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Cofree objects in the centralizer and the
center categories

Adnan H. Abdulwahid

Abstract. We study cocompleteness, co-wellpoweredness, and generators
in the centralizer category of an object or morphism in a monoidal category,
and the center or the weak center of a monoidal category. We explicitly
give some answers for when colimits, cocompleteness, co-wellpoweredness,
and generators in these monoidal categories can be inherited from their
base monidal categories. Most importantly, we investigate cofree objects
of comonoids in these monoidal categories.

1 Introduction and Preliminaries

Universal properties are crucially considered as one of the most important
concepts in mathematics. Indeed, they can be thought of as the skeleton of
all mathematics concepts. They show how the objects and the morphisms
nicely relate the whole category that they live in. Many influential concepts,
such as kernels, cokernels, products, coproducts, limits, colimits, etc., are
essentially involved with universal properties. Perhaps the most important
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notion concerned with them is the concept of adjoint functors. It is simply
because “Adjoint functors arise everywhere” [16, p. (vii)]. Significantly,
free and cofree objects play a crucial role in recasting the adjunctions of the
forgetful functors in terms of comma categories. For fundamental concepts
and examples of adjoint functors, we refer the reader to [15], [16], [3], [20],
[19], or [18]. For the basic notions of comma categories, we refer to [15]
and [16].
Let X be a category. A concrete category over X is a pair (A,U), where A
is a category and U : A → X is a faithful functor [2, p. 61]. Let (A,U) be
a concrete category over X. Following [2, p. 140-143], a free object over
X-object X is an A-object A such that there exists a universal arrow (A, u)
over X; that is, u : X → UA such that for every arrow f : X → UB, there
exists a unique morphism f ′ : A→ B in A such that Uf ′u = f . We also say
that (A, u) is the free object over X. A concrete category (A,U) over X is
said to have free objects provided that for each X-object X, there exists a
universal arrow over X. For example, the category V ectK of vector spaces
over a field K has free objects. So do the category Top of topological spaces
and the category Grp of groups. However, some interesting categories do
not have free objects [2, p. 142]).

Dually, co-universal arrows, cofree objects, and categories that have
cofree objects can be defined. For the basic concepts of concrete categories,
free objects, and cofree objects, we refer the readers to [14, p. 138-155]. It
turns out that a concrete category (A,U) over X has (co)free objects if and
only if the functor that constructs (co)free objects is a (right) left adjoint
to the faithful functor U : A→ X.

Although cofree objects are the dual of free objects, the behavior of
cofree objects is more complicated than the one of free objects. Furthermore,
studying such behavior cannot be obtained by studying free objects, because
“the categories considered are not selfdual generally” [14, p. 149]. In this
paper, we are interested in investigating cofree objects in the centralizer
category of an object or morphism in a monoidal category and the center or
the weak center of a monoidal category. For the basic notions of monoidal
categories, we refer the readers to [10], [4], and [8, Chapter 6].

More recently, these monoidal categories play a vibrant role in charac-
terizing and identifying many of the interesting categories. For instance,
to show that two finite tensor categories are Morita equivalent, it suffices
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to show that their centers are equivalent as braided tensor categories [10,
p. 222]. Another example is to show that a fusion category is group-
theoretical, it is sufficient to show its center contains a Lagrangian sub-
category [10, p. 313]. In addition, there is a special importance for the
center of a finite tensor category in finding its Frobenius-Perron dimension.
This comes from the fact that for any finite tensor category C , we have
FPdim(Z(C )) = FPdim(C )2 [10, p. 168]. We refer to [13] for basics on
centralizer categories while we refer to [23, p. 76] and [10, p. 162] for basics
on center categories.

Explicitly, the problem can be formulated as follows. Let C be a monoidal
category. Fix an object X and a morphism h : A → B in C. For any
A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}, let UA : CoMon(A ) → A be the for-
getful functor corresponding to A . Does UA have a right adjoint? A rea-
sonably expected machinery for the answer of this question is the dual of
Special Adjoint Functor Theorem (D-SAFT).

We start our inspection by studying cocompleteness in A , and we give
some answers for the question: under what conditions the colimits of dia-
grams in A can be obtained from the corresponding construction of dia-
grams in C. The later implicitly implies that the forgetful functor UA is
cocontinuous. Next, we investigate conditions under which the category A
inherits the co-wellpoweredness of C. We also show how the braiding forces
the category A to inherit generators from its base category C. Finally, we
apply the mechanism of D-SAFT for each case. Furthermore, we try to
visualize some interesting consequences by studying the braid category.

Let (C,⊗, I) be a monoidal category, and for every X ∈ C, let PX , QX
be the functors defined by

PX = X ⊗− : C → C, M 7→ X ⊗M ,
QX = −⊗X : C → C, M 7→M ⊗X.

If C is a biclosed monoidal category, then both functors PX and QX
have right adjoints for every object X ∈ C, hence they are cocontinuous for
every object X ∈ C. However, this is not true in general; that is, if C is
a cocomplete monoidal category, then the tensor product functors PX and
QX needs not be cocontinuous in each object X. Thus, one might need to
consider them more carefully.
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Theorem 1.1. [11, p. 148] If A is cocomplete, co-wellpowered, and with
a generating set, then every cocontinuous functor from A to a locally small
category has a right adjoint.

Definition 1.2. (i) [21, p. 284] The (left) weak center of C denoted Zω(C) is
a category whose objects are pairs (A, σA,−), where A ∈ C and σA,− : A⊗− →
−⊗A is a natural transformation such that the following conditions hold

σA,I = idA (1.1)

and
σA,X⊗Y = (idX ⊗ σA,Y )(σA,X ⊗ idY ) (1.2)

for all X,Y ∈ C.
An arrow f : (A, σA,−)→ (B, τB,−) in Zω(C) is an arrow f : A→ B in C

such that, for all X ∈ C, the diagram

A⊗X
σ
A,X

��

(f⊗id
X

)
// B ⊗X

τ
B,X

��
X ⊗A

(id
X
⊗f)

// X ⊗B

(1.3)

commutes.
The category Zω(C) is monoidal with

(A, σA,−)⊗ (B, τB,−) = (A⊗B, δA⊗B,−), (1.4)

where

δA⊗B,X : A⊗B ⊗X → X ⊗A⊗B = (σA,X ⊗ idB )(idA ⊗ τB,X ). (1.5)

(ii) [23, p. 76] The center of C, denoted by Z(C), is a category whose
objects are pairs (A, σA,−), where A ∈ C and σA,− : A ⊗ − ∼−→ − ⊗ A is a
natural isomorphism such that the following conditions hold:

σA,I = idA (1.6)

(more precisely, σA,I is the composite of the canonical isomorphisms A⊗I ∼=
A ∼= I ⊗A), and

σA,X⊗Y = (idX ⊗ σA,Y )(σA,X ⊗ idY ) (1.7)
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for all X,Y ∈ C.
An arrow f : (A, σA,−) → (B, τB,−) in Z(C) is an arrow f : A → B in C

such that, for all X ∈ C, the following diagram is commutative

A⊗X
σ
A,X ∼
��

(f⊗id
X

)
// B ⊗X

τ
B,X∼
��

X ⊗A
(id
X
⊗f)

// X ⊗B

(1.8)

The category Z(C) is monoidal with

(A, σA,−)⊗ (B, τB,−) = (A⊗B, δA⊗B,−), (1.9)

where

δA⊗B,X = (σA,X ⊗ idB )(idA ⊗ τB,X ). (1.10)

The category Z(C) is braided via

Ψ
(A,σ

A,− ),(B,τ
B,− )

= σA,B : (A, σA,−)⊗(B, τB,−)→ (B, τB,−)⊗(A, σA,−). (1.11)

Definition 1.3. [13, p. 46-47] The centralizer ZX(C) of an object X ∈ C is
the category whose objects are pairs (A,α), where A ∈ C and α : A⊗X ∼−→
X ⊗A.

An arrow f : (A,α)→ (B, β) in ZX(C) is an arrow f : A→ B in C such
that the following diagram is commutative:

A⊗X
α ∼
��

(f⊗id
X

)
// B ⊗X

β∼
��

X ⊗A
(id
X
⊗f)

// X ⊗B

(1.12)

This becomes a monoidal category with

(A, σ)⊗ (B, τ) = (A⊗B, γ), (1.13)

where

γ = (α⊗ idY )(idX ⊗ β). (1.14)
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Definition 1.4. [13, p. 49] The centralizer Zh(C) of an arrow h : A→ B
in C is the category whose objects are triples (X,α, β), where X ∈ C and
α : A⊗X ∼−→ X ⊗ A, β : B ⊗X ∼−→ X ⊗B are isomorphisms such that the
following diagram is commutative

A⊗X
α ∼
��

(h⊗id
X

)
// B ⊗X

β∼
��

X ⊗A
(id
X
⊗h)

// X ⊗B

(1.15)

An arrow f : (X,α, β) → (Y, α′, β′) in Zh(C) is an arrow f : X → Y in
C such that the following diagrams are commutative

A⊗X
(id
A
⊗f)

��

α
∼ // X ⊗A

(f⊗id
A

)

��
A⊗ Y

α′
∼ // Y ⊗A

B ⊗X
(id
B
⊗f)

��

β

∼ // X ⊗B
(f⊗id

B
)

��
B ⊗ Y

β′
∼ // Y ⊗B

(1.16)

Remark 1.5. The category Zh(C) was introduced in [13, p. 49] as an
essential part of the proof of Lemma 7, and the authors implicitly indicated
that it is a monoidal category. For convenience, we explicitly show that the
category Zh(C) is monoidal.

Proposition 1.6. Let h : A → B be an arrow in C. Then the category
Zh(C) is monoidal with

(X,α, β)⊗ (Y, α′, β′) = (X ⊗ Y, ᾱ, β̄), (1.17)

where ᾱ, β̄ are given respectively by the compositions

A⊗X ⊗ Y α⊗id
Y−−−−→

∼
X ⊗A⊗ Y id

X
⊗α′−−−−→
∼

X ⊗ Y ⊗A (1.18)

B ⊗X ⊗ Y β⊗id
Y−−−−→

∼
X ⊗B ⊗ Y id

X
⊗β′−−−−→
∼

X ⊗ Y ⊗B (1.19)
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Proof. We have
β̄(h⊗ idX⊗Y ) = (idX ⊗ β′)(β ⊗ idY )(h⊗ idX⊗Y ) (definition of β̄)

= (idX ⊗ β′)(β ⊗ idY )(h⊗ idX ⊗ idY ) (⊗ is a bifunctor)
= (idX ⊗ β′)(β(h⊗ idX )⊗ idY ) (naturality of ⊗)
= (idX ⊗ β′)((idX ⊗ h)α⊗ idY ) (since X ∈ Zh(C))
= (idX ⊗ β′)(idX ⊗ h⊗ idY )(α⊗ idY ) (naturality of ⊗)
= (idX ⊗ β′(h⊗ idY ))(α⊗ idY ) (naturality of ⊗)
= (idX ⊗ (idY ⊗ h)α′)(α⊗ idY ) (since Y ∈ Zh(C))
= (idX ⊗ idY ⊗ h)(idX ⊗ α′)(α⊗ idY ) (naturality of ⊗)
= (idX⊗Y ⊗ h)(idX ⊗ α′)(α⊗ idY ) (⊗ is a bifunctor)
= (idX⊗Y ⊗ h)ᾱ (definition of ᾱ).

Therefore, X ⊗ Y ∈ Zh(C) and, hence, the category Zh(C) is monoidal.

Remark 1.7. (i) For all X ∈ C, we have the following evaluation functor

Z(C)
H
X // ZX(C), (1.20)

where HX is defined by (A, σA,−) 7→ (A, σA,X ). It turns out that if (A, σA,−) ∈
Z(C), then (A, σA,X ) ∈ ZX(C), for every X ∈ C. However, to show that an
object (A, σA,−) ∈ Z(C), it suffices to show that (A, σA,X ) ∈ ZX(C) for every
X ∈ C, σ is a natural transformation and the condition 1.7 holds as well
(since the condition 1.6 on objects of Z(C) is redundant [23, p. 76]).

(ii) For all A ∈ C, if (X,α, β) ∈ Zid
A

(C), then Definition 1.4 implies that
α = β. This gives rise to an isomorphism given by

ZA(C)
S
A -- Zid

A
(C)

T
A

ll (1.21)

where SA is defined by (X,α, α) 7→ (X,α−1), and TA is defined by (X,α) 7→
(X,α−1, α−1).
Thus, we have ZA(C) ∼= Zid

A
(C). It turns out that the centralizer category

of an object A in C can be identified as the centralizer category of the iden-
tity morphism of A in C. However, we will explicitly study the centralizer
category of an object due to the discussion of part (i).

(iii) From Definitions 1.2, 1.3, Z(C) is a subcategory of Zω(C).
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2 Cocompleteness

Recall that a category C is cocomplete when every functor F : D→ C, with
D a small category has a colimit [7]. For the basic notions of cocomplete cat-
egories and examples, we refer to [2], [7], or [22]. A functor is cocontinuous
if it preserves all small colimits [11, p. 142].

Proposition 2.1. [1, p. 5] Let CoMon(C) be the category of comonoids
of C and U : CoMon(C)→ C the forgetful functor. If C is cocomplete, then
CoMon(C) is cocomplete and U is cocontinuous.

Proposition 2.2. Let C be a cocomplete category and h : A→ B an arrow
in C. If PJ and QJ are cocontinuous ∀J ∈ {A,B}, then Zh(C) is cocomplete
and the forgetful functor U : Zh(C)→ C is cocontinuous. Furthermore, the
colimits of diagrams in Zh(C) can be obtained by the corresponding construc-
tion of diagrams in C.

Proof. Let D be a small category, and let F : D → Zh(C) be a func-
tor. Since C is a cocomplete category, the functor U F has a colimit
(C, (φD)

D∈D ). Since PA is cocontinuous, PA U F has a colimit
(PA(C), (PA(φD))

D∈D ). Equivalently, (A ⊗ C, (idA ⊗ φD)
D∈D ) is a colimit

of PA U F .

First, we note that the functor F : D → Zh(C) assigns to each ob-
ject D ∈ D an object (FD,αFD

, βFD
) ∈ Zh(C). We also have Ff :

(FD,αFD
, βFD

) → (FD′, α
FD′ , βFD′ ) is an arrow in Zh(C) for every ar-

row f : D → D′ in D . Thus, we have the following commutative diagrams:

A⊗D
(id
A
⊗Ff)

��

α
FD

∼ // D ⊗A
(Ff⊗id

A
)

��
A⊗D′ α

FD′
∼ // D′ ⊗A

B ⊗D
(id
B
⊗Ff)

��

β
FD

∼ // D ⊗B
(Ff⊗id

B
)

��
B ⊗D′

β
FD′

∼ // D′ ⊗B

(2.1)
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Now consider the diagram

A⊗FD
id
A
⊗Ff

//

α
FD ∼

��

id
A
⊗φ

D ++

A⊗FD′

id
A
⊗φ

D′ss α
FD′∼

��

A⊗ C
∃!ᾱ
��

FD ⊗A

Ff⊗id
A

::
φ
D
⊗id

A

11 C ⊗A FD′ ⊗A
φ
D′⊗idA

nn

(2.2)

For any D in D , we have

(φ
D′ ⊗ idA)α

FD′ (idA ⊗Ff) = (φ
D′ ⊗ idA)(Ff ⊗ idA)αFD

(by 2.1)
= (φ

D′Ff ⊗ idA)αFD
(naturality of ⊗)

= (φD ⊗ idA)αFD
.

The last equality comes from the fact that (C, (φD)
D∈D )) is a cocone on

U F . Therefore, (C⊗A, ((φD⊗idA)αFD
)
D∈D ) is a cocone on PA U F . Since

(A ⊗ C, (idA ⊗ φD)
D∈D ) is a colimit of PA U F , there exits a unique arrow

ᾱ : A⊗C → C ⊗A in C with ᾱ(idA ⊗φD) = (φD ⊗ idA)αFD
. Similarly, since

QA is cocontinuous, QA U F has a colimit of (QA(C), (QA(φD))
D∈D ). So

(C ⊗A, (φD ⊗ idA)
D∈D ) is a colimit of QA U F .

Correspondingly, we have

(idA ⊗ φD′ )α−1
FD′

(Ff ⊗ idA) = (idA ⊗ φD′ )(idA ⊗Ff)α−1
FD

(by (2.1))

= (idA ⊗ φD′Ff)α−1
FD

(naturality of ⊗)
= (idA ⊗ φD)α−1

FD

for any D in D . The last equality follows from the fact that (C, (φD)
D∈D ))

is a cocone on U F . Hence, (A⊗C, ((idA ⊗φD)α−1
FD

)
D∈D ) is a cocone on PA

U F . Since (C ⊗ A, (φD ⊗ idA)
D∈D ) is a colimit of QA U F , there exits a

unique arrow ᾱ′ : C ⊗A→ A⊗C in C with ᾱ′(φD ⊗ idA) = (idA ⊗ φD)α−1
FD

.
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Therefore, we get the commutative diagram

FD ⊗A
Ff⊗id

A //

α−1
FD

∼

��

φ
D
⊗id

A ++

FD′ ⊗A

φ
D′⊗idAss

α−1

FD′∼

��

C ⊗A
∃!ᾱ′
��

A⊗FD

id
A
⊗Ff

::
id
A
⊗φ

D

11 A⊗ C A⊗FD′
id
A
⊗φ

D′

nn

(2.3)

Next, we show that ᾱ is an invertible arrow. From the commutativity
of the diagrams 2.2 and 2.3, we have

ᾱ(idA ⊗ φD) = (φD ⊗ idA)αFD
⇔ ᾱ(idA ⊗ φD)α−1

FD
= (φD ⊗ idA)⇔

ᾱᾱ′(φD ⊗ idA) = (φD ⊗ idA).

Obviously, (C ⊗ A, (ᾱᾱ′(φD ⊗ idA))
D∈D ) is a cocone on QA U F . Since

(C ⊗A, (φD ⊗ idA)
D∈D ) is a colimit of QA U F , we have ᾱᾱ′ = idC⊗A . From

the commutativity of the diagrams 2.2 and 2.3, we have

(idA ⊗ φD)α−1
FD

= ᾱ′(φD ⊗ idA)⇔ (idA ⊗ φD) = ᾱ′(φD ⊗ idA)αFD
⇔

(idA ⊗ φD) = ᾱ′ᾱ(idA ⊗ φD).

Clearly, (A ⊗ C, (ᾱ′ᾱ(idA ⊗ φD))
D∈D ) is a cocone on PA U F . Since

(A ⊗ C, (idA ⊗ φD)
D∈D ) is a colimit of PA U F , we have ᾱ′ᾱ = idA⊗C .

Therefore, the arrow ᾱ is invertible and ᾱ−1 = ᾱ′. Replacing the object A
by B and following the same strategy we did to get ᾱ, we can similarly get
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an invertible arrow β̄ : B ⊗ C ∼−→ C ⊗B and the commutative diagrams

B ⊗FD
id
B
⊗Ff

//

β
FD ∼

��

id
B
⊗φ

D ++

B ⊗FD′

id
B
⊗φ

D′ss
β
FD′∼

��

B ⊗ C
∃!β̄
��

FD ⊗B

Ff⊗id
B

::
φ
D
⊗id

B

00 C ⊗B FD′ ⊗B
φ
D′⊗idB

nn

(2.4)

FD ⊗B
Ff⊗id

B //

β−1
FD

∼

��

φ
D
⊗id

B ++

FD′ ⊗B

φ
D′⊗idBss

β−1

FD′∼

��

C ⊗B
∃!β̄′
��

B ⊗FD

id
B
⊗Ff

::
id
B
⊗φ

D

00 B ⊗ C B ⊗FD′
id
B
⊗φ

D′

nn

(2.5)

To show that (C, ᾱ, β̄) ∈ Zh(C), we need to show that the following
diagram is commutative:

A⊗ C
ᾱ ∼
��

(h⊗id
C

)
// B ⊗ C

β̄∼
��

C ⊗A
(id
C
⊗h)

// C ⊗B

(2.6)
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To show this, consider the following diagram

A⊗FD
id
A
⊗Ff

//

α
FD ∼

��

id
A
⊗φ

D ,,

A⊗FD′

id
A
⊗φ

D′rr α
FD′∼

��

A⊗ C

ᾱ

��

h⊗id
C

��

FD ⊗A
Ff⊗id

A

44

φ
D
⊗id

A ))

φ
D
⊗h

::

FD′ ⊗A

φ
D′⊗idAuu

φ
D′⊗h

dd

C ⊗A

id
C
⊗h ((

B ⊗ C

β̄vv
C ⊗B

(2.7)

We note that (C⊗A, ((idC ⊗h)ᾱ(idA⊗φD))
D∈D ) is a cocone on PA U F

since

(idC ⊗ h)ᾱ(idA ⊗ φD′ )(idA ⊗Ff) = (idC ⊗ h)ᾱ(idA ⊗ φD′Ff)
= (idC ⊗ h)ᾱ(idA ⊗ φD)

for any D in D . Furthermore, for any D in D , we have

(idC ⊗ h)ᾱ(idA ⊗ φD) = (idC ⊗ h)(φD ⊗ idA)αFD
(by 2.2)

= (φD ⊗ h)αFD
(naturality of ⊗)

= (φD ⊗ idB )(idFD
⊗ h)αFD

(naturality of ⊗)
= (φD ⊗ idB )βFD

(h⊗ idFD
) ((FD,αFD

, βFD
) ∈ Zh(C))

= β̄(idB ⊗ φD)(h⊗ idFD
) (by 2.4)

= β̄(h⊗ φD) (naturality of ⊗)
= β̄(h⊗ idC )(idA ⊗ φD) (naturality of ⊗)

Since (A⊗ C, (idA ⊗ φD)
D∈D ) is a colimit of PA U F , we must have (idC ⊗

h)ᾱ = β̄(h ⊗ idC ). Therefore, (C, ᾱ, β̄) ∈ Zh(C) and φD is an arrow in
Zh(C), ∀D ∈ D . Thus, ((C, ᾱ, β̄), (φD)

D∈D ) is a cocone on F .
To show that ((C, ᾱ, β̄), (φD)

D∈D ) is a colimit of F , let ((C ′, λ, γ), (ψD)
D∈D )

be a cocone on F . Since (C, (φD)
D∈D ) is a colimit of U F , there exists a

unique morphism g : C → C ′ in C with gφD = ψD for every D ∈ D . The
proof is complete whence we show that g is a morphism in Zh(C). Explicitly,
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we need to show that the diagrams

A⊗ C
(id
A
⊗g)
��

ᾱ
∼ // C ⊗A

(g⊗id
A

)

��
A⊗ C ′

λ

∼ // C ′ ⊗A

B ⊗ C
(id
B
⊗g)
��

β̄

∼ // C ⊗B
(g⊗id

B
)

��
B ⊗ C ′ γ

∼ // C ′ ⊗B
(2.8)

commute. Consider the diagram

A⊗FD
id
A
⊗Ff

//

α
FD ∼

��

id
A
⊗φ

D ,,

A⊗FD′

id
A
⊗φ

D′rr α
FD′∼

��

A⊗ C

ᾱ

��

id
A
⊗g

��

FD ⊗A
Ff⊗id

A

44

φ
D
⊗id

A ))

ψ
D
⊗id

A

99

FD′ ⊗A

φ
D′⊗idAuu

ψ
D′⊗idA

ee

C ⊗A

g⊗id
A
((

A⊗ C ′

λvv
C ′ ⊗A

(2.9)

Notably, (C ′ ⊗ A, ((g ⊗ idA)ᾱ(idA ⊗ φD))
D∈D ) is a cocone on PA U F since

for every D ∈ D , we have

(g ⊗ idA)ᾱ(idA ⊗ φD′ )(idA ⊗Ff) = (g ⊗ idA)ᾱ(idA ⊗ φD′Ff) =
(g ⊗ idA)ᾱ(idA ⊗ φD).

We also have
(g ⊗ idA)ᾱ(idA ⊗ φD) = (g ⊗ idA)(φD ⊗ idA)αFD

(by 2.2)
= (gφD ⊗ idA)αFD

(naturality of ⊗)
= (ψD ⊗ idA)αFD

(since gφD = ψD , ∀D ∈ D)
= λ(idA ⊗ ψD) (ψD is a morphism in Zh(C), ∀D ∈ D)
= λ(idA ⊗ gφD) (since gφD = ψD , ∀D ∈ D)
= λ(idA ⊗ g)(idA ⊗ φD) (naturality of ⊗)

for any D in D . Since (A ⊗ C, (idA ⊗ φD)
D∈D ) is a colimit of PA U F , it

follows that
(g ⊗ idA)ᾱ = λ(idA ⊗ g). (2.10)
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Similarly, replacing A by B and considering the following diagram

B ⊗FD
id
B
⊗Ff

//

β
FD ∼

��

id
B
⊗φ

D ,,

B ⊗FD′

id
B
⊗φ

D′rr β
FD′∼

��

B ⊗ C

β̄

��

id
B
⊗g

��

FD ⊗B
Ff⊗id

B

44

φ
D
⊗id

B ))

ψ
D
⊗id

B

::

FD′ ⊗B

φ
D′⊗idBuu

ψ
D′⊗idB

ee

C ⊗B

g⊗id
B
((

B ⊗ C ′

γvv
C ′ ⊗B

(2.11)

give us
(g ⊗ idB )β̄ = γ(idB ⊗ g). (2.12)

From (2.10) and (2.12), we have g is a morphism in Zh(C), and thus
((C, ᾱ, β̄), (φD)

D∈D ) is a colimit of F , and the proof is complete.

Corollary 2.3. Let C be a cocomplete category and X an object in C. If
PX ,QX are cocontinuous, then ZX(C) is cocomplete and the forgetful func-
tor U : ZX(C)→ C is cocontinuous. Moreover, the colimits of diagrams in
ZX(C) can be obtained by the corresponding construction of diagrams in C.

Proof. The proof follows from Remark 1.7 (ii) and Proposition 2.2 by setting
h = idX .

Proposition 2.4. Let (C,⊗, I) be monoidal category with C cocomplete. If
PX and QX are cocontinuous ∀X ∈ C, then Z(C) is cocomplete and the
forgetful functor U : Z(C) → C is cocontinuous. Further, the colimits
of diagrams in Z(C) can be obtained by the corresponding construction of
diagrams in C.

Proof. Let D be a small category, and let F : D → Z(C) be a functor.
For any X ∈ C, let UX : ZX(C)→ C be the corresponding forgetful functor.
Since U is cocontinuous, UX is cocontinuous for every X ∈ C. Moreover,
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we have HXF :: D → ZX(C) is a (small) functor and UXHX = U for
any X ∈ C, where HX is the functor defined in Remark (1.7). Since C is
a cocomplete category, the functor U F has a colimit (C, (φD)

D∈D ). For
every X ∈ C, (PX(C), (PX(φD))

D∈D ) is a colimit of the functor PX U F
because PX is cocontinuous. Thus, for any X ∈ C, (X ⊗ C, (idX ⊗ φD)

D∈D )
is a colimit of PX U F , hence, (X ⊗ C, (idX ⊗ φD)

D∈D ) is a colimit of PX
UXHXF for every X ∈ C.

Further, the functor F : D → Z(C) assigns to each object D ∈ D an ob-

ject (FD,α
FD

) ∈ Z(C), and Ff : (FD,α
FD

)→ (FD′, α
FD′

) is an arrow
in Z(C) for every arrow f : D → D′ in D . Fix an object X ∈ C, we have
HXF :: D → ZX(C) is a (small) functor. Since C is a cocomplete category,
the category ZX(C) is cocomplete by Corollary 2.3. Hence, UXHXF has
a colimit. We will explicitly show that ((C, µC,X ), (φD)

D∈D ) is a colimit of
HXF , where µC,X : C ⊗X → X ⊗ C is a unique invertible arrow in C with
µC,X (φD ⊗ idX ) = (idX ⊗ φD)αH

X
FD

.

First, we note that the functor HXF : D → ZX(C) assigns to each ob-

ject D ∈ D an object (HXFD,α
H
X

FD

) ∈ ZX(C). In addition, we have

HXFf : (HXFD,α
H
X

FD

)→ (HXFD′, α
H
X

FD′
) is an arrow in ZX(C) for

every arrow f : D → D′ in D . By 1.12, we have the commutative diagram

HXFD ⊗X

α
H
X

FD ∼
��

(H
X

Ff⊗id
X

)
//HXFD′ ⊗X

α
H
X

FD′∼
��

X ⊗HXFD
(id
X
⊗H

X
Ff)
// X ⊗HXFD′

(2.13)

Consider the diagram

HXFD ⊗X
H
X

Ff⊗id
X //

α
H
X

FD ∼

��

φ
D
⊗id

X ++

HXFD′ ⊗X

φ
D′⊗idXrr

α
H
X

FD′∼

��

C ⊗X
∃!µ

C,X

��
X ⊗HXFD

id
X
⊗H

X
Ff

88id
X
⊗φ

D

00 X ⊗ C X ⊗HXFD′
id
X
⊗φ

D′

nn

(2.14)
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SinceQX is cocontinuous, (QX(C), (QX(φD))
D∈D ) is a colimit ofQX UXHXF .

So (C ⊗X, (φD ⊗ idX )
D∈D ) is a colimit of QX UXHXF . We also have

(idX ⊗ φD′ )α
H
X

FD′
(HXFf ⊗ idX ) = (idX ⊗ φD′ )(idX ⊗HXFf)α

H
X

FD

(by 2.13)

= (idX ⊗ φD′HXFf)α
H
X

FD

(naturality of ⊗)

= (idX ⊗ φD)α
H
X

FD

for any D in D . The last equality comes from the fact that (C, (φD)
D∈D ))

is a cocone on UXHXF . Hence, (X ⊗ C, ((idX ⊗ φD)α
H
X

FD

)
D∈D ) is a co-

cone on PX UXHXF . Since (C ⊗ X, (φD ⊗ idX )
D∈D ) is a colimit of QX

UXHXF , there exits a unique arrow µC,X : C ⊗ X → X ⊗ C in C with

µC,X (φD ⊗ idX ) = (idX ⊗ φD)α
H
X

FD

. Similarly, we consider the diagram

X ⊗HXFD
id
X
⊗H

X
Ff

//

(α
H
X

FD
)
−1 ∼

��

id
X
⊗φ

D ++

X ⊗HXFD′

id
X
⊗φ

D′rr
(α

H
X

FD′
)
−1∼

��

X ⊗ C
∃!ν

C,X

��
HXFD ⊗X

H
X

Ff⊗id
X

88φ
D
⊗id

X

00 C ⊗X HXFD′ ⊗X
φ
D′⊗idX

nn

(2.15)
We notice that

(φ
D′ ⊗ idX )(α

H
X

FD′
)
−1

(idX ⊗HXFf) = (φD ⊗ idX )(HXFf ⊗ idX )(α
H
X

FD

)
−1

(by 2.13)

= (φ
D′HXFf ⊗ idX )(α

H
X

FD

)
−1

(naturality of ⊗)

= (φD ⊗ idX )(α
H
X

FD

)
−1

for any D in D , where the last equality is coming from the fact that
(C, (φD)

D∈D )) is a cocone on UXHXF .

Therefore, (C⊗X, ((φD⊗idX )(α
H
X

FD

)
−1

)
D∈D ) is a cocone on PX UXHXF .

Since (X⊗C, (idX⊗φD)
D∈D ) is a colimit of PX UXHXF , there exits a unique

arrow νC,X : X⊗C → C⊗X in C with νC,X (idX⊗φD) = (φD⊗idX )(α
H
X

FD

)
−1

.
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Next, we show that µC,X is an invertible arrow. From the commutativity of
the diagrams 2.14 and 2.15, we have

(idX ⊗ φD)α
H
X

FD

= µC,X (φD ⊗ idX )⇔ (idX ⊗ φD) =

µC,X (φD ⊗ idX )(α
H
X

FD

)
−1
⇔ (idX ⊗ φD) = µC,XνC,X (idX ⊗ φD).

Obviously, (X⊗C, (µC,XνC,X (idX⊗φD))
D∈D ) is a cocone on PX UXHXF .

Since (X⊗C, (idX⊗φD)
D∈D ) is a colimit of PX UXHXF , we have µC,XνC,X =

idX⊗C . In a similar way, from the commutativity of the diagrams 2.14 and
2.15, we have

νC,X (idX ⊗ φD) = (φD ⊗ idX )(α
H
X

FD

)
−1
⇔ νC,X (idX ⊗ φD)α

H
X

FD

=
(φD ⊗ idX )⇔ νC,XµC,X (φD ⊗ idX ) = (φD ⊗ idX ).

Clearly, (C ⊗X, (νC,XµC,X (φD ⊗ idX ))
D∈D ) is a cocone on QX UXHXF .

Since (C⊗X, (φD⊗idX )
D∈D ) is a colimit of QX UXHXF , we have νC,XµC,X =

idC⊗X . Therefore, the arrow µC,X is invertible and µ−1
C,X

= νC,X . It follows
that (C, µC,X ) ∈ ZX(C), and φD is an arrow in ZX(C),∀D ∈ D . Hence,
((C, µC,X ), (φD)

D∈D ) is a cocone on HXF .

It remains to show that ((C, µC,X ), (φD)
D∈D ) is a colimit of HXF . Let

((C ′, η), (ψD)
D∈D ) be a cocone on HXF . Since (C, (φD)

D∈D ) is a colimit of
UXHXF , there exists a unique morphism g : C → C ′ in C with gφD = ψD
for every D ∈ D . Clearly, all we need is to show that g is a morphism in
ZX(C). Indeed, we need to show that the diagram

C ⊗X
(g⊗id

X
)

��

µ
C,X

∼ // X ⊗ C
(id
X
⊗g)

��
C ′ ⊗X η

X

∼ // X ⊗ C ′

(2.16)
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commutes. Consider the diagram

HXFD ⊗X
H
X

Ff⊗id
X //

α
H
X

FD ∼

��

φ
D
⊗id

X ,,

HXFD′ ⊗X

φ
D′⊗idXqq

α
H
X

FD′∼

��

C ⊗X

µ
C,X

��

g⊗id
X

��

X ⊗HXFD

id
X
⊗H

X
Ff

33

id
X
⊗φ

D ))

id
X
⊗ψ

D

::

X ⊗HXFD′

id
X
⊗φ

D′uu

id
X
⊗ψ

D′

ee

X ⊗ C

id
X
⊗g ((

C ′ ⊗X

ηvv
X ⊗ C ′

(2.17)
Notably, (X⊗C ′, ((idX ⊗g)µC,X (φD ⊗ idX ))

D∈D ) is a cocone on PX UXHXF
since

(idX ⊗ g)µC,X (φ
D′ ⊗ idX )(HXFf ⊗ idX ) = (idX ⊗ g)µC,X (φ

D′HXFf ⊗ idX )
= (idX ⊗ g)µC,X (φD ⊗ idX )

We also have
(idX ⊗ g)µC,X (φD ⊗ idX ) = (idX ⊗ g)(idX ⊗ φD)α

H
X

FD

(by 2.14)

= (idX ⊗ gφD)α
H
X

FD

(naturality of ⊗)

= (idX ⊗ ψD)α
H
X

FD

(since gφD = ψD , ∀D ∈ D)
= η(ψD ⊗ idX )
= η(gφD ⊗ idX ) (since gφD = ψD , ∀D ∈ D)
= η(g ⊗ idX )(φD ⊗ idX ) (naturality of ⊗)

for any D in D , where the forth equality follows from the fact that ψD is a
morphism in ZX(C), ∀D ∈ D . Since (C ⊗X, (φD ⊗ idX )

D∈D ) is a colimit of
QX UXHXF , we have

(idX ⊗ g)µC,X = η(g ⊗ idX ). (2.18)

Thus, we obtain ((C, µC,X ), (φD)
D∈D ) is a colimit of HXF , ∀X ∈ C, and

thus, we obtain a family of invertible arrows {µC,X}X∈C in C, where µC,X is
the map in diagram 2.14 for all X ∈ C. Therefore, the proof is complete
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whence we show that {µC,X}X∈C are natural in X, for any X ∈ C, and the
conditions (1.6) and (1.7) hold.

To show that µC,− : C ⊗ − → − ⊗ C is a natural transformation, let
ζ : A → B be an arrow in C. We need to show that the following diagram
is commutative:

C ⊗A
(id
C
⊗ζ)
��

ν
C,A

∼ // A⊗ C
(ζ⊗id

C
)

��
C ⊗B ν

C,B

∼ // B ⊗ C

(2.19)

Since (FD,α
FD

) ∈ Z(C), ∀D ∈ D , α
FD

is a natural transformation, ∀D ∈
D . Thus, for any D ∈ D , the diagram

FD ⊗A
(id

FD
⊗ζ)
��

α
FD

A

∼ // A⊗FD

(ζ⊗id
FD

)

��
FD ⊗B

α
FD

B

∼ // B ⊗FD

(2.20)

commutes. Now, consider the following diagram

FD ⊗A
Ff⊗id

A //

id
FD
⊗ζ

��

α
FD

A
∼

��

φ
D
⊗id

A ,,

FD′ ⊗A

φ
D′⊗idArr

α
FD′

A
∼

��

id
FD′⊗ζ

��

C ⊗A

ν
C,A

��

id
C
⊗ζ

��

FD ⊗B

α
FD

B
∼

**

A⊗FD

id
A
⊗Ff

44

id
A
⊗φ

D ))ζ⊗id
FD

��

A⊗FD′

id
A
⊗φ

D′uu ζ⊗id
FD′

��

FD′ ⊗B

α
FD′

B

∼

tt

A⊗ C

ζ⊗id
C ((

C ⊗B

ν
C,Bvv

B ⊗FD

id
B
⊗φ

D

33 B ⊗ C B ⊗FD′

id
B
⊗φ

D

kk

(2.21)
Clearly, (B ⊗C, ((ζ ⊗ idC )νC,A(φD ⊗ idA))

D∈D ) is a cocone on QA U F since
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(ζ ⊗ idC )νC,A(φ
D′ ⊗ idA)(F ⊗ idA) = (ζ ⊗ idC )νC,A(φ

D′F ⊗ idA)
= (ζ ⊗ idC )νC,A(φD ⊗ idA)

Furthermore, for any D ∈ D , we have

(ζ ⊗ idC )νC,A(φD ⊗ idA) = (ζ ⊗ idC )(idA ⊗ φD)α
FD

A

(by (2.14) taking A and α
FD

A
in place of X and αFD

, respectively)

= (ζidA ⊗ idCφD)α
FD

A
(naturality of ⊗)

= (ζ ⊗ φD)α
FD

A

= (idB ⊗ φD)(ζ ⊗ idFD
)α

FD

A
(naturality of ⊗)

= (idB ⊗ φD)α
FD

B
(idFD

⊗ ζ)(α
FD

is a natural transformation)
= νC,B (φD ⊗ idB )(idFD

⊗ ζ)

(by (2.14) taking B and α
FD

B
in place of X and αFD

, respectively.)
= νC,B (φD idFD

⊗ idBζ) (naturality of ⊗)
= νC,B (φD ⊗ ζ)
= νC,B (idC ⊗ ζ)(φD ⊗ idA) (naturality of ⊗).

Since (C ⊗ A, (φD ⊗ idA)
D∈D ) is a colimit of QA U F , it follows that (ζ ⊗

idC )νC,A = νC,B (idC ⊗ ζ). Hence, µC,− : C ⊗ − −→ − ⊗ C is a natural
transformation. By Remark 1.7, it remains to show that the condition (1.7)
holds. Consider the following diagram

FD ⊗X ⊗ Y
Ff⊗id

X⊗Y //

α
FD

X⊗Y
∼

��

φ
D
⊗id

X⊗Y ,,

FD′ ⊗X ⊗ Y

φ
D′⊗idX⊗Yqq

α
FD′

X⊗Y
∼

��

C ⊗X ⊗ Y

µ
X⊗Y

��

µ
X
⊗id

Y

��

X ⊗ Y ⊗FD

id
X⊗Y ⊗φD

11

X ⊗ Y ⊗FD′

id
X⊗Y ⊗φD′

kk

X ⊗ C ⊗ Y

id
X
⊗µ

Y

xx
X ⊗ Y ⊗ C

(2.22)
We have
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(idX ⊗ µY )(µX ⊗ idY )(φD ⊗ idX⊗Y ) = (idX ⊗ µY )(µX ⊗ idY )(φD ⊗ idX ⊗ idY ) (⊗ is a bifunctor)
= (idX ⊗ µY )(µX (φD ⊗ idX )⊗ idY idY ) (naturality of ⊗)

= (idX ⊗ µY )((idX ⊗ φD)α
FD

X
⊗ idY )

(by (2.14) taking α
FD

X
in place of αFD

)

= (idX ⊗ µY )(idX ⊗ φD ⊗ idY )(α
FD

X
⊗ idY ) (naturality of ⊗)

= (idX idX ⊗ µY (φD ⊗ idY ))(α
FD

X
⊗ idY ) (naturality of ⊗)

= (idX ⊗ (idY ⊗ φD)α
FD

Y
)(α

FD

X
⊗ idY )

(taking Y, α
FD

Y
in (2.14) in place of X,αFD

respectively)

= (idX ⊗ idY ⊗ φD)(idX ⊗ α
FD

Y
)(α

FD

X
⊗ idY )(naturality of ⊗)

= (idX ⊗ idY ⊗ φD)α
FD

X⊗Y (since (FD,α
FD

) ∈ Z(C))
= (idX⊗Y ⊗ φD)α

FD

X⊗Y (naturality of ⊗)

Since (C ⊗ X ⊗ Y, (φD ⊗ idX⊗Y )
D∈D ) is a colimit of QX⊗Y U F , it follows

that the condition (1.7) is satisfied. Therefore, (C, µC,−) is a colimit of F
and the proof is complete.

The following is an immediate consequence of the proof of Proposition
2.4 and Remark 1.7.

Corollary 2.5. Let C be a cocomplete category. If PX ,QX are cocontinuous
∀X ∈ C, then Zω(C) is cocomplete and the forgetful functor U : Zω(C) →
C is cocontinuous. Moreover, the colimits of diagrams in Zω(C) can be
obtained by the corresponding construction of diagrams in C.

The following theorem is well-known.

Theorem 2.6. [3, p. 225] Right adjoints preserve limits, and left adjoints
preserve colimits.

Following [8, p. 293, 294], a monoidal category C is biclosed when, for
each object X ∈ C, both functors PX = X ⊗ − and QX = − ⊗ X have a
right adjoint. A biclosed symmetric monoidal category is called a symmetric
monoidal closed category. Since in a symmetric monoidal category, both
functors PX = X ⊗− and QX = −⊗X are naturally isomorphic, it follows
that a symmetric monoidal category C is closed if and only if, for each object
X ∈ C, the functor QX = − ⊗ X : C → C has a right adjoint [8, p. 294].
Therefore, by using Proposition 2.1 together with Proposition 2.2, Corollary
2.3, Proposition 2.4, Corollary 2.5 and Theorem 2.6, we have the following
immediate consequence.

Proposition 2.7. Let C be a monoidal category. Fix an object X and a
morphism h : A → B in C. For any A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}, let
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UA : CoMon(A )→ A be the forgetful functor corresponding to A . If C is a
cocomplete biclosed monoidal category, then A is cocomplete and the forget-
ful functor UA is cocontinuous for any A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}.
Furthermore, the colimits of diagrams in A can be obtained by the corre-
sponding construction of diagrams in C.

Example 2.8.

(1) The category Set of sets and mappings is cocomplete [22, p. 66],
and it can also be seen to be cartesian closed [8, p. 296], hence symmet-
ric monoidal closed. By Proposition 2.7, Zh(Set), ZX(Set), Z(Set), and
Zω(Set) are cocomplete for any X ∈ Set and a morphism h in Set.

(2) The category Cat of small categories and functors is cocomplete [22,
p. 66], and it can also be seen as cartesian closed [8, p. 296], hence sym-
metric monoidal closed. By Proposition 2.7, Zh(Cat),ZX(Cat),Z(Cat),
and Zω(Cat) are cocomplete for any X ∈ Cat and a morphism h in Cat.

(3) The category Top of topological spaces and continuous mappings
is cocomplete [22, p. 66], and it can be provided with the structure of a
symmetric monoidal closed category (See [8, p. 299]). By Proposition 2.7,
Zh(Top),ZX(Top),Z(Top), and Zω(Top) are cocomplete for any X ∈
Top and a morphism h in Top.

(4)If ModT is the category of models of a commutative algebraic theory
T . Then the category ModT is cocomplete [8, p. 138]. Further, ModT is
symmetric monoidal closed [8, p. 297]. It follows by Proposition 2.7 that
Zh(ModT ),ZX(ModT ),Z(ModT ), and Zω(ModT ) are cocomplete for any
X ∈ModT and a morphism h in ModT .

(5) The category Ban1 of Banach spaces and linear contractions is sym-
metric monoidal closed. The tensor product A ⊗ B of two Banach spaces
is the so-called “projective tensor product” of A, B. By Proposition 2.7,
Zh(Ban1),ZX(Ban1),Z(Ban1), and Zω(Ban1) are cocomplete.

(6) If R is a ring, the category L−RMR−R of R−R−bimodules and left-
right−R−linear mappings is monoidal biclosed, for the structure given by
L⊗M ∼= L⊗RM . The right adjoint to −⊗M is given by [M,−]r where

[M,N ]r = {f : M → N | f right− R− linear}

while the right adjoint to L⊗− is given by [M,−]l where

[L,N ]r = {f : L→ N | f left− R− linear}
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Proposition 2.7 implies that the categories Zh(L−RMR−R), ZX(L−RMR−R),
Z(L−RMR−R), and Zω(L−RMR−R) are cocomplete for any X ∈ L−RMR−R
and a morphism h in L−RMR−R.

(7) The category CinfSL of complete inf semi-lattices is evidently com-
plete and therefore cocomplete, and it can also be seen as a symmetric
monoidal closed category [5]. By Proposition 2.7, Zh(CinfSL), ZX(CinfSL),
Z(CinfSL), and Zω(CinfSL) are cocomplete for any X ∈ CinfSL and a mor-
phism h in CinfSL.

(8) Grothendieck topos GTY P is evidently complete and therefore co-
complete, and it is also a symmetric monoidal closed category [5]. By
Proposition 2.7, Zh(GTY P ), ZX(GTY P ), Z(GTY P ) and Zω(GTY P ) are
cocomplete for any X ∈ GTY P and a morphism h in GTY P .

(9) The category LCA of locally compact abelian groups for which the
duality reduces to the standard duality for those groups [6]. By Proposition
2.7, Zh(LCA), ZX(LCA), Z(LCA), and Zω(LCA) are cocomplete for any
X ∈ LCA and a morphism h in LCA.

(10) If D is a small category, the category Fun(D,Set) of functors and
natural transformations is cartesian closed, hence a symmetric monoidal
closed [8, p. 297]. The category Fun(D,Set) is also cocomplete [22, p. 66].
By Proposition 2.7, the categories Zh(Fun(D,Set)), ZX(Fun(D,Set)),
Z(Fun(D,Set)) and Zω(Fun(D,Set)) are cocomplete for any
X ∈ Fun(D,Set) and a morphism h in Fun(D,Set).

(11) Let
1

��
Q : 3 4oo

2

@@

(2.23)

be a quiver, and let RepQ be the category of representations of Q over K.
Let RepQ1 be the full subcategory of RepQ of all representations of Q (over
K) whose vector spaces at the vertices 2, 3 and 4 are zeros, and let RepQ13

be the full subcategory of RepQ of all representations of Q (over K) whose
vector spaces at the vertices 2 and 4 are zeros.

Fix X ∈ RepQ and a morphism h : A → B in RepQ. Every object
in Zh(RepQ13) can be viewed as a 7-tuple (V1, V3, ϕ, α1, α3, β1, β3), where
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(V1, α1, β1), (V3, α3, β3) ∈ Zh(V ecK) and ϕ : V1 → V2 is a morphism in the
category V ecK of vector spaces over K. Every object in Z(RepQ13) can be
viewed as a 5-tuple (V1, V3, ϕ, σ1, σ3), where (V1, σ1), (V3, σ3) ∈ Z(V ecK)
and ϕ : V1 → V2 is a morphism in V ecK. The categories ZX(RepQ13) and
Zω(RepQ13) can be described similarly. The category RepQ is a cocomplete
(and a complete) category (since it is equivalent to a category of modules
over suitable algebra). Consequently, Zh(RepQ13), Z(RepQ13), ZX(RepQ13)
and Zω(RepQ13) are cocomplete (and complete) categories.

Note that RepQ1
∼= V ecK and hence we have Zh(RepQ1) ∼= Zh(V ecK),

Z(RepQ1) ∼= Z(V ecK), ZX(RepQ1) ∼= ZX(V ecK) and Zω(RepQ1) ∼= Zω(V ecK).
Thus, Zh(RepQ1), Z(RepQ1), ZX(RepQ1) and Zω(RepQ1) are cocomplete
(and complete) categories.

Definition 2.9. [10, p. 40] Let (C,⊗, I, a, l, r) be a monoidal category.
(i) An object X∗ in C is said to be a left dual of X if there exist mor-

phisms evX : X∗ ⊗ X → I and coevX : I → X ⊗ X∗ called the evaluation
and coevaluation, such that the compositions

X
coev

X
⊗id

X // (X ⊗X∗)⊗X
a
X,X∗,X // X ⊗ (X∗ ⊗X)

id
X
⊗ev

X // X

X∗
id
X∗⊗coevX // X∗ ⊗ (X ⊗X∗)

a−1
X∗,X,X∗ // (X∗ ⊗X)⊗X∗

ev
X
⊗id

X∗ // X∗

are the identity morphisms.

An object ∗X in C is said to be a right dual of X if there exist morphisms
ev′
X

: X ⊗ ∗X → I and coev′
X

: I → ∗X ⊗X such that the compositions

X
id
X
⊗coev′

X // X ⊗ (∗X ⊗X)
a−1
X,∗X,X // (X ⊗ ∗X)⊗X

ev′
X
⊗id

X // X

∗X
coev′

X
⊗id∗X // (∗X ⊗X)⊗ ∗X

a∗X,X,∗X // ∗X ⊗ (X ⊗ ∗X)
id∗X⊗ev′X // ∗X

are the identity morphisms.
(ii) An object in C is called rigid if it has left and right duals. A monoidal

category C is called rigid if every object of C is rigid.

Remark 2.10. Let C be a monoidal category. Fix an object X and a
morphism h : A → B in C. Let A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}. If C is
rigid, then A needs not be cocomplete as in the following examples.
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Example 2.11.

(1) Let Rep(H) be the category of finite dimensional representations of
a finite dimensional Hopf algebra H. Then Rep(H) is rigid [10, p. 113].
Since the category Z(Rep(H)) is equivalent to as a braided tensor category
to Rep(D(H)), the category of finite dimensional representations of the
quantum double of H [10, p. 208], Z(Rep(H)) is not cocomplete.

(2) Let G be a monoid (which we will usually take to be a group), and
let A be an abelian group (with operation written multiplicatively). Let
CG = CG(A) be the category whose objects δg are labeled by elements of G
(so there is only one object in each isomorphism class), HomCG(δg1 , δg2) = ø
if g1 6= g2, and HomCG(δg, δg) = A, with the functor ⊗ defined by δg⊗ δh =
δgh, and the tensor product of morphisms defined by a⊗ b = ab. Then CG is
a monoidal category with the associativity isomorphism being the identity,
and the identity object I = being the unit element of G.

This example has a “linear” version. Namely, let K be a field and K −
V ecG denote the category of G-graded vector spaces over K, that is, vector
spaces V with a decomposition V =

⊕
g∈G Vg. Morphisms in this category

are linear maps which preserve the grading. Define the tensor product on
this category by the formula (V ⊗W )g =

⊕
x,y∈G:xy=g Vx⊗Wy, and the unit

object I by I1 = K and Ig = 0 for g 6= 1. Then, defining the associativity
constraint and left and right unit constraints in an obvious way, we equip
K− V ecG with the structure of a monoidal category. Similarly one defines
the monoidal category f.d.K−V ecG of finite dimensional G-graded K-vector
spaces.
When no confusion is possible, we will denote the categories K − V ecG,
f.d.K−V ecG simply by V ecG, f.d.V ecG [10, p. 27]. Then the category V ecG
is rigid if and only if the monoid G is a group [10, p. 43]. Furthermore,
if G is a finitely generated infinite simple group (it is known that such
groups exist), then Z(V ecG) is equivalent to the category f.d.V ec of finite
dimensional spaces [10, p. 207]. Thus, Z(V ecG) is not cocomplete.

3 Co-wellpoweredness

Let E be the class of all epimorphisms of a category A. Then A is called
co-wellpowered provided that no A-object has a proper class of pairwise
non-isomorphic quotients [2, p. 125]. In other words, for every object the
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quotients form a set [22, p. 92, 95]. We refer the reader to [2] basics on
quotients and co-wellpowered categories.

Proposition 3.1. [1, p. 5] Let CoMon(C) be the category of comonoids of
C and U : CoMon(C) → C be the forgetful functor. If C is co-wellpowered,
then so is CoMon(C).

Proposition 3.2. Let C be a co-wellpowered category, and let h : A → B
be an arrow in C. If PJ is cocontinuous ∀J ∈ {A,B}, then Zh(C) is co-
wellpowered.

Proof. It is enough to show that if p : (X,α, β) → (Y, α′, β′) and q :
(X,α, β) → (Z,α′′, β′′) are in Zh(C) and equivalent as epimorphisms in
C, then they are equivalent (as epimorphisms) in Zh(C). Let θ : Y → Z
be an isomorphism in C for which θp = q. We show that θ is in fact an
isomorphism in Zh(C).

Since p and q are arrows in Zh(C), the following diagrams are commu-
tative.

A⊗X
(id
A
⊗p)
��

α
∼ // X ⊗A

(p⊗id
A

)

��
A⊗ Y

α′
∼ // Y ⊗A

B ⊗X
(id
B
⊗p)
��

β

∼ // X ⊗B
(p⊗id

B
)

��
B ⊗ Y

β′
∼ // Y ⊗B

(3.1)

A⊗X
(id
A
⊗q)
��

α
∼ // X ⊗A

(q⊗id
A

)

��
A⊗ Z

α′′
∼ // Z ⊗A

B ⊗X
(id
B
⊗q)
��

β

∼ // X ⊗B
(q⊗id

B
)

��
B ⊗ Z

β′′
∼ // Z ⊗B

(3.2)
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Consider the following diagrams:

A⊗X
(id
A
⊗p)
��

(id
A
⊗q)

))

α
∼ // X ⊗A

(q⊗id
A

)

uu

(p⊗id
A

)

��
A⊗ Y

(id
A
⊗θ)
��

α′
∼ // Y ⊗A

(θ⊗id
A

)

��
A⊗ Z

α′′
∼ // Z ⊗A

(3.3)

B ⊗X
(id
B
⊗p)
��

(id
B
⊗q)

))

α
∼ // X ⊗B

(q⊗id
B

)

uu

(p⊗id
B

)

��
B ⊗ Y

(id
B
⊗θ)
��

α′
∼ // Y ⊗B

(θ⊗id
B

)

��
B ⊗ Z

α′′
∼ // Z ⊗B

(3.4)

We have
α′′(idA ⊗ θ)(idA ⊗ p) = α′′(idA ⊗ θp) (naturality of ⊗)

= α′′(idA ⊗ q) (since θp = q
= (q ⊗ idA)α (by (3.2))
= (θp⊗ idA)α (since θp = q
= (θ ⊗ idA)(p⊗ idA)α (naturality of ⊗)
= (θ ⊗ idA)α′(idA ⊗ p) (by (3.1))

Since PA is cocontinuous, it preserves epimorphisms [16, p. 72]. Hence,
PA(p) = (idA ⊗ p) is an epimorphism. Thus, α′′(idA ⊗ θ) = (θ ⊗ idA)α′.
Similarly, from diagram (3.4), we get α′′(idB ⊗ θ) = (θ ⊗ idB )α′. Therefore,
θ is an isomorphism in Zh(C).

Proposition 3.3. Let C be a co-wellpowered category and X an object in
C. If QX is cocontinuous, then ZX(C) is co-wellpowered.

Proof. As in Proposition 3.2, it suffices to show that if p : (A,α) → (B, β)
and q : (A,α) → (B′, β′) are in ZX(C) and equivalent as epimorphisms in
C, then they are equivalent (as epimorphisms) in ZX(C). Let θ : B → B′ be
an isomorphism in C with θp = q. We show that θ is in fact an isomorphism
in ZX(C).
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Since p and q are arrows in ZX(C), the following diagrams are commu-
tative:

A⊗X
(p⊗id

X
)

��

α
∼ // X ⊗A

(id
X
⊗p)

��
B ⊗X

β

∼ // X ⊗B

A⊗X
(q⊗id

X
)

��

α
∼ // X ⊗A

(id
X
⊗q)

��
B′ ⊗X

β′
∼ // X ⊗B′

(3.5)
Consider the following diagram

A⊗X
(p⊗id

X
)

��
(q⊗id

X
)

))

α
∼ // X ⊗A

(id
X
⊗q)

uu

(id
X
⊗p)

��
B ⊗X

(θ⊗id
X

)

��

β

∼ // X ⊗B
(id
X
⊗θ)

��
B′ ⊗X

β′
∼ // X ⊗B′

(3.6)

We have

β′(θ ⊗ idX )(p⊗ idX ) = β′(θp⊗ idX ) (naturality of ⊗)
= β′(q ⊗ idX ) (since θp = q
= (idX ⊗ q)α (by (3.5))
= (idX ⊗ θp)α (since θp = q
= (idX ⊗ θ)(idX ⊗ p)α (naturality of ⊗)
= (idX ⊗ θ)β(p⊗ idX ) (by (3.5))

Since QX is cocontinuous, it preserves epimorphisms. Hence, QX(p) =
(p⊗ idX ) is an epimorphism. Thus, β′(θ ⊗ idX ) = (idX ⊗ θ)β. Therefore, θ
is an isomorphism in ZX(C), and the proof is complete.

Corollary 3.4. Let C be a co-wellpowered category. If QX is cocontinuous,
∀X ∈ C, then Z(C) and Zω(C) are co-wellpowered.

Proof. This immediately follows from the proof of Proposition 3.3 and Re-
mark 1.7.
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Using Theorem 2.6 implies the following immediate consequence.

Proposition 3.5. Let C be a monoidal category. Fix an object X and a
morphism h : A → B in C. Let A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}. If C is
a co-wellpowered biclosed monoidal category, then A is co-wellpowered for
any A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}.

Example 3.6.
(1) The category Set of sets and mappings is co-wellpowered [22, p.

66], and it can also be seen as cartesian closed [8, p. 296], hence symmet-
ric monoidal closed. By Proposition 3.5, the categories Zh(Set),ZX(Set),
Z(Set), and Zω(Set) are co-wellpowered for any X ∈ Set and a morphism
h in Set.

(2) The category Ab of abelian groups with its tensor product of abelian
groups is a biclosed monoidal category. By Proposition 3.5, Zh(Ab),ZX(Ab),
Z(Ab), and Zω(Ab) are co-wellpowered for any X ∈ Ab and a morphism
h in Ab.

(3) The category Top of topological spaces and continuous mappings
is wellpowered [22, p. 66], and it can be provided with the structure of
a symmetric monoidal closed category (See [8, p. 299]). By Proposition
3.5, Zh(Top),ZX(Top),Z(Top), and Zω(Top) are co-wellpowered for any
X ∈ Top and a morphism h in Top.

(4) Consider Example 2.8(11). We have Zh(RepQ13), Z(RepQ13),
ZX(RepQ13) and Zω(RepQ13) (as well as the categories Zh(RepQ1), Z(RepQ1),
ZX(RepQ1) and Zω(RepQ1)) are co-wellpowered categories.

4 Generators

Following [16, p. 127], a set G of objects of the category C is said to generate
C when any parallel pair f, g : X → Y of arrows of C , f 6= g implies that
there is an G ∈ G and an arrow α : G → X in C with fα 6= gα (the term
“generates” is well established but poorly chosen; “separates” would have
been better). For the basic concepts of generating sets, we refer to [16], [2],
or [11].

Let C be a monoidal category with a generating set G, and let A ∈
{Zh(C),ZX(C),Z(C),Zω(C)}. Fix an object X and a morphism h : A→ B
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in C. Our inspection in the previous sections gives rise to the following
question. When can the category A inherit a generating set involved with
G from C?

Under the assumption above, let f, g : Z → W be any parallel pair of
morphisms in A with f 6= g. Since G is a generating set for C, there is an
G ∈ G and an arrow α : G → X in C with fα 6= gα. Now, if we want to
show that A has a generating set G whose underlying is G, we need to show
that G ∈ A and the morphism α : G → X is in A . Although, this is not
true in general, it perfectly works when C is a braided. For the basic notions
of braided monoidal categories, we refer to [23], [12] and [17]. It turns out
that we have the following theorem.

Theorem 4.1. Let C be a braided monoidal category with a braiding Ψ, and
let G be a generating set for C. Fix an object X and a morphism h in C.
Then the category A has a generating set for any

A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}.

Proof. Consider the following diagram

Z(C)

ZX(C) C?
�

Φ1

OO

_�

Φ4

��

? _
Φ2oo � � Φ3 // Zh(C)

Zω(C)

(4.1)

It is well-known that there is an embedding Φ1 : C ↪→ Z(C) via W 7→
(W,ΨW,−) [9, p. 264]. Define the functors

Φ2 : C ↪→ ZX(C), W 7→ (W,ΨW,X ),

Φ3 : C ↪→ Zh(C), W 7→ (W,ΨA,W ,ΨB,W ),

Φ4 : C ↪→ Zω(C), W 7→ (W,ΨW,−).

Clearly, Φi is embedding for all i = 2, 3, 4. Therefore, the category C can be
viewed as a subcategory of the category A ,
A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}.
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Now, let f, g : Z → W be any parallel pair of morphisms in A with
f 6= g. Since G is a generating set for C, there is an G ∈ G and an ar-
row α : G → X in C with fα 6= gα. From the diagram 4.1, we have
G ∈ A , and the morphism α : G → X is in A . Thus, for every A ∈
{Zh(C),ZX(C),Z(C),Zω(C)}, A has a generating set GA whose underlying
is G.

The following assertion is important in characterizing the cofree objects
in CoMon(A ), for all A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}.
Corollary 4.2. Let C be a braided monoidal category. Fix an object X
and a morphism h in C, and let A ∈ {Zh(C),ZX(C),Z(C),Zω(C)}. If
the (monoidal) category CoMon(C) has a generating set, then the category
CoMon(A ) has a generating set.

Example 4.3. Consider Example 2.8(11). We have Zh(RepQ13), Z(RepQ13),
ZX(RepQ13) and Zω(RepQ13) have generating sets, and Zh(RepQ1),
Z(RepQ1), ZX(RepQ1) and Zω(RepQ1) also have generating sets.

5 Investigating cofree objects

In this section, we use Theorem 1.1 and Propositions 2.1, 3.1, and the
consequences we have to show that the concrete category (CoMon(A ),UA )
has cofree objects, ∀A ∈ {Zh(C), ZX(C), Z(C), Zω(C)}.
Theorem 5.1. Let U : CoMon(Zh(C)) → Zh(C) be the forgetful functor
and h : A → B be an arrow in C, and let PJ and QJ be cocontinuous
∀J ∈ {A,B}. If C is cocomplete, co-wellpowered and if CoMon(Zh(C)) has
a generating set, then U has a right adjoint or, equivalently, the concrete
category (CoMon(Zh(C)),U ) has cofree objects.

Proof. This immediately follows from Propositions 2.1, 2.2, 3.2 and Theo-
rem 1.1.

Corollary 5.2. Let (C,⊗, I) be a braided monoidal category and h : A→ B
an arrow in C. Let U : CoMon(Zh(C))→ Zh(C) be the forgetful functor and
PJ ,QJ be cocontinuous ∀J ∈ {A,B}. If C is cocomplete, co-wellpowered and
if CoMon(C) has a generating set, then U has a right adjoint, and hence
the concrete category (CoMon(Zh(C)),U ) has cofree objects.
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Proof. It is immediate from Theorem 5.1 and Corollary 4.2.

Similarly, the following are immediate consequences of Proposition 2.1,
Corollary 2.3, 3.3 and Theorem 1.1.

Theorem 5.3. Let X be an object in C. Let U : CoMon(ZX(C))→ ZX(C)
be the forgetful functor and PX ,QX cocontinuous. If C is cocomplete, co-
wellpowered and if CoMon(ZX(C)) has a generating set, then the functor
U has a right adjoint, hence, the concrete category (CoMon(ZX(C)),U )
has cofree objects.

Corollary 5.4. Let (C,⊗, I) be a braided monoidal category and X an
object in C. Let U : CoMon(ZX(C)) → ZX(C) be the forgetful functor
and PX ,QX be cocontinuous. If C is cocomplete, co-wellpowered and if
CoMon(C) has a generating set, then U has a right adjoint, hence, the
concrete category (CoMon(ZX(C)),U ) has cofree objects.

Proof. It follows immediately from Theorem 5.3 and Corollary 4.2.

By Propositions 2.1, 2.4, Corollary 3.4 and Theorem 1.1, we have the
following version for the existence of cofree objects in the monoidal center.

Theorem 5.5. Let

U : CoMon(Z(C))→ Z(C)

(respectively U ′ : CoMon(Zω(C))→ Z(C)) be the forgetful functor, and let
PX ,QX be cocontinuous ∀X ∈ C. If C is cocomplete, co-wellpowered and if
CoMon(Z(C)) (resp. CoMon(Zω(C))) has a generating set, then U (resp.
U ′) has a right adjoint. It turns out that, equivalently, the concrete category
(CoMon(Z(C)),U ) (resp. (CoMon(Zω(C)),U ′)) has cofree objects.

Corollary 5.6. Let (C,⊗, I) be a braided monoidal category and

U : CoMon(Z(C))→ Z(C)

(resp. U ′ : CoMon(Zω(C))→ Z(C)) the forgetful functor, and let PX ,QX
be cocontinuous ∀X ∈ C. If C is cocomplete, co-wellpowered and if CoMon(C)
has a generating set, then U (resp. U ′) has a right adjoint. It turns out
that, equivalently, the concrete category (CoMon(Z(C)),U ) (resp.
(CoMon(Zω(C)),U ′)) has cofree objects.
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Proof. The required statement follows from Theorem 5.5 and Corollary 4.2.

Example 5.7.

(1) Consider Example 2.8(11). The categories CoMon(Zh(RepQ13)),
CoMon(Z(RepQ13)), CoMon(ZX(RepQ13)) and CoMon(Zω(RepQ13)) (as
well as the categories CoMon(Zh(RepQ1)), CoMon(Z(RepQ1)),
CoMon(ZX(RepQ1)) and CoMon(Zω(RepQ1))) have cofree objects.

(2) Following [23, p. 69-70], the braid category B has as objects the
natural numbers 0, 1, 2, ... and as arrows α : n→ n the braids on n strings;
there are no arrows n→ n for m 6= n. A braid α on n strings can be regarded
as an element of the Artin braid group Bn with generators s1, ..., sn−1 subject
to the relations

sisj = sjsi, for j < i− 1
si+1sisi+1 = sisi+1si.

Composition of braids is just multiplication in this group, represented di-
agrammatically by vertical stacking of braids with the same number of
strings. Tensor product of braids adds the number of strings by placing
one braid next to the other longitudinally. This makes B a strict monoidal
category. A braiding cm,n : m+ n→ n+m is given by crossing the first m
strings over the remaining n. Then B is braided monoidal category. Indeed,
it is a balanced monoidal category. To see how the braid si, the composition
of braids, tensor product of braids and the braiding cm,n can be depicted,
we refer the reader to [23, p. 69-70].

Proposition 5.8. The category B is not cocomplete.

Proof. Let D be a small category, and let F : D → B be a functor. By
the way of contradiction, let B be a cocomplete category. It follows that F
has a colimit (t, (φD)

D∈D ). The definition of B implies that FD = t, for all
D ∈ D . In particular, we have F is a constant functor, for every functor
F : D → B with D a small category. It is clear that this is a contradiction
because we can always define a nonconstant functor from a small category
to B. Therefore, the category B is not cocomplete.
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Theorem 5.9. Fix an object X and a morphism h in B. We have

CoMon(A ) ∼= • �� for all A ∈ {Zh(B),ZX(B),Z(B),Zω(B)} ,

where • �� is the category with one object and one arrow.

Proof. We prove the theorem for A = Z(B), and the rest can be proved
similarly. Let ((m,σ),∆, ε) be a comonoid in Z(B) with a comultiplication
∆ : m → m + m and a counit ε : m → 0. The definition of the category B
implies that m = 0, ∆ = id0 = ε, and σ : 0 + − → − + 0 with σn = idn ,
for every natural number n. Thus, the category CoMon(Z(B)) consists of
one object ((0, σ), id0 , id0), where σ : 0 + − → − + 0 is the trivial natural
isomorphism with with σn = idn , for every natural number n.

Theorem 5.10. Fix an object X and a morphism h in B. The forgetful
functor UA : CoMon(A )→ A has a right adjoint

∀A ∈ {Zh(B),ZX(B),Z(B),Zω(B)},

and thus, equivalently, the concrete category (CoMon(A ),UA ) has cofree
objects.

Proof. It follows immediately from Theorem 5.9 that CoMon(A ) is cocom-
plete, co-wellpowered, and with a generating set. Thus, using Theorem 1.1
completes the proof.

Remark 5.11. Fix an object X and a morphism h in B. It follows from
Theorem 5.10 that the forgetful functor UA : CoMon(A ) → A has a
right adjoint VA : A → CoMon(A ) ∀A ∈ {Zh(B),ZX(B),Z(B),Zω(B)}.
Theorem 5.10, furthermore, implies that VA : A → CoMon(A ) is a
constant functor ∀A ∈ {Zh(B),ZX(B),Z(B),Zω(B)}. Therefore, ∀A ∈
{Zh(B),ZX(B),Z(B),Zω(B)}, all the objects in the category A have the
same corresponding cofree object.

Example 5.12. Following [23, p. 74-75], the monoidal category B̃ is defined
similarly to B, except that the arrows are braids on ribbons (instead of on
strings) and it is permissible to twist the ribbons through full 2π turns.
The homsets B̃(n, n) = B̃n are groups under composition. A presentation
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of this group B̃n is given by generators s1, ..., sn where s1, ..., sn−1 satisfy
the relations as for Bn. These are depicted by thickened versions of the
diagrams in Example 5.7, along with the extra relation

sn−1snsn−1sn = snsn−1snsn−1.

Composition in B̃ is vertical stacking of diagrams, and tensor product for
B̃ is horizontal placement of diagrams, much as for B. The braiding cm,n :
m + n → n + m for B̃ is obtained by placing the first m ribbons over the
remaining n without introducing any twists. Then B̃ is a braided monoidal
category. Indeed, it is a balanced monoidal category. To see how sn and
the braiding cm,n can be visualized, we refer the reader to [23, p. 74-75].

The identification of B̃ is similar to that of B. Thus, for any (fixed)
object X and an arrow h in B̃, Proposition 5.8 and Theorems 5.9 and 5.10
imply the following consequences.

Proposition 5.13. For all A ∈ {Zh(B̃),ZX(B̃),Z(B̃),Zω(B̃)}, let UA :
CoMon(A )→ A be the forgetful functor. We have the following:

(i) The category B̃ is not cocomplete.

(ii) For any A ∈ {Zh(B̃),ZX(B̃),Z(B̃),Zω(B̃)}, we have

CoMon(A ) ∼= • �� .

(iii) For any A ∈ {Zh(B̃),ZX(B̃),Z(B̃),Zω(B̃)}, the corresponding for-
getful functor UA has a right adjoint, and hence the corresponding concrete
category (CoMon(A ),UA ) has cofree objects).
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