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Uniformities and covering properties for
partial frames (II)

John Frith and Anneliese Schauerte

Abstract. This paper is a continuation of [2], in which we make use of
the notion of a partial frame, which is a meet-semilattice in which certain
designated subsets are required to have joins, and finite meets distribute over
these. After presenting there our axiomatization of partial frames, which we
call S-frames, we added structure, in the form of S-covers and nearness.

Here, in the unstructured setting, we consider regularity, normality and
compactness, expressing all these properties in terms of S-covers. We see
that an S-frame is normal and regular if and only if the collection of all finite
S-covers forms a basis for an S-uniformity on it. Various results about strong
inclusions culminate in the proposition that every compact, regular S-frame
has a unique compatible S-uniformity.

1 Introduction

In this paper, which is a continuation of [2], we return to the unstruc-
tured setting of partial frames to consider regularity and normality. Both
properties are naturally expressed in terms of S-covers, but can also be
characterized in other familiar ways. We see that an S-frame is normal and
regular if and only if the collection of all finite S-covers forms a basis for an
S-uniformity on it.
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Next we consider the most fundamental covering property of topol-
ogy: compactness. Various results about strong inclusions culminate in the
proposition that every compact, regular S-frame has a unique compatible
S-uniformity.

For the convenience of the reader, we conclude by considering how our
axioms are related to the formalisms appearing elsewhere in the literature.

The concrete examples of nearness S-frames which occur in this paper
are all instances of what could be termed structured κ-frames. It is an open
question in the literature (see [8]) whether κ-frames can be characterized
by any of the existing axiomatizations of partial frames; the same applies
to our axiomatization.

The reader is referred to [2] for a detailed introduction to this material
as well as for the relevant preliminaries and definitions.

7 Two covering axioms

We now introduce two further axioms concerning S-covers, for our selection
functions. They are particularly useful in making regularity and normality
tractable, but will also play a rôle in other situations.

(SCov): If C is an S-cover of an S-frame L and ∅ 6= A ⊆ C then A ∈ SL.

(SFin): If C is a finite cover of an S-frame L, then C ∈ SL.

Informally (SCov) says that non-empty subsets of designated covers are
designated and (SFin) says all finite covers are designated. (The restriction
in (SCov) to non-empty subsets is not significant. Our selection functions
do not automatically select the empty set; it is not needed since our meet-
semilattices have a bottom element.)

Note 7.1. (1) We note that if both (SCov) and (SFin) hold, then any finite
subset is designated: suppose F is finite; then F ∪ {1} is a cover, so F is
designated since it is a subset of a finite cover.
(2) All the selection functions mentioned in Example 3.5 of [2] satisfy
(SCov); only the first selection function mentioned there does not satisfy
(SFin).
(3) We observe that Paseka [6] uses an axiom that makes all finite subsets
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designated, which is technically stronger than our (SFin). Further, he re-
quires all subsets of designated sets to be designated, which is stronger than
our (SCov).

From now on, we assume that our selection functions satisfy
(SCov) and (SFin).

8 Regularity

We take the position in this and the next section that regularity and normal-
ity are best viewed as covering properties. This makes the fact that regular
partial frames are precisely those with a compatible nearness structure, very
clear. In the presence of (SFin) and (SCov) we see that the covering version
of regularity is equivalent to the more usual “separating element” notion.
(See Definition 8.4 and Lemma 8.5.)

Definition 8.1. Let L be an S-frame.

1. For a, b ∈ L, we say x is rather below a, written x ≺ a, if there exists
an S-cover C of L such that Cx ⊆↓a.

2. L is regular if, for all a ∈ L, there exists T ∈ SL such that a =
∨
T

and t ≺ a for all t ∈ T .

Lemma 8.2. The following are equivalent for an S-frame L:

1. L is regular.

2. There is an S-nearness compatible with L.

3. The collection of all S-covers of L forms an S-nearness compatible
with L, called the fine S-nearness on L.

Proof. The implications (a) ⇒ (c) ⇒ (b) ⇒ (a) are all clear, using the
fact that x ≺ a if and only if x � a with the S-nearness consisting of all
S-covers.

Proposition 8.3. Let L be an S-frame. An S-frame is regular if and only
if the collection of all finite covers forms a base for an S-nearness on L,
called the finitely fine S-nearness on L.
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Proof. (⇒): Suppose that L is a regular S-frame and a ≺ b in L. There
exists an S-cover D of L such that Da = {d ∈ D : d ∧ a 6= 0} ⊆↓b. Using
(SCov), let s =

∨
{d ∈ D : d ∧ a 6= 0} and t =

∨
{d ∈ D : d ∧ a = 0}. Then

s ∨ t = 1. Further, E = {s, t}, being finite, is an S-cover by (SFin). Also
Ea = {e ∈ E : e∧a 6= 0} = {s}, since a∧t =

∨
{a∧d : d ∈ D, d∧a = 0} = 0,

using the fact that {d ∈ D : d ∧ a = 0} is designated. So Ea = {s} ⊆↓b.
(⇐): This uses Lemma 8.2.

Definition 8.4. We define a ≺s b if there exists c (called a separating
element) satisfying a ∧ c = 0 and c ∨ b = 1.

Lemma 8.5. Let L be an S-frame. Then for any a, b in an S-frame, a ≺ b
if and only if a ≺s b.

Proof. Suppose a ≺ b. Then there exists an S-cover D such that Da = {d ∈
D : d ∧ a 6= 0} ⊆↓b. Let c =

∨
{d ∈ D : d ∧ a = 0}, which exists by (SCov).

Then a ∧ c = 0, again by (SCov), and b ∨ c = 1. So a ≺s b.
Conversely, suppose that there exists c such that a∧ c = 0 and b∨ c = 1.

By (SFin), D = {b, c} is an S-cover and Da = {b} ⊆↓b, so a ≺ b.

Remark 8.6. From Lemma 8.5 it follows that a ≺ b⇒ a ≤ b.

In the next example, we examine regularity in familiar categories of
S-frames.

Example 8.7.

• Meet-semilattices: here the only regular S-frame is the two-element
chain. This is because {1} is the only designated cover, so only 0 ≺
0, 0 ≺ 1 and 1 ≺ 1. Consequently, this example will be of no further
interest in our study of structured partial frames.

• Bounded distributive lattices: here, an S-frame L is regular if and
only if it is Boolean (See [4].) This is because if a can be expressed
as a finite join a = t1 ∨ t2 ∨ . . . ∨ tn with ti ≺ a for each i = 1, . . . , n,
then a ≺ a making it complemented.

• σ-frames, κ-frames and frames: here the notion of regularity intro-
duced in this paper corresponds exactly with the usual notions for
these structures provided in the literature. (See [3] and [5], [4], [7].)
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Remark 8.8. Suppose a selection function S1 is finer than a selection func-
tion S2, meaning that for any meet-semilattice A, G ∈ S2A⇒ G ∈ S1A. A
straightforward argument shows that if L is an S1-frame which is a regular
S2-frame, then L is a regular S1-frame. This pattern is clearly visible in
Example 8.7.

Definition 8.9. An S-frame map h : L → M is called dense if, for all
a ∈ L, h(a) = 0 implies that a = 0.
An S-frame map h : L → M is called codense if, for all a ∈ L, h(a) = 1
implies that a = 1.

Proposition 8.10. Let L be an S-frame. In the full subcategory of all
regular S-frames

• every dense map is a monomorphism and

• every codense map is 1− 1.

Proof. Suppose that h : L→M is a dense S-frame map. Suppose k, l : N →
L are S-frame maps from the regular S-frame N to L such that hk = hl.

Consider x ≺ a in N . There exists an S-cover C of N such that Cx ⊆↓a.
Then l[C] is an S-cover of L. One shows routinely that l[C]k(x) ⊆↓l(a), and
hence that k(x) ≺ l(a).

Since N is regular, any a ∈ N can be expressed as a =
∨
X, for some

designated set X in N such that x ∈ X ⇒ x ≺ a. Then k(a) =
∨
k[X]. Now

k(x) ≺ l(a) ⇒ k(x) ≤ l(a) by Remark 8.6; so k(a) ≤ l(a). By symmetry,
l(a) ≤ k(a), and so k(a) = l(a).

For the second claim, suppose that h : L → M is a codense morphism,
with L and M regular S-frames and that h(a) = h(b). We have that a =∨
X, where X is designated and x ∈ X ⇒ x ≺ a. For such x we claim that

x ≤ b which yields a ≤ b. By symmetry, a = b. For the claim: suppose
that Cx ⊆↓ a for some S-cover C. Then h[C]h(x) ⊆↓ h(a) =↓ h(b). Let
s =

∨
{c ∈ C : c ∧ x = 0}. Then h(s) ∨ h(b) = h(s) ∨ h(a) ≥

∨
h[C] = 1,

so s ∨ b = 1. Then, by (SFin), D = {s, b} is a designated cover and
x = x ∧

∨
D = (x ∧ s) ∨ (x ∧ b) = x ∧ b, proving that x ≤ b.

We remark that the argument for every dense map being monic in the
proposition above rests on the regularity of N , rather than that of L or M .



28 John Frith and Anneliese Schauerte

9 Normality

In this section, we define normality in terms of binary S-covers. It is then
characterized in terms of shrinkings. We also show that an S-frame is normal
and regular if and only if the finitely fine S-nearness is an S-uniformity.

Definition 9.1. An S-frame L is called normal if, whenever {a, b} is an
S-cover of L, there exist S-covers {a, c} and {b, d} of L with c ∧ d = 0.

Definition 9.2. We say that A = {a1, . . . , an} is a shrinking of the S-cover
B = {b1, . . . , bn} if A is an S-cover and aj ≺ bj for j = 1, . . . , n.

Since we are assuming (SFin), there is no distinction between finite
covers and finite S-covers; we just use the shorter term “finite covers” from
now on.

Lemma 9.3. In any normal S-frame the relation ≺ interpolates.

Proof. Suppose a ≺ b; by Lemma 8.5, there exists s such that a ∧ s = 0
and b ∨ s = 1. Applying normality to {b, s} gives covers {b, c}, {s, d} with
c ∧ d = 0. Then a ≺ d ≺ b.

The proof of the following result follows traditional lines and so is omit-
ted. (See [7] IX Lemma 1.2.1. We note that they use pseudocomplements,
but this can easily be circumvented by using the “rather below” relation as
defined in this paper.)

Lemma 9.4. An S-frame L is normal if and only if every finite cover of L
has a shrinking.

Remark 9.5. We feel that the partial frame context illuminates the follow-
ing: Regular bounded distributive lattices and regular σ-frames are known
to be normal (see [4], [1] and [3]), whereas this is not the case for frames
and κ-frames in general. This reflects the pattern that regularity becomes
a weaker condition as more and more sets become designated (see Example
8.7 and Remark 8.8), whereas normality, depending only on binary covers,
is unaffected.

We conclude this section with a result linking uniform structures to the
notions of regularity and normality.
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Proposition 9.6. An S-frame L is normal and regular if and only if the
collection of all finite covers forms a basis for an S-uniformity on L; that
is, the finitely fine S-nearness is an S-uniformity.

Proof. In Proposition 8.3 it was shown that L is regular if and only if the
finite covers of L form a base for an S-nearness on L. We thus consider the
relationship between normality and the existence of star-refinements.

(⇒) Suppose that L is normal and regular and that A = {a1, . . . , an} is
a finite cover of L. By Lemma 9.4, A has a shrinking S = {s1, . . . , sn}. Let
t1, . . . , tn be the respective separating elements, that is, sj∧tj = 0, tj∨aj = 1
for j = 1, . . . , n. Now let C = {a1, t1} ∧ . . . ∧ {an, tn} ∧ {s1, . . . , sn}. Then
C is a finite cover of L. We need only show that C <∗ A.

A typical non-zero element of C has the form bE ∧ si where E ⊆
{1, . . . , n}, bE =

∧
j∈E

aj ∧
∧
j /∈E

tj and i ∈ E. Taking two such elements,

(bE ∧ si) ∧ (bF ∧ sk) 6= 0⇒ i ∈ F ⇒ bF ∧ sk ≤ ai,

so C(bE ∧ si) ≤ ai, showing that C <∗ A.
(⇐) Suppose that {a, b} is a cover of L. By assumption, there is a finite

cover E of L such that E <∗ {a, b}.
Let c =

∨
{e ∈ E : e 6≤ a} and d =

∨
{e ∈ E : e 6≤ b}. (These joins exist by

(SCov).) Then 1 =
∨
E =

∨
{e ∈ E : e 6≤ a} ∨

∨
{e ∈ E : e ≤ a} ≤ c ∨ a.

Similarly, 1 = d ∨ b. We now show that c ∧ d = 0: take e, f ∈ E with
e 6≤ a, f 6≤ b. Then Ee 6≤ a, so Ee ≤ b. Similarly Ef ≤ a. So if e ∧ f 6= 0,
then f ≤ Ee ≤ b and e ≤ Ef ≤ a – a contradiction.

Remark 9.7. It is feasible to impose a useful condition on selection func-
tions that is formally weaker than (SFin). One may consider the condition

(SBin): If C is a binary cover of an S-frame L, then C ∈ SL.

This is natural because normality is defined in terms of binary covers. For
instance, it can be shown that, if (SBin) replaces (SFin), then an S-frame is
normal if and only if every binary cover has a shrinking. Moreover, one can
replace the finitely fine S-nearness by one generated by all binary covers.
Then an S-frame is regular and normal if and only if this particular S-
nearness is in fact an S-uniformity. In the next section, however, we need
the full strength of (SFin), so have not pursued the use of (SBin).
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10 Compactness

The main result of this section is the fact that every compact, regular S-
frame has a unique compatible S-nearness which is in fact an S-uniformity.
En route, we show how to construct a totally bounded S-uniformity from a
strong inclusion.

Definition 10.1. An S-frame is called compact if every S-cover has a finite
sub S-cover.

Proposition 10.2. Every compact regular S-frame is normal.

Proof. Let {a, b} be a cover of the compact, regular S-frame L. By reg-
ularity, there exist designated sets S, T such that a =

∨
S, b =

∨
T, s ∈

S ⇒ s ≺ a and t ∈ T ⇒ t ≺ b. Then S ∪ T is designated, by an ap-
plication of (S3), and so an S-cover, since a ∨ b = 1. By compactness,
there exist x ≺ a, y ≺ b with x ∨ y = 1. So there exist c, d ∈ L such that
x ∧ c = 0, a ∨ c = 1, y ∧ d = 0, d ∨ b = 1. Then {a, c} and {b, d} are covers
of L with c ∧ d = 0, as required.

Definition 10.3. A strong inclusion on an S-frame L is a binary relation
J on L such that, for all a, b, c, d ∈ L:
(SI1) a ≤ b J c ≤ d⇒ a J d.
(SI2) J is a sublattice of L× L.
(SI3) a J b⇒ a ≺ b.
(SI4) J interpolates on L; that is, if a J b then there exists c ∈ L with
a J c J b.
(SI5) If a J b, there exist c, d ∈ L with c J d, a ∧ d = 0 and b ∨ c = 1.
(SI6) For a ∈ L, a =

∨
X for some designated set X in L such that x ∈

X ⇒ x J a.

We remark that, by Note 7.1, all finite joins do exist. Also, condition
(SI3) and (SI6) show that any S-frame with a strong inclusion on it, is
regular.

Reassuringly, we now show that any uniform S-frame has an underlying
strong inclusion, after which we show that any strong inclusion is induced
by a totally bounded S-uniformity.
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Lemma 10.4. Let (L,KL) be a uniform S-frame. The uniformly below
relation given by a � b ⇔ Ca ⊆↓b for some C ∈ KL, is a strong inclusion
on L.

Proof. The proofs of (SI1) and (SI2) are routine, and (SI3) follows from
Definition 8.1.
(SI4): Suppose a� b. There exists D ∈ KL such that Da ⊆↓b. Let C ∈ KL
such that C <∗ D. Then a� Ca� b, where Ca =

∨
{c ∈ C : c ∧ a 6= 0}, as

usual.
(SI5): Suppose a � b. By (SI4) above, there exists t ∈ L with a � t � b.
Take C ∈ KL such that Ca ⊆↓t and Ct ⊆↓b. Let e =

∨
{c ∈ C : c ∧ t = 0}

and f =
∨
{c ∈ C : c ∧ a = 0}, using (SCov). Then a ∧ f = 0. Also

b ∨ e ≥
∨
{c ∈ C : c ∧ t 6= 0} ∨

∨
{c ∈ C : c ∧ t = 0} = 1.

We show that e�f , by showing that Ce ⊆↓f . Take k ∈ C with k∧e 6= 0.
Then there exists c ∈ C with k ∧ c 6= 0 and c ∧ t = 0. Then k 6≤ t: if k ≤ t,
then k ∧ c = 0; a contradiction. Also k ∧ a = 0: if k ∧ a 6= 0, then k ≤ t; a
contradiction. But then k ≤ f , by the definition of f , as required.

(SI6) follows from the compatibility condition of a uniform S-frame.

Remark 10.5. We call the uniformly below relation of Lemma 10.4 the
strong inclusion induced by the S-uniformity in question.

Proposition 10.6. Any strong inclusion on an S-frame is induced by a
totally bounded S-uniformity.

Proof. Let J be a strong inclusion on an S-frame L. Let B be the collec-
tion of all finite covers C = {c1, . . . , cn} such that there exists a finite cover
WC = {w1, . . . , wn} (called a “witness”) such that wj J cj for j = 1, . . . , n.
We claim that B is a base for an S-uniformity on L, which is then clearly
totally bounded.
B is closed under finite meets because a J b and c J d implies a∧ c J b∧ d.
For compatibility, consider a J d and take b, c ∈ L with a J b J c J d.
There exist, by (SI5), p, q, r, s, t, u ∈ L such that p J q ≤ r J s ≤ t J u and
p ∨ d = 1, q ∧ c = 0, r ∨ c = 1, s ∧ b = 0, t ∨ b = 1, u ∧ a = 0.
Let C = {u, d} and D = {s, c}. Now u∨d ≥ p∨d = 1 and s∨ c ≥ r∨ c = 1,
so C and D are S-covers of L. Further, s J u and c J d, so D witnesses C
being in B. We note that Ca = d, so compatibility follows from (SI6).
For star-refinements, start with C = {c1, . . . , cn} ∈ B andWC = {w1, . . . , , wn}
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a witness. For each j take dj ∈ L with wj J dj J cj . Let D = {d1, . . . , dn};
then D ∈ B. By (SI5) we have sj J tj , tj ∧ dj = 0, sj ∨ cj = 1. Let
Dj = {cj , tj}. By repeated interpolation, as in the compatibility argument
above, Dj ∈ B. Finally, let F = D ∧D1 ∧ . . . ∧Dn. We show that F <∗ C:
A typical member of F has the form dj ∧ z1 ∧ . . . ∧ zn where dj ∈ D and
zi ∈ Di for i = 1, . . . , n.
For any j, F (dj ∧ z1 ∧ . . . ∧ zn) ≤ Dj(dj ∧ z1 ∧ . . . ∧ zn) ≤ Dj(dj ∧ zj) ≤ cj .
Denote by � the strong inclusion on L induced by the S-uniformity just
constructed. We show that � =J.
We have already seen that, if a J b, then a � b by the compatibility argu-
ment above. Suppose now that a � b. Then there is C = {c1, . . . , cn} ∈ B
with the associated witness WC = {w1, . . . , wn} such that Ca ≤ b. Then,
using the finiteness of WC we obtain:
a ≤WCa =

∨
{wj : wj ∈WC , wj ∧ a 6= 0} J

∨
{cj : wj ∈WC , wj ∧ a 6= 0} ≤

Ca ≤ b, so a J b as required.

Proposition 10.7. Every compact, regular S-frame has a unique compatible
S-nearness, which is in fact an S-uniformity.

Proof. In a compact, regular S-frame, the rather below relation is a strong
inclusion. This follows from a standard argument where the interpolation
condition (SI4) follows from Lemma 9.3 and Proposition 10.2. Then Propo-
sition 10.6 applies.

To show uniqueness, fix an S-nearness KL on a compact, regular S-
frame L. We show that every finite cover is in KL. Then every S-cover is
in KL, by compactness.

So let C be a finite cover of L. Each c ∈ C can be written as c =
∨
Tc

where Tc is a designated subset of L and t � c for each t ∈ Tc. Then, by
Axiom (S3), S =

⋃
{Tc : c ∈ C} is an S-cover of L. By compactness, S has

a finite sub S-cover {t1, . . . , tn}. Let j ∈ {1, . . . , n}; then tj � cj for some
cj ∈ C. So there exists Dj ∈ KL such that Djtj ≤ cj . Let E = D1∧. . .∧Dn.
Then E ∈ KL and E ≤ C, as required.

Remark 10.8. If S selects only finite subsets, so that S-frames are bounded
distributive lattices, it follows from the above that each S-frame has a unique
S-nearness on it (which consists of all finite covers). So the theory of S-
nearness and S-uniformity is simply not interesting in this case.
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11 Alternative formalisms

Partial frames have been presented in the literature using various differ-
ent formalisms. In this section, we present a brief review of these. We
note, however, that a general treatment of compatible covering structures
for partial frames has not appeared previously. Of course, nearnesses and
uniformities in the specific cases of frames and σ-frames, are well known.

The “selection function” description we have used in this paper most
closely resembles that of Paseka [6].

Paseka’s axioms (A1) to (A4) correspond to our (S1) to (S4). In addi-
tion, he has one further axiom, (A5), which we state now, translated into
our notation. For a meet-semilattice A, write DSA = {↓G : G ∈ SA},
where ↓G =

⋃
{↓g : g ∈ G}. This is a meet-semilattice, using intersection

as the (finite) meet operation.

Paseka’s (A5): For any meet-semilattice A, G ∈ SDSA implies that⋃
G ∈ DSA.

We did not need Paseka’s axiom (A5) in this paper. However, if one
assumes it, then DS becomes a functor from meet-semilattices to S-frames,
which is left adjoint to the inclusion functor. (See [9].)

Zhao [9] and Zenk [8] present partial frames using a formalism that uses
downsets. The following is called a “set system” by Zhao and a “subset
selector” by Zenk.

Definition 11.1. A set system is a function which assigns to each meet-
semilattice A a collection ZA of downsets of A such that the following
conditions hold, for all meet-semilattices A and B:

(D1) For all x ∈ A, ↓x ∈ ZA.

(D2) For S, T ∈ ZA,S ∩ T ∈ ZA.

(D3) For A ∈ ZZA,
⋃
A ∈ ZA.

(D4) For any meet-semilattice map f : A → B, {↓f [S] : S ∈ ZA} ⊆
ZB.

Both Zhao and Zenk then define Z-frames and Z-frame maps as follows:

Definition 11.2. Let Z be a set system.
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1. A Z-frame, L, is a meet-semilattice such that
(i) for all S ∈ ZL, S has a join in L and
(ii) for all x ∈ L, for all S ∈ ZL, x ∧

∨
S =

∨
{x ∧ s : s ∈ S}.

2. Let L and M be Z-frames. A Z-frame map f : L → M is a meet-
semilattice map such that, for all S ∈ ZL, f(

∨
S) =

∨
f [S].

For the convenience of the reader used to using downsets in this context,
we now list some correspondences between our axioms and those of Zhao
and Zenk.

Remark 11.3. Let S be a rule which assigns to each meet-semilattice A a
collection SA of subsets of A. Then DS is a function which assigns to each
meet-semilattice A a collection of downsets of A.
If S satisfies (S1) then DS satisfies (D1).
If S satisfies (S2) then DS satisfies (D2).
If S satisfies (S3) then DS satisfies the condition: “For any meet-semilattice
A, if G ∈ DSA and, for each y ∈ G, y =

∨
Gy for some Gy ∈ DSA, then⋃

y∈G
Gy ∈ DSA.”

If S satisfies (S4), then DS satisfies the condition: “For any meet-semilattice
map f : A→ B, {↓f [G] : G ∈ DSA} = DS(f [A]) ⊆ DS(B).”
If S satisfies Paseka’s Axiom (A5), then DS satisfies (D3).

Remark 11.4. The S-frames and the DS-frames coincide.
The S-frame maps and the DS-frame maps coincide.

We conclude with a remark on covers in partial frames: As mentioned
earlier, Paseka, in [6], considers a notion of cover which is equivalent to our
S-cover. However, our axioms (SFin) and (SCov) are somewhat less restric-
tive than Paseka’s here, since he assumes that every subset of a designated
set is designated.

Finally, we thank the referee and the editor for thoughtful suggestions.
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