, β > 0 and P̂ (αβ) = 0. In this case, we show that

P̂ (α) = 0 or P̂ (β) = 0. Since P̂ (αβ) = 0, (αβ)(0,+∞) ∈ P and since
α(−∞, 0) = 0, β(−∞, 0) = 0, we can write

(αβ)(0,+∞) =
∨
{α(r, s) ∧ β(t, u) : (r, s)(t, u) ∈ (0,+∞)}

=
∨
{α(r, s) ∧ β(t, u) : r, t > 0}

=
∨
{α(r,+∞) ∧ β(t,+∞) : r, t > 0}

= α(0,+∞) ∧ β(0,+∞) ∈ P.

Therefore, β(R0) = β(0,+∞) ∈ P or α(R0) = α(0,+∞) ∈ P . Thus,
P̂ (α) = 0 or P̂ (β) = 0.
Case (2): α, β > 0 and P̂ (αβ) = x > 0. In this case

αβ(x,+∞) ∈ P ⇒ αβ(x,+∞) =
∨

r>0

(
α(r,+∞) ∧ β(

x

r
,+∞)

)
∈ P.

Since α(r,+∞) /∈ P for every 0 < r < P̂ (α), it follows that β(xr ,+∞) ∈ P
for every 0 < r < P̂ (α). Therefore, for every 0 < r < P̂ (α), we have
x
r > P̂ (β) and so x

P̂ (α)
> P̂ (β). This implies that

x > P̂ (α)P̂ (β). (3)
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Since α(−∞, s) /∈ P for every s > P̂ (α), similar to above, we conclude that
β(−∞, xs ) ∈ P for every s > P̂ (α). Thus, xs 6 P̂ (β) for every s > P̂ (α) and
consequently, x

P̂ (α)
6 P̂ (β). Hence,

x 6 P̂ (α)P̂ (β). (4)

From (3) and (4), it follows that P̂ (αβ) = P̂ (α)P̂ (β).
Final case: Let α, β ∈ C(L) be arbitrary. By previous cases, we can

write

P̂ (αβ) = P̂
(
(α+ − α−)(β+ − β−)

)

= P̂ (α+)P̂ (β+)− P̂ (α+)P̂ (β−)− P̂ (α−)P̂ (β+) + P̂ (α−)P̂ (β−).

On the other hand, by Lemma 2.22, we have P̂ (α−) = (P̂ (α))− and P̂ (α+) =
(P̂ (α))+. Therefore

P̂ (αβ) = (P̂ (α))+(P̂ (β))+ − (P̂ (α))+(P̂ (β))− − (P̂ (α))−(P̂ (β))+ + (P̂ (α))−(P̂ (β))−

= (P̂ (α)+ − P̂ (α)−)(P̂ (β)+ − P̂ (β)−) = P̂ (α)P̂ (β).

(c): If r = 0, the assertion is clear. If r > 0, then

P̂ (rα) = inf {x : rα(x,+∞) ∈ P} = inf
{
x : α(

x

r
,+∞) ∈ P

}

= inf {ry : α(y,+∞) ∈ P} = rP̂ (α).

Finally, if r < 0, then

P̂ (r(α)) = inf {x : rα(x,+∞) ∈ P} = inf {x : − rα(−∞,−x) ∈ P}
= inf

{
x ∈ R : α(−∞, x

r
) ∈ P

}
= inf {ry : α(−∞, y) ∈ P}

= r sup {y : α(−∞, y) ∈ P} = rP̂ (α).

Therefore, P̂ (rα) = rP̂ (α) for every r ∈ R.
(d): Clearly, we can write

P̂ (α ∨ β) = sup {x ∈ R : (α ∨ β)(−∞, x) ∈ P}
= sup {x : α(−∞, x) ∧ β(−∞, x) ∈ P}
= sup

(
{x : α(−∞, x) ∈ P} ∪ {x : β(−∞, x) ∈ P}

)

= sup {x : α(−∞, x) ∈ P} ∨ sup {x : β(−∞, x) ∈ P}
= P̂ (α) ∨ P̂ (β).
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(e): It is similar to the proof of the part (d).

Note that, by Lemma 2.20, we obtain the following result, clearly.

Corollary 2.24. Suppose that P ∈ Spec(L) is countably ∨-complete. Then
P̂ (α) = x if and only if α(Rx) ∈ P .

Corollary 2.25. Assume that p ∈ SpL and

p̂ : C(L)→ R , p̂(α) = inf{x ∈ R : α(x,+∞) 6 p}.

Then p̂ is an f -algebra homomorphism.

Proof. It suffices to put P = ↓ p, then, by Theorem 2.23, we are done.

We are now ready to answer the Question 3 which we raised earlier.

Theorem 2.26. Suppose that L is a frame in which every maximal ideal is
countable ∨-complete. Then for every α, β ∈ C(L), we have the following
relations:

(a) pim(α+ β) ⊆ pim(α) + pim(β).
(b) pim(αβ) ⊆ pim(α)pim(β).
(c) pim(α ∨ β) ⊆ pim(α) ∨ pim(β).
(d) pim(α ∧ β) ⊆ pim(α) ∧ pim(β).

Proof. We only prove part (a); other parts are proved by the same manner.
Suppose that x ∈ pim(α + β). Thus, (α + β)(Rx) 6= Top and so there
exists an element M ∈ Max(L) such that (α + β)(Rx) ∈ M . Therefore, by
Theorem 2.23 and Corollary 2.24, x = M̂(α + β) = M̂(α) + M̂(β). Taking
M̂(α) = a and M̂(β) = b, it is sufficient to show that a ∈ pim(α) and
b ∈ pim(β). To see this, by Corollary 2.24, α(Ra) ∈ M and β(Rb) ∈ M .
Hence, α(Ra) 6= Top 6= β(Rb), so a ∈ pim(α) and b ∈ pim(β). Therefore,
pim(α+ β) ⊆ pim(α) + pim(β).
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3 Comparing pim(α) with images of two real functions α and
α̂

In this section, first, for any α ∈ C(L), we introduce two real functions α
and α̂ induced naturally by α, then we compare pim(α) with the images of
these two functions.

Definition 3.1. Suppose that α ∈ C(L). By Corollary 2.25, we can define
α : SpL→ R with α(p) = p̂(α). Also, supposing

Xα = {P ∈ Spec(L) : P is real with respect to α},
we can define α̂ : Xα → R with α̂(P ) = P̂ (α).

Note that the mapping p →↓ p is an embedding from SpL to Spec(L),
where Spec(L) is equipped with hall-kernel topology (that is, the Zariski
topology). Therefore, we can suppose that SpL is a subspace of Spec(L)
and so α̂|SpL = α.

Proposition 3.2. For every α ∈ C(L), α̂ is continuous and so is α.

Proof. Assume that (x, y) is an open interval in R. taking a = α(x,+∞)
and b = α(−∞, y), it suffices to show that (α̂)−1(x, y) = hcXα(a) ∩ hcXα(b),
where hcXα(a) = Xα ∩ hc(a). Too see this, for every P ∈ Xα, we can write

P ∈ (α̂)−1(x, y) ⇔ x < α̂(P ) = P̂ (α) < y

⇔ a = α(x,+∞) /∈ P , b = α(−∞, y) /∈ P
⇔ P ∈ hcXα(a) ∩ hcXα(b).

The following remark shows that α is not a new concept .

Remark 3.3. Recall that SpOR = {Rx : x ∈ R} and g : SpOR → R
with g(Rx) = x is a homeomorphism. For every continuous real function
α ∈ C(L), we have Spα : SpL → SpOR with (Spα)(p) = α∗(p) =

∨{w ∈
OR : α(w) 6 p}. Since α∗(p) ∈ SpOR, there exists a unique x ∈ R such that
(Spα)(p) = α∗(p) = Rx. In fact, (Spα)(p) = Rx if and only if α(Rx) 6 p.
Therefore, for every α ∈ C(L), we have a natural function α = g Spα from
SpL to R with α(p) = x such that α(Rx) 6 p. Also, according to this fact,
for every p ∈ SpL, we can define a function p̂ : C(L)→ R with p̂(α) = α(p).
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Proposition 3.4. Assume that α ∈ C(L). Then Im(α) ⊆ Im(α̂) ⊆ pim(α).

Proof. Clearly, Im(α) ⊆ Im(α̂). Now, suppose that x ∈ Im(α̂). Thus,
there exists a P ∈ Spec(L) such that α̂(P ) = x. Hence, P̂ (α) = x and by
Corollary 2.24, it follows that α(Rx) ∈ P . Therefore, α(Rx) 6= Top and
consequently x ∈ pim(α).

The first inclusion in the above proposition may be strict. To see this,
we need the following lemma.

Lemma 3.5. Suppose that L has no non-trivial complemented element.
Then for every α ∈ C(L), there exists an element x ∈ R such that α(Rx) 6=
Top.

Proof. Let α ∈ C(L) and, on the contrary, for every x ∈ R, we have
α(Rx) = Top. By hypothesis, for every x ∈ R, we α(−∞, x) = Top
and α(x,+∞) =⊥ or α(−∞, x) =⊥ and α(x,+∞) = Top. It is easy
to see that there exists an element c ∈ R such that α(c,+∞) =⊥ and
so x0 = inf{x ∈ R : α(x,+∞) =⊥} exists. Thus, α(x0,+∞) =⊥ and
α(t,+∞) = Top for every t < x0 and so α(−∞, t) =⊥ for every t < x0.
Therefore, α(−∞, x0) =

∨{α(−∞, t) : t < x0} =⊥. Hence, α(Rxo) =⊥
and this is a contradiction.

In the following example we introduce a frame L such that Im(α) (
pim(α̂) for every α ∈ C(L).

Example 3.6. Suppose L = [0, 1)× [0, 1)⊕Top. Clearly, L is a frame, Top
is a ∨-prime element of L and SpL = ∅. Therefore, L does not have any non-
trivial complemented element and so, by Lemma 3.5, for every α ∈ C(L) we
have α(Rx) 6= Top for some x ∈ R. We show that C(L) = {r : r ∈ R}. To
see this, assume that α ∈ C(L). Thus, there exists an element r ∈ R such
that α(Rr) 6= Top. Now, for every w ∈ Or, since Top is ∨-prime, we can
write

Top = α(R) = α(w ∪ Rr) = α(w) ∨ α(Rr) ⇒ α(w) = Top.

This conclude that α = r. On the other hand, it is clear that Im(r) = ∅,
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whereas

x ∈ Im(r̂) ⇔ ∃P ∈ Spec(L), r̂(P ) = x

⇔ ∃P ∈ Spec(L), P̂ (r) = x

⇔ ∃P ∈ Spec(L), r(Rx) ∈ P
⇔ r = x.

Therefore, Im(r̂) = {r}.

Proposition 3.7. Assume that α ∈ C(L). Then the following statements
hold:

(a) If SpL is cofinal in L \ {Top}, then Im(α) = Im(α̂) = pim(α).
(b) If

⋃
Xα = L \ {Top}, then Im(α̂) = pim(α).

Proof. (a): It is enough to prove that pim(α) ⊆ Im(α). Suppose that
x ∈ pim(α). Thus, α(Rx) 6= Top and by hypothesis, there exists an element
p ∈ SpL such that α(Rx) 6 p and this is equivalent to α(p) = p̂(α) = x.
Therefore, x ∈ Im(α).

(b): Suppose that x ∈ pim(α). Thus, α(Rx) 6= Top and by hypothesis,
there exists an element P ∈ Xα such that α(Rx) ∈ P and this is equivalent
to α̂(P ) = P̂ (α) = x. Therefore, x ∈ Im(α̂).
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