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Dually quasi-De Morgan Stone
semi-Heyting algebras II. Regularity

Hanamantagouda P. Sankappanavar

Abstract. This paper is the second of a two part series. In this Part, we
prove, using the description of simples obtained in Part I, that the variety
RDQDStSH1 of regular dually quasi-De Morgan Stone semi-Heyting alge-
bras of level 1 is the join of the variety generated by the twenty 3-element
RDQDStSH1-chains and the variety of dually quasi-De Morgan Boolean
semi-Heyting algebras–the latter is known to be generated by the expansions
of the three 4-element Boolean semi-Heyting algebras. As consequences of
our main theorem, we present (equational) axiomatizations for several sub-
varieties of RDQDStSH1. The paper concludes with some open problems
for further investigation.

1 Introduction

This paper is the second of a two part series. In this Part, we prove, using
the description of simples obtained in Part I, that the variety RDQDStSH1

of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is
the join of the variety generated by the twenty 3-element RDQDStSH1-
chains and the variety of dually quasi-De Morgan Boolean semi-Heyting
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algebras–the latter is known to be generated by the expansions of the three
4-element Boolean semi-Heyting algebras. Furthermore, as consequences of
this theorem, we present (equational) axiomatizations for several subvari-
eties of RDQDStSH1. The paper concludes with some open problems for
further investigation.

2 Preliminaries

In this section we recall notations and results from Part I in order to make
this paper self-contained.

An algebra L = 〈L,∨,∧,→,′ , 0, 1〉 is a dually quasi-De Morgan semi-
Heyting algebra (DQDSH-algebra, for short) if
〈L,∨,∧,→, 0, 1〉 is a semi-Heyting algebra, and L satisfies:

(a) 0′ ≈ 1 and 1′ ≈ 0

(b) (x ∧ y)′ ≈ x′ ∨ y′

(c) (x ∨ y)′′ ≈ x′′ ∨ y′′

(d) x′′ ≤ x.

Let L be a DQDSH-algebra. Then L is of level 1 (DQDSH1-algebra) if
L satisfies:

(L1) x ∧ x′∗ ≈ (x ∧ x′∗)′∗ (Level 1).

L is a dually pseudocomplemented semi-Heyting algebra (DPCSH-algebra)
if L satisfies:

(e) x ∨ x′ ≈ 1.

L is a De Morgan semi-Heyting algebra (DMSH-algebra) if L satisfies:

(DM) x′′ ≈ x.

L is regular if L satisfies:

(M) x ∧ x+ ≤ y ∨ y∗, where x+ := x′∗′.

L is a dually quasi-De Morgan Stone semi-Heyting algebra
(DQDStSH-algebra) if L satisfies:
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(St) x∗ ∨ x∗∗ ≈ 1, where x∗ := x→ 0.

L is a dually quasi-De Morgan Boolean semi-Heyting algebra
(DQDBSH-algebra) if L satisfies:

(Bo) x ∨ x∗ ≈ 1 where x∗ := x→ 0.

L is a strongly blended dually quasi-De Morgan semi-Heyting
algebra (SBDQDSH) if L satisfies:

(SB) (x ∨ y∗)′ ≈ x′ ∧ y∗′ (Strongly Blended ∨-De Morgan law).

The variety of DQDSH1-algebras is denoted by DQDSH1, and sim-
ilar notation applies to other varieties. DQDStSH1 denotes the sub-
variety of level 1 of DQDSH1 defined by (St), and DQDBSH denotes
the one defined by (Bo), while RDQDSH1 denotes the variety of regular
DQDSH1-algebras and RSBDQDSH1 denotes that of regular, strongly
blended DQDSH1-algebras, and so on.

If the underlying semi-Heyting algebra is a Heyting algebra, then we
replace the part “SH” by “H” in the names of the varieties that we consider
in this sequel.

Let 2e and 2̄e be the expansions of the semi-Heyting algebras 2 and
2̄ (shown in Figure 1) by adding the unary operation ′ such that 0′ = 1,
1′ = 0.

Let Ldpi , i = 1, . . . , 10, denote the expansion of the semi-Heyting algebra
Li (shown in Figure 1) by adding the unary operation ′ such that 0′ = 1,
1′ = 0, and a′ = 1.

Let Ldmi , i = 1, . . . , 10, denote the expansion of Li by adding the unary

operation ′ such that 0′ = 1, 1′ = 0, and a′ = a. We Let Cdp
10 := {Ldpi :

i = 1, . . . , 10} and Cdm
10 := {Ldmi : i = 1, . . . , 10}. We also let C20 :=

Cdm
10 ∪Cdp

10 .

Each of the three 4-element algebras D1, D2 and D3 has its lattice
reduct as the Boolean lattice with the universe {0, a, b, 1}, b being the com-
plement of a, has the operation→ as defined in Figure 1, and has the unary
operation ′ defined as follows: a′ = a, b′ = b, 0′ = 1, 1′ = 0.

It was shown in [10] that V(D1,D2,D3) = DQDBSH.
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D1 : D2 :

→ 0 1 a b

0 1 0 b a
1 0 1 a b
a b a 1 0
b a b 0 1

→ 0 1 a b

0 1 1 1 1
1 0 1 a b
a b 1 1 b
b a 1 a 1

D3 :

→ 0 1 a b

0 1 a 1 a
1 0 1 a b
a b a 1 0
b a 1 a 1

Figure 1

The following two results proved in Part I.

Theorem 2.1. Let L ∈ RDQDStSH1 with |L| ≥ 2. Then the following
are equivalent:

(1) L is simple

(2) L is subdirectly irreducible

(3) For every x ∈ L, if x 6= 1, then x ∧ x′∗ = 0

(4) L ∈ {2e, 2̄e} ∪C20 ∪ {D1,D2,D3}, up to isomorphism.

Theorem 2.2. DQDStSH1 = SBDQDStSH1.

3 Main result and consequences

Let V(K) denote the variety generated by the class K of algebras. Recall
V(C20) is the variety of DQDSH-algebras genrerated by the twenty 3-
element algebras mentioned earlier. Let D denote the variety generated by
the three 4-element DQDSH-algebras whose semi-Heyting reducts are D1,
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D2 and D3 given in Figure 1. The variety V(C20) was axiomatized in [10]
and also it was shown there that D = DQDBSH.

We are now ready to give the main result of this paper.

Theorem 3.1. We have

RDQDStSH1 = V((C20) ∪ {D1,D2,D3})
= V(C20) ∨D

= RSBDQDStSH1

= RDmsStSH1.

Proof. Since 2e and 2̄e are subalgebras of some of the other simple algebras
listed in Theorem 2.1, the first equation is immediate from Theorem 2.1,
using well known results from universal algebra (see [2]). The second equa-
tion follows from the first, using the definition of the join of two varieties,
and the third equation is immediate from Theorem 2.2. To prove the last
equation, it suffices to verify that all 25 simple algebras in RDQDStSH1

satisfy the identity: (x ∨ y)′ ≈ x′ ∧ y′.

If we restrict the underlying semi-Heyting algebras to Heyting algebras,
Theorem 3.1 reduces to the following

Corollary 3.2. Let RDQDStH1 denote the subvariety of
RDQDStSH1 defined by: (x ∧ y)→ x ≈ 1. Then

RDQDStH1 = V({Ldm
1 ,Ldp

1 ,D2})
= V(Ldm

1 ) ∨V(Ldp
1 ) ∨V(D2)

= RSBDQDStH1

= RDmsStH1.

Proof. Verify that 2e,Ldm
1 ,Ldp

1 ,D2 satisfy the identity: (x ∧ y) → x ≈ 1,
while the remaining simple algebras among the twenty five listed in Theorem
2.1 do not. Also, observe that 2e is a subalgebra of Ldm

1 (or Ldp
1 ). Then

the corollary follows from Theorem 3.1.

The following corollaries, which give (equational) bases to several sub-
varieties of RDQDStSH1, can also be similarly deduced from Theorem 2.1
and Theorem 3.1.
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In these corollaries the reader should interpret “defined by”
as “defined, modulo RDQDStSH1, by”.

Corollary 3.3. RDQDStH1 is also defined by the “linearity” identity:

(x→ y) ∨ (y → x) ≈ 1.

It is also defined by:

x ∨ (x→ y) = (x→ y)∗ → x.

Corollary 3.4. We have

(a) RDMStSH1 = V(Cdm
10 ) ∨D

(b) RDPCStSH1 = V(Cdp
10 ).

(c) RDMStH1 = V({Ldm
1 ,D2}) = V(Ldm

1 ) ∨V(D2)

(d) RDPCStH1 = V(Ldp
1 ).

Corollary 3.5. Let RDQDcmStSH1 be the subvariety of
RDQDStSH1 defined by the commutative law: x→ y ≈ y → x. Then

(a) RDQDcmStSH1 = V({Ldm
10 ,L

dp
10 ,D1})

= V(Ldm
10 ) ∨V(Ldp

10 ) ∨V(D1)

(b) RDMcmStSH1 = V({Ldm
10 ,D1})

(c) RDPCcmStSH1 = V(Ldp
10 )

(d) RDMcmStSH1 ∩RDPCcmStSH1 = V(2̄e).

Corollary 3.6. The variety V({Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,D2}) is defined by the
identity:

(x→ y)→ (0→ y) ≈ (x→ y)→ 1.

The variety generated by D1 was axiomatized in [10]. Here are two more
bases for it.

Corollary 3.7. V(D1) is defined by



72 Hanamantagouda P. Sankappanavar

x→ (y → z) ≈ z → (x→ y).

It is also defined by

(x→ y)→ (u→ w) ≈ (x→ u)→ (y → w) (Medial Law).

Corollary 3.8. The variety V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,D2}) is defined by:

y ≤ x→ y.

It is also defined by:

[(x→ y)→ y]→ (x→ y) ≈ x→ y.

It is also defined by

x→ (y → z) ≈ (x→ y)→ (x→ z) (Left distributive law).

Corollary 3.9. The variety
V({Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,Ldm

5 ,Ldp
5 ,Ldm

6 ,Ldp
6 ,D2}) is defined by:

[x→ (y → x)]→ x ≈ x.

Corollary 3.10. V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 }) is defined by:

(1) [x→ (y → x)]→ x ≈ x

(2) x ∨ x′ ≈ 1.

Corollary 3.11. V({Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,D2}) is defined by:

(1) [x→ (y → x)]→ x ≈ x

(2) x′′ ≈ x.

Corollary 3.12. The variety
V({Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,Ldm

3 ,Ldp
3 ,Ldm

4 ,Ldp
4 ,Ldm

5 ,Ldm
6 ,Ldm

7 ,Ldm
8 ,

D2,D3}) is defined by the identity:

(0→ 1)+ → (0→ 1)′ ≈ 0→ 1.

Corollary 3.13. The variety V({Ldp
1 ,Ldp

2 ,Ldp
3 ,Ldp

4 }) is defined by the
identities:
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(1) (0→ 1)+ → (0→ 1)′ ≈ 0→ 1

(2) x ∨ x′ ≈ 1.

Corollary 3.14. The variety
V({Ldm

1 ,Ldm
2 ,Ldm

3 ,Ldm
4 ,Ldm

5 ,Ldm
6 ,Ldm

7 ,Ldm
8 , D2,D3}) is defined by the

identities:

(1) (0→ 1)+ → (0→ 1)′ ≈ 0→ 1

(2) x′′ ≈ x.

Corollary 3.15. The variety V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 , D3}) is defined by
the identity:

(0→ 1)+ → (0→ 1) ≈ (0→ 1)′.

V(D3) was axiomatized in [10]. Here is another base for it.

Corollary 3.16. V(D3) is defined by the identities:

(1) (0→ 1)+ → (0→ 1) ≈ (0→ 1)′

(2) x ∨ x∗ ≈ 1.

Corollary 3.17. The variety generated by the algebras Ldm
1 ,Ldm

2 , Ldm
3 ,Ldm

4 ,
D2,D3 is defined by the identities:

(1) (0→ 1)+ → (0→ 1)′ ≈ (0→ 1)

(2) (0→ 1)+ → (0→ 1)∗′∗ ≈ (0→ 1)

(3) x′′ ≈ x.

Corollary 3.18. The variety generated by the algebras
Ldm

5 ,Ldp
5 ,Ldm

6 ,Ldp
6 ,Ldm

7 ,Ldp
7 ,Ldm

8 ,Ldp
8 ,Ldp

9 ,Ldm
9 ,Ldp

10 ,L
dm
10 ,

D1,D3 is defined by the identity:

(0→ 1)+ → (0→ 1)′ ≈ (0→ 1)′.

Corollary 3.19. The variety generated by the algebras
Ldp

5 ,Ldp
6 ,Ldp

7 ,Ldp
8 ,Ldp

9 ,Ldp
10 is defined by the identities:
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(1) (0→ 1)+ → (0→ 1)′ ≈ (0→ 1)′

(2) x ∨ x′ ≈ 1.

Corollary 3.20. The variety generated by the algebras
Ldm

5 ,Ldm
6 ,Ldm

7 ,Ldm
8 ,Ldm

9 ,Ldm
10 , D1,D3 is defined by the identities:

(1) (0→ 1)+ → (0→ 1)′ ≈ (0→ 1)′

(2) x′′ ≈ x.

Corollary 3.21. The variety generated by the algebras
Ldm

5 ,Ldm
6 ,Ldm

7 ,Ldm
8 , D3 is defined by the identities:

(1) (0→ 1)+ → (0→ 1)′ ≈ (0→ 1)′

(2) (0→ 1)+ → (0→ 1)′ ≈ (0→ 1).

It is also defined by

(0→ 1)′ ≈ 0→ 1.

Corollary 3.22. The variety generated by the algebras
D1,D3 is defined by the identities:

(1) (0→ 1)+ → (0→ 1)′ ≈ (0→ 1)′

(2) x ∨ x∗ ≈ 1.

Corollary 3.23. The variety generated by the algebras
Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,Ldm

3 ,Ldp
3 ,Ldm

4 ,Ldp
4 ,Ldp

5 ,Ldp
6 ,Ldp

7 ,Ldp
8 ,

Ldm
9 ,Ldp

9 ,Ldm
10 ,L

dp
10 ,D1,D2 is defined by the identity:

(0→ 1)′ → (0→ 1) ≈ 0→ 1.

Corollary 3.24. The variety generated by the algebras
Ldm

1 ,Ldm
2 ,Ldm

3 ,Ldm
4 ,Ldm

9 ,Ldm
10 , D1,D2 is defined by the identities:

(1) (0→ 1)′ → (0→ 1) ≈ 0→ 1

(2) x′′ ≈ x.

Corollary 3.25. The variety generated by the algebras
D1,D2 is defined by the identities:
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(1) (0→ 1)′ → (0→ 1) ≈ 0→ 1

(2) x ∨ x∗ ≈ 1.

Corollary 3.26. The variety generated by the algebras
Ldm

1 ,Ldp
1 ,Ldm

3 ,Ldp
3 ,Ldm

6 ,Ldp
6 ,Ldm

8 ,Ldp
8 ,D1,D2,D3 is defined by the iden-

tity:

x ∨ (y → (x ∨ y)) ≈ (0→ x) ∨ (x ∨ y).

Corollary 3.27. The variety generated by the algebras
Ldm

2 ,Ldp
2 ,Ldm

5 ,Ldp
5 ,D2 is defined by the identity:

x ∨ (y → x) ≈ [(x→ y)→ y]→ x.

Corollary 3.28. The variety generated by the algebras
Ldm

3 ,Ldp
3 ,Ldm

4 ,Ldp
4 ,D1,D2,D3 is defined by the identity:

x ∨ (x→ y) ≈ x→ (x ∨ (y → 1)).

Corollary 3.29. The variety generated by the algebras
Ldm

5 ,Ldp
6 ,Ldm

7 ,Ldp
8 ,D3 is defined by the identity:

(0→ 1)∗ → (0→ 1) ≈ (0→ 1)′.

Corollary 3.30. The variety generated by the algebras
Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,Ldm

3 ,Ldp
3 , Ldm

4 ,Ldp
4 ,D2 is defined by the

identity:

0→ 1 ≈ 1 (FTT identity).

Corollary 3.31. The variety generated by the algebras
Ldm

1 ,Ldp
1 ,Ldm

3 ,Ldp
3 ,Ldm

6 ,Ldp
6 , Ldm

8 ,Ldp
8 ,D1,D2,D3 is

defined by the identity:

x ∨ (y → x) ≈ (x ∨ y)→ x.

Corollary 3.32. The variety generated by the algebras
Ldp

1 ,Ldp
3 ,Ldp

6 , Ldp
8 is defined by the identities:

(1) x ∨ (y → x) ≈ (x ∨ y)→ x

(2) x ∨ x′ ≈ 1.
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Corollary 3.33. The variety generated by the algebras
Ldm

1 ,Ldm
3 ,Ldm

6 , Ldm
8 ,D1,D2,D3 is defined by the identities:

(1) x ∨ (y → x) ≈ (x ∨ y)→ x

(2) x′′ ≈ x.

Corollary 3.34. The variety generated by the algebras
Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,Ldm

5 ,Ldp
5 ,Ldm

6 ,Ldp
6 ,Ldm

9 ,Ldp
9 ,

D1,D2,D3 is defined by the identity:

x∗ ∨ (x→ y) ≈ (x ∨ y)→ y.

Corollary 3.35. V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 ,Ldp
9 }) is defined by the identity:

(1) x∗ ∨ (x→ y) ≈ (x ∨ y)→ y

(2) x ∨ x′ ≈ 1.

Corollary 3.36. The variety generated by the algebras
Ldm

1 ,Ldm
2 ,Ldm

5 ,Ldm
6 ,Ldm

9 , D1,D2,D3 is defined by the identity:

(1) x∗ ∨ (x→ y) ≈ (x ∨ y)→ y

(2) x′′ ≈ x.

Corollary 3.37. The variety generated by the algebras
Ldm

5 ,Ldp
5 ,D2 is defined by the identity:

x ∨ (0→ x) ∨ (y → 1) ≈ x ∨ [(x→ 1)→ (x→ y)].

Corollary 3.38. The variety generated by the algebras
Ldm

6 ,Ldp
6 ,D2 defined by the identity:

x ∨ y ∨ (x→ y) ≈ x ∨ [(x→ y)→ 1].

Corollary 3.39. The variety generated by the algebras
Ldm

1 ,Ldp
1 ,Ldm

7 ,Ldp
7 ,D2 is defined by the identity:

x ∨ [(0→ y)→ y) ≈ x ∨ [(x→ 1)→ y].

Corollary 3.40. The variety generated by the algebras
Ldm

7 ,Ldp
7 ,Ldm

8 ,Ldp
8 ,D1,D2,D3 defined by the identity:
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x ∨ [x→ (y ∧ (0→ y))] ≈ x→ [(x→ y)→ y].

Corollary 3.41. The variety generated by the algebras
Ldm

8 ,Ldp
8 ,D1,D2,D3 defined by the identity:

x ∨ y ∨ [y → (y → x)] ≈ x→ [x ∨ (0→ y)].

It is also defined by the identity:

x ∨ [y → (0→ (y → x))] ≈ x ∨ y ∨ (y → x).

Corollary 3.42. The variety generated by the algebras
Ldm

7 ,Ldp
7 ,Ldm

8 ,Ldp
8 ,Ldm

9 ,Ldp
9 , Ldm

10 ,L
dp
10 ,D1,D2,D3 is defined by the iden-

tity:

x ∨ (x→ y) ≈ x ∨ [(x→ y)→ 1].

Corollary 3.43. The variety generated by the algebras
2e,Ldp

7 ,Ldp
8 ,Ldp

9 , Ldp
10 is defined by the identities:

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y)→ 1]

(2) x ∨ x′ ≈ 1.

Corollary 3.44. The variety generated by the algebras
Ldm

7 ,Ldm
8 ,Ldm

9 ,, Ldm
10 ,D1,D2,D3 is defined by the identities:

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y)→ 1]

(2) x′′ ≈ x.

Corollary 3.45. The variety generated by the algebras
Ldm

9 ,Ldp
9 ,Ldm

10 ,L
dp
10 ,D1 is defined by the identity:

0→ 1 ≈ 0. (FTF identity)

Corollary 3.46. The variety generated by the algebras
Ldm

10 ,L
dp
10 ,D1 is defined by the identity:

x→ y ≈ y → x. (commutative identity)

A base for V(Cdp
10 ) was given in [10]. We give some new ones below.
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Corollary 3.47. The variety V(Cdp
10 ) is defined by :

x′ ∧ x′′ ≈ 0 (dual Stone identity).

It is also defined by :

x′ ≈ x′∗′.

A base for V(C20) was given in [10]. We give a new one below.

Corollary 3.48. The variety V(C20) is defined by :

x∗ ≤ x′.

A base for V(2e, 2̄e) was given in [10]. We give a new one below.

Corollary 3.49. The variety V(2e, 2̄e) is defined by :

x∗ ≈ x′.

Corollary 3.50. The variety generated by the algebras in
{Ldp

i : i = 1, . . . , 8}∪{Ldm
i : i = 1, . . . , 8}∪{D2} is defined by the identity:

(x→ y)∗ ≈ (x ∧ y∗)∗∗.

It is also defined by

(0→ 1)∗ ≈ 0.

Corollary 3.51. The variety generated by the algebras in
{Ldp

i , i = 1, . . . , 8}, is defined by the identities:

(1) (x→ y)∗ ≈ (x ∧ y∗)∗∗

(2) x′ ∧ x′′ ≈ 0 (dual Stone identity).

Corollary 3.52. The variety generated by the algebras
Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,D2 is defined by the identity:

x ∧ z ≤ y ∨ (y → z) (strong Kleene identity).

Corollary 3.53. The variety generated by
Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,Ldm

5 ,Ldp
5 ,Ldm

6 ,Ldp
6 ,D2 is defined by the identity:
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x ∨ y ≤ (x→ y)→ y.

Corollary 3.54. The variety generated by
Ldp

1 ,Ldp
2 ,Ldp

5 ,Ldp
6 is defined by the identity:

(1) x ∨ y ≤ (x→ y)→ y

(2) x ∨ x′ ≈ 1.

Corollary 3.55. The variety generated by
Ldm

1 ,Ldm
2 ,Ldm

5 ,Ldm
6 ,D2 is defined by the identity:

(1) x ∨ y ≤ (x→ y)→ y

(2) x′′ ≈ x.

The variety D = V{D1,D2,D3} was axiomatized in [10]. Here are two
more bases for it.

Corollary 3.56. The variety D is defined by the identity:

x ∨ (y → z) ≈ (x ∨ y)→ (x ∨ z).

It is also defined by the identity:

x2(′∗) ≈ x.

We would like to mention here that in the case of either of the two bases
in the preceding corollary the identities (St) and (L1) are consequences of
the rest of the identities and hence are redundant.

Corollary 3.57. The variety generated by Ldm
2 ,Ldp

2 ,D2 is defined by the
identity:

(x→ y)→ x ≈ x.

V(D2) was axiomatized in [10]. Here are some more bases for it. This
variety has an interesting property in that ∨ is definable in terms of →.

Corollary 3.58. The variety generated by D2 is defined by the identity:

x ∨ y ≈ (x→ y)→ y.
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It is also defined by the identities:

(1) x ∨ (y → z) ≈ (x ∨ y)→ (x ∨ z)

(2) (x→ y)→ x ≈ x.

It is also defined by the identity:

x ∨ (x→ y) ≈ x ∨ ((x ∨ y)→ 1).

Corollary 3.59. The variety generated by
Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,Ldm

9 ,Ldp
9 ,D1,D2,D3 is defined by the identity:

x→ (y → z) ≈ y → (x→ z).

Corollary 3.60. The variety generated by
Ldm

1 ,Ldp
1 ,Ldm

2 ,Ldp
2 ,Ldm

5 ,Ldp
5 ,D2 is defined by the identity:

(x→ y)→ z ≤ ((y → x)→ z)→ z. (Prelinearity)

We conclude this section by mentioning that one can easily write down
the bases for intersections of the varieties mentioned in this section. Simi-
larly, one can also easily determine the subvarieties of the varieties consid-
ered in this section, obtained by adding the identity x′′ ≈ x, or the identity:
x ∨ x′ ≈ 1, to their bases occurring in the preceding corollaries.

4 Conclusion and some open problems

It should be pointed out that, based on the results from [10], all varieties
appearing in Section 3.1 are discrimnator varieities. It was also shown in [10]
that all the twenty 3-element algebras in RDQDStSH1 are semiprimal
(see [2] or [10] for definition). A similar argument proves that D1 and D2

are semiprimal as well; and 2e, 2̄e,D3 are, in fact, primal. Thus the variety
RDQDStSH1 is generated by semiprimal algebras. We would also like to
note here that the algebras in {Li

dm : i = 5, . . . , 8} ∪ {Li
dp : i = 5, . . . , 8}

are also primal. From these observations and from the results of [10] we
conclude that the algebras in {2e, 2̄e,D3} ∪ {Li

dm : i = 5, . . . , 8} ∪ {Li
dp :

i = 5, . . . , 8} are the only atoms in the lattice of subvarieties of the variety
RDQDStSH1.
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It is our view that each of the varieties mentioned in Section 3 is worthy
of further study, both algebraically and logically.

We conclude this paper with some more open problems for further in-
vestigation.

Problem 1. Find equational bases for the remaining subvarieties of
RDQDStSH1.

Problem 2. Give an explicit description of simple algebras in the vari-
ety of regular dually Stone semi-Heyting algebras of level 1.

Problem 3. Axiomatize logically each of the subvarieties of
RDQDStSH1. (In other words, for each subvariety V of RDQDStSH1

find a propositional logic P such that V is an equivalent algebraic semantics
for P.)

In particular, the following problem is of interest.

Problem 4. The 2-element, 3-element, 4-element algebras in Figure 1
can be viewed respectively as 2, 3 and 4-valued logical matrices. Axiomatize
these algebras logically (with 1 as the only designated truth value), using
→ and ′ as implication and negation respectively. (For the algebra 2 in Fig-
ure 1, the answer is, of course, well known: the classical propositional logic.)

Problem 5. Investigate the lattice of subvarieties of DPCStSH1.

Problem 6. Investigate the lattice of subvarieties of DMStSH1.

Problem 7. Investigate the lattice of subvarieties of the variety of com-
mutative DMSH1-algebras.

Problem 8. Find a duality for RDQDStSH1 and for each of its
subvarieties.
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