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Dually quasi-De Morgan Stone
semi-Heyting algebras I. Regularity
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Abstract. This paper is the first of a two part series. In this paper, we first
prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras
of level 1 satisfies the strongly blended ∨-De Morgan law introduced in [20].
Then, using this result and the results of [20], we prove our main result which
gives an explicit description of simple algebras(=subdirectly irreducibles) in
the variety of regular dually quasi-De Morgan Stone semi-Heyting algebras
of level 1. It is shown that there are 25 nontrivial simple algebras in this
variety.

In Part II, we prove, using the description of simples obtained in this Part,
that the variety RDQDStSH1 of regular dually quasi-De Morgan Stone
semi-Heyting algebras of level 1 is the join of the variety generated by the
twenty 3-element RDQDStSH1-chains and the variety of dually quasi-De
Morgan Boolean semi-Heyting algebras–the latter is known to be generated
by the expansions of the three 4-element Boolean semi-Heyting algebras. As
consequences of this theorem, we present (equational) axiomatizations for
several subvarieties of RDQDStSH1. The Part II concludes with some open
problems for further investigation.
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1 Introduction

The concept of regularity has played an important role in the theory of
pseudocomplemented De Morgan algebras (see [15]). (A similar notion was
earlier considered for double p-algebras in [22].) The main purpose of this
paper is to carry it over to the variety DQDSH of dually quasi-De Morgan
semi-Heyting algebras studied in [20] and to initiate the investigation of reg-
ularity in the level 1 subvariety DQDStSH1 of DQDSH whose members
have Stone semi-Heyting reducts.

This paper, the first of a two-part series, is organized as follows: We first
prove in Section 3 that the variety DQDStSH1 of dually quasi-De Morgan
Stone semi-Heyting algebras of level 1 satisfies the strongly blended ∨-De
Morgan law introduced in [20]. Then, using this result and the results of [20],
we prove, in Section 4, our main result which gives an explicit description
of simple algebras(=subdirectly irreducibles) in the variety RDQDStSH1

of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1.
It is shown that there are 25 (nontrivial) simple algebras in this variety.

In Part II, we prove, using the description of simples, obtained in this
Part, that RDQDStSH1 is the join of the variety generated by the twenty
3-element RDQDStSH1-chains and the variety of dually quasi-De Morgan
Boolean semi-Heyting algebras–the latter is known to be generated by the
expansions of the three 4-element Boolean semi-Heyting algebras. Further-
more, as consequences of this theorem, we present, (equational) axiomatiza-
tions for several subvarieties of RDQDStSH1. The Part II concludes with
some open problems for further investigation.

2 Dually quasi-De Morgan semi-Heyting algebras

The following definition is taken from [18].

An algebra L = 〈L,∨,∧,→, 0, 1〉 is a semi-Heyting algebra if
〈L,∨,∧, 0, 1〉 is a bounded lattice and L satisfies:

(SH1) x ∧ (x→ y) ≈ x ∧ y

(SH2) x ∧ (y → z) ≈ x ∧ ((x ∧ y)→ (x ∧ z))

(SH3) x→ x ≈ 1.



Dually quasi-De Morgan semi-Heyting algebras I 49

Let L be a semi-Heyting algebra. L is a Heyting algebra if L satisfies:

(SH4) (x ∧ y)→ y ≈ 1.

L is a Stone semi-Heyting algebra if L satisfies:

(St) x∗ ∨ x∗∗ ≈ 1, where x∗ := x→ 0.

L is a Boolean semi-Heyting algebra if L satisfies:

(Bo) x ∨ x∗ ≈ 1 (where x∗ := x→ 0).

Semi-Heyting algebras are distributive and pseudocomplemented, with
a∗ as the pseudocomplement of an element a. We will use these and other
properties (see [18]) of semi-Heyting algebras, frequently without explicit
mention, throughout this paper.

The following definition is taken from [20].

Definition 2.1. An algebra L = 〈L,∨,∧,→,′ , 0, 1〉 is a semi-Heyting al-
gebra with a dual quasi-De Morgan operation or dually quasi-De Morgan
semi-Heyting algebra (DQDSH-algebra, for short) if
〈L,∨,∧,→, 0, 1〉 is a semi-Heyting algebra, and L satisfies:

(a) 0′ ≈ 1 and 1′ ≈ 0

(b) (x ∧ y)′ ≈ x′ ∨ y′

(c) (x ∨ y)′′ ≈ x′′ ∨ y′′

(d) x′′ ≤ x.

A DQDSH-algebra L is a dually pseudocomplemented semi-Heyting algebra
(DPCSH-algebra) if L satisfies:

(e) x ∨ x′ ≈ 1.

A DQDSH-algebra L is a De Morgan semi-Heyting algebra or symmetric
semi-Heyting algebra (DMSH-algebra) if L satisfies:

(DM) x′′ ≈ x.
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The varieties of DQDSH-algebras, DPCSH-algebras and DMSH-algebras
are denoted, respectively, by DQDSH, DPCSH and DMSH, while DQDStSH
denotes the subvariety of DQDSH defined by the Stone identity (St), and
DQDBSH denotes the one defined by (Bo). Let L ∈ DQDSH. L is a
semi-Heyting algebra with a blended dual quasi-De Morgan operation or a
blended dually quasi-De Morgan semi-Heyting algebra (BDQDSH-algebra,
for short ) if L satisfies:

(B) (x ∨ x∗)′ ≈ x′ ∧ x∗′ (Blended ∨-De Morgan law).

L is a semi-Heyting algebra with a strongly blended dual quasi-De Morgan
operation or strongly blended dually quasi-De Morgan semi-Heyting algebra
(SBDQDSH, for short ) if L satisfies:

(SB) (x ∨ y∗)′ ≈ x′ ∧ y∗′ (Strongly Blended ∨-De Morgan law).

L is a semi-Heyting algebra with a dual ms-operation (DmsSH-algebra) if
L satisfies:

(x ∨ y)′ ≈ x′ ∧ y′ (∨-De Morgan law).

The varieties of BDQDSH-algebras, SBDQDSH-algebras and
DmsSH-algebras are denoted, respectively, by BDQDSH,
SBDQDSH and DmsSH. It is clear that DmsSH ⊆ SBDQDSH ⊆
BDQDSH. If the underlying semi-Heyting algebra is a Heyting algebra,
then we replace the part “SH” by “H” in the names of the varieties that
we consider.

Two important classes of examples of DQDStSH-algebras are Stone
Heyting algebras with a dual pseudocomplement (DPCStH) and De Mor-
gan Stone Heyting algebras (symmetric Stone Heyting algebras) (DMStH,
for short).

In the sequel, a′∗′ will be denoted by a+, for a ∈ L ∈ DQDSH. The
following lemma will be used, often without explicit reference to it. Most
of the items in this lemma were proved in [20] and the others are left to the
reader.

Lemma 2.2. Let L ∈ DQDSH and let x, y, z ∈ L. Then

(i) 1′∗ = 1
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(ii) x ≤ y implies x′ ≥ y′

(iii) (x ∧ y)′∗ = x′∗ ∧ y′∗

(iv) x′∗ ≤ x∗′

(v) x′′′ = x′

(vi) (x ∨ y)′ = (x′′ ∨ y′′)′

(vii) (x ∨ y)′ = (x′′ ∨ y)′

(viii) x ≤ (x ∨ y)→ x

(ix) x ≤ x→ 1

(x) x ∧ [(x→ y)→ z] = x ∧ (y → z)

(xi) x ∨ x+ = 1.

Recall that L ∈ DQDSH is a DQDSH-chain if the lattice reduct of L
is a chain. In what follows we are interested in the DQDSH-chains of size 2
and 3 which we describe below. It was observed in [18] that 2 and 2̄, shown
in Figure 1, are, up to isomorphism, the only two 2-element semi-Heyting
algebras.

s
s

0

1

2 :

→ 0 1

0 1 1
1 0 1 s

s
0

1

2̄ :

→ 0 1

0 1 0
1 0 1

Figure 1

Let 2e and 2̄e denote their expansions obtained by adding the unary
operation ′ defined by: 0′ = 1 and 1′ = 0. It is clear that 2e and 2̄e are the
only 2-element DQDStSH-algebras.

It was also observed in [18] that there are, up to isomorphism, ten 3-
element semi-Heyting chains, shown in Figure 2.
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Figure 2

Let Ldpi , i = 1, . . . , 10, denote the expansion of Li (shown in Figure 2)
by adding the unary operation ′ such that 0′ = 1, 1′ = 0, and a′ = 1; and let
Ldmi , i = 1, . . . , 10, denote the expansion of Li by adding the unary operation
′ such that 0′ = 1, 1′ = 0, and a′ = a. We Let Cdp

10 := {Ldpi : i = 1, . . . , 10}
and Cdm

10 := {Ldmi : i = 1, . . . , 10}. We also let C20 := Cdm
10 ∪Cdp

10 .

It is easy to verify that Cdp
10 ⊆ DPCStSH ⊆ DQDStSH and Cdm

10 ⊆
DMStSH ⊆ DQDStSH. It is also easy to see that these 20 algebras are
the only 3-element DQDStSH-algebras.
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We are also interested in the three 4-element algebras D1, D2 and D3

described below. Each of the three algebras has a Boolean lattice reduct
with the universe {0, a, b, 1}, in which b is the complement of a, and the
unary operation ′ is defined as follows: a′ = a, b′ = b, 0′ = 1, 1′ = 0, and →
is defined in Figure 3:

D1 : D2 :

→ 0 1 a b

0 1 0 b a
1 0 1 a b
a b a 1 0
b a b 0 1

→ 0 1 a b

0 1 1 1 1
1 0 1 a b
a b 1 1 b
b a 1 a 1

D3 :

→ 0 1 a b

0 1 a 1 a
1 0 1 a b
a b a 1 0
b a 1 a 1

Figure 3

It was shown in [20] that the algebras D1, D2, and D3 are simple and the
variety generated by the three algebras is precisely the variety DQDBSH
which is the subvariety of DQDSH defined by (Bo). The semi-Heyting
reducts of D1, D2 and D3 are, up to isomorphism, 2̄× 2̄, 2× 2, and 2× 2̄
respectively. Notice also that {D1,D2,D3} |= x′′ ≈ x, and D2 has a Heyt-
ing algebra reduct, while the other two do not. Furthermore, D1 satisfies
the commutative law: x→ y ≈ y → x.

The following definition is from [20].

Definition 2.3. Let x ∈ L ∈ DQDSH. For n ∈ ω, we define tn(x)
recursively as follows:

x0(′∗) = x,
x(n+1)(′∗) = (xn(′∗))′∗, for n ≥ 0.

t0(x) = x, tn+1(x) = tn(x) ∧ x(n+1)(′∗), for n ≥ 0.

For n ∈ ω, the nth level (or level n) subvariety DQDSHn of DQDSH
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is defined by the identity:

tn(x) ≈ tn+1(x).

For n ∈ ω, we let BDQDSHn := BDQDSH ∩DQDSHn; and simi-
larly SBDQDSHn, etc. are defined. It was shown in [20] that, for n ∈ ω,
the variety BDQDSHn, and hence the subvariety SBDQDSHn, is a dis-
criminator variety.

Note that the level 0 (or 0th level) variety DQDSH0 is defined by the
identity: x ≈ x ∧ x′∗, (equivalently, x′∗ ≈ x) and it was shown in [20] that
this variety is generated by {2e, 2̄e}.

An interesting open problem is the problem of investigation of the (com-
plex) structure of the lattice of subvarieties of the variety DQDSH1 which
is defined by: x ∧ x′∗ ∧ x′∗′∗ ≈ x ∧ x′∗.

In this paper we are interested in a special case of this problem, namely
that of describing the subvariety lattice of the variety
RDQDStSH1 of regular dually quasi-De Morgan Stone semi-Heyting al-
gebras of level 1 (see Section 4 for definition).

The variety V(C20) generated by the twenty 3-element algebras (Figure
2) and the variety DQDBSH generated by the three 4-element algebras
(Figure 3) are subvarieties of DQDSH1 that were axiomatized in [20]. In
this paper, we are also interested in the problem of finding an equational
base (an equational axiomatization) for the join of the varieties V(C20) and
DQDBSH. It is somewhat surprising that these two problems are closely
related (see Part II, Theroem 3.4).

It is easy to see that all the twenty five algebras described above in
Figures 1-3 are actually in SBDQDStSH1.

The following lemma is useful in the sequel. In particular, it aids us in
giving an alternative definition of DQDStSHn.

Lemma 2.4. Let L ∈ DQDStSH with |L| ≥ 2. Then
(1) x∗′′ = x∗

(2) x′∗∗′ ≤ x
(3) x′∗∗ ∨ x∗′ = 1
(4) x′∗′∗ ≤ x
(5) x ∧ x′∗ ∧ x′∗′∗ ≈ (x ∧ x′∗)′∗.

Proof. From x∗ ∨ x∗∗ = 1, we have x∗′′ ∨ x∗∗′′ = 1, implying x∗∗ ∨ x∗′′ = 1.
It follows that x∗ ≤ x∗′′, from which we can conclude (1). Next, x′ ≤ x′∗∗
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implies x′∗∗′ ≤ x′′ ≤ x, proving (2). From (2) we get x∗ ∧ x′∗∗′ = 0, which
implies x∗′ ∨ x′∗∗ = 1, in view of (1)– this proves (3). Now, from (3) we
have x∗′∗∗ ∨ x∗∗′ = 1, yielding x∗′∗ ≤ x∗∗′. Replacing x by x′ and using (2),
we get x′∗′∗ ≤ x′∗∗′ ≤ x, thus proving (4). Finally, (x∧x′∗)′∗ = x′∗∧x′∗′∗ =
x ∧ x′∗ ∧ x′∗′∗ in view of (4), which proves (5).

The following theorem, which is now immediate from Lemma 2.4(5) and
the definition of tn, gives an alternative definition of DQDStSHn.

Theorem 2.5. For n ∈ ω, DQDStSHn is defined by the identity: (x ∧
x′∗)n(′∗) ≈ (x ∧ x′∗)(n+1)(′∗), modulo DQDStSH.

In particular, the variety DQDStSH1 is defined by the identity: x ∧
x′∗ ≈ (x ∧ x′∗)′∗, relative to DQDStSH.

3 Dually quasi-De Morgan Stone semi-Heyting algebras of
level 1

We now focus our attention on the (sub)variety DQDStSH1 which, in view
of Theorem 2.5, consists of dually quasi-De Morgan Stone semi-Heyting
algebras satisfying the identity:

(L1) x ∧ x′∗ ≈ (x ∧ x′∗)′∗ (Level 1).

If the underlying semi-Heyting algebra of a DQDStSH-algebra is a Heyting
algebra we denote the algebra by DQDStH-algebra. The corresponding
varieties are denoted by DQDStSH and DQDStH respectively.

In this section our goal is to prove DQDStSH1 = SBDQDStSH1. To
achieve this, we need the following lemmas.

Lemma 3.1. Let x ∈ L ∈ DQDStSH1. Then
(1) (x∗ ∨ x∗∗′)∗ ≈ x∗∗ ∧ x∗′
(2) x∗∗ ∧ x∗′ ∧ x∗∗′ = 0
(3) x∗′ ∧ x∗∗′ = 0.

Proof. (x∗ ∨x∗∗′)∗ = (x∗′′ ∨x∗′′∗′)∗ = (x∗′ ∧x∗′′∗)′∗ = x∗′ ∧x∗′′∗ = x∗′ ∧x∗∗,
in view of Lemma 2.4(1) and the axiom (L1), proving (1). For (2), we have
x∗∗′ ∧ x∗∗ ∧ x∗′
= x∗∗′ ∧ (x∗ ∨ x∗∗′)∗ by (1)
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= x∗∗′ ∧ [(x∗ ∨ x∗∗′)→ 0]
= x∗∗′ ∧ [x∗∗′ → 0] by (SH2)
= 0.
For (3), first, we note that x∗ ∧ x∗∗′ ∧ x∗′ = 0 by (2), since x∗∗∗ = x∗. Now,
x∗′ ∧ x∗∗′
= (x∗′ ∧ x∗∗′) ∧ (x∗ ∨ x∗∗) by (St)
= 0 by what was noted earlier, which proves (3).

Lemma 3.2. Let x ∈ L ∈ DQDStSH1. Then
(1) x∗∗′ = x∗′∗

(2) x∗′ ∨ x∗′∗ = 1
(3) x∗′∗∗ = x∗′.

Proof. x∗∗′ ≤ x∗′∗ is immediate from Lemma 3.1(3), while the other in-
equality follows from Lemma 2.2(iv), so (1) is proved. Next, x∗′ ∨ x∗′∗ =
x∗′ ∨ x∗∗′ = (x∗ ∧ x∗∗)′ = 1 by (1), proving (2). Finally, using (2), we have
x∗′∗∗∧ (x∗′∨x∗′∗) = x∗′∗∗, which, by distributivity, implies that x∗′∗∗ ≤ x∗′.
Since the other inequality is well known, proof of (3) is complete.

Lemma 3.3. Let x, y ∈ L ∈ DQDStSH. Then
(1) (x′ ∨ y∗′)′ ∨ (x′ ∨ y∗∗′)′ = x′′

(2) (x′ ∨ y∗′)′ = x′′ ∧ y∗
(3) (x ∨ y∗′)′ = x′ ∧ y∗.

Proof. We have

(x′ ∨ y∗′)′ ∨ (x′ ∨ y∗∗′)′ = (x ∧ y∗)′′ ∨ (x ∧ y∗∗)′′

= [x ∧ (y∗ ∨ y∗∗)]′′

= x′′ by (St),

proving (1). Next, we have

x′′ ∧ y∗ = y∗ ∧ [(x′ ∨ y∗′)′ ∨ (x′ ∨ y∗∗′)′] by (1)

= [y∗ ∧ (x′ ∨ y∗′)′] ∨ [y∗ ∧ (x′ ∨ y∗∗′)′]
= (x′ ∨ y∗′)′,
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as y∗ ≥ y∗′′ ≥ (x′ ∨ y∗′)′ and y∗∗ ≥ y∗∗′′ ≥ (x′ ∨ y∗∗′)′. Thus (2) is proved.
Finally,

(x ∨ y∗′)′ = (x′′ ∨ y∗′)′

= x′′′ ∧ y∗ by (2)

= x′ ∧ y∗.

Thus (3) is proved.

We are now ready to prove our main theorem of this section.

Theorem 3.4. DQDStSH1 = SBDQDStSH1

Proof.

(x ∨ y∗)′ = (x ∨ y∗′′)′ by Lemma 2.4(1)

= (x ∨ y∗′∗∗′)′ by Lemma 3.2(3)

= x′ ∧ y∗′∗∗ by Lemma 3.3(3)

= x′ ∧ y∗′ by Lemma 3.2(3).

Thus DQDStSH1 ⊆ SBDQDStSH1. Since the other inequality is trivial,
the proof is complete.

We conclude this section with the remark that there are algebras in
SBDQDSH1 in which (St) fails; thus, DQDStSH1 is a proper subvariety
of SBDQDSH1. We also observe that there are algebras to show that
DQDStSH1 and DmsSH1 are incomparable elements in the lattice of
subvarieties of DQDSH1.

4 Simple algebras in RDQDStSH1

We now introduce the (sub)variety RDQDSH of regular dually quasi-De
Morgan semi-Heyting algebras. (Recall that x+ = x′∗′.)

Definition 4.1. Let L ∈ DQDSH. Then L is regular if L satisfies:

(M) x ∧ x+ ≤ y ∨ y∗.

The variety of regular DQDSH-algebras will be denoted by RDQDSH.
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Remark 4.2. The reader is cautioned here not to confuse this notion of
regularity with another notion of regularity defined by the identity: x∗∗ ≈
x∗′ (see [9], [20]). In general, the two notions are independent of each other.
In this paper we do not have the occasion to use the other notion, so there
is no confusion.

The purpose of this section is to give an explicit description of simple al-
gebras in the variety RDQDStSH1. Since RDQDStSH1 ⊆ SBDQDSH1

by Theorem 3.4, we are going to obtain such a description as an application
of the following theorem which is immediate from Corollaries 7.6 and 7.7
of [20].

Theorem 4.3. Let L ∈ BDQDSH1 with |L| ≥ 2. Then the following are
equivalent:

(1) L is simple

(2) L is subdirectly irreducible

(3) (a) Cen L = {0, 1} or Cen L = {0, a, a∗, 1} with a = a′, and

(b) For every x ∈ L, if x 6= 1, then t1(x) = 0.

We first show that the condition (3)(a) in the above theorem is redun-
dant. For this we need the following lemma.

Lemma 4.4. Suppose L ∈ BDQDSH1 satisfies the condition
(3)(b) of the preceding theorem. Let a ∈ L such that a ∨ a∗ = 1 and a /∈
{0, 1}. Then

(1) a′′ = a

(2) a′ ≤ a

(3) a′ = a∗∗′

(4) a∗ = 0 or a ≤ a′

(5) a′ = a.
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Proof. From (a∨ a∗)′′ = 1, we get a′′ ∨ a∗′′ = 1, implying a∧ (a′′ ∨ a∗′′) = a,
and hence a ≤ a′′, which leads us to conclude (1). To prove (2), if a′ = 1,
then a = a′′ = 0 in view of (1), contrary to the hypothesis. Hence, a′ 6= 1.
Then from hypothesis (3)(b) we have a′ ∧ (a ∨ a′′∗) = a′ ∧ a. Therefore,
a ∧ a′ = a′ ∧ (a ∨ a∗) = a′ by (1) and the hypothesis. So, we get a′ ≤ a,
proving (2). For (3), from a∗∧a∗∗′′ = 0 we get a∨a∗∗′′ = a, since a∨a∗ = 1,
implying a∗∗′′ ≤ a; hence a∗∗′ ≥ a′. On the other hand, we have a′ ∨ [(a→
0) → 0]′ = a′ ∨ (0 → 0)′ by Lemma 2.2(x), which simplifies to a′ ≥ a∗∗′,
proving (3). Suppose a∗′ 6= 1. Then a∗′ ∧ a∗′′∗ = 0 by hypothesis. Hence
a∗′′ ∨ a∗′′∗′ = 1, which simplifies to a∗ ∨ a′ = 1, in view of Lemma 2.4(1)
and item (3) above, from which we conclude a ≤ a′. Thus we have a∗′ = 1
or a ≤ a′, which implies a∗′′ = 0 or a ≤ a′, which, in view of Lemma 2.4(1),
proves (4). Suppose a � a′. Then a∗ = 0 by (4), whence a∗∗′ = 0. Then by
(3) a′ = 0, implying a ≥ a′′ = 1, which is contrary to the hypothesis. Hence
a ≤ a′, which combined with (2) gives a′ = a, proving (5).

The following corollary is now immediate from Theorem 4.3 and (5) of
Lemma 4.4.

Corollary 4.1. Let L ∈ BDQDSH1 with |L| ≥ 2. Then the following are
equivalent:

(1) L is simple

(2) L is subdirectly irreducible

(3) For every x ∈ L, if x 6= 1, then x ∧ x′∗ = 0.

Unless otherwise stated, in the rest of this section we assume
that L ∈ RDQDStSH1 and satisfies the following simplicity condi-
tion (which is the condition (3) of the preceding corollary):

(SC) For every x ∈ L, if x 6= 1 then x ∧ x′∗ = 0.

Lemma 4.5. Let x, y ∈ L. Then

(1) x ∧ (x+ ∨ y ∨ y∗) = x ∧ (y ∨ y∗)

(2) x′ ∨ x′∗ ∨ x+ = 1.
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Proof. We have

x ∧ (y ∨ y∗) = x ∧ [(x ∧ x+) ∨ (y ∨ y∗)] by (M)

= (x ∧ x+) ∨ [x ∧ (y ∨ y∗)]
= x ∧ (x+ ∨ y ∨ y∗),

proving (1). Next,

x′ ∨ x′∗ ∨ x′∗′ ≥ x′ ∨ (x ∧ x′∗) ∨ x′∗′

≥ (x ∧ x′∗)′ ∨ (x ∧ x′∗)′′

= [(x ∧ x′∗) ∧ (x ∧ x′∗)′]′

= [(x ∧ x′∗)′∗ ∧ (x′ ∨ x′∗′)]′ by (L1)

= [(x′ ∨ x′∗′)∗ ∧ (x′ ∨ x′∗′)]′

= 0′, since ∗ is the pseudocomplement

= 1,

which proves (2).

It should perhaps be remarked here that the condition (SC) is not used
in the above lemma.

Lemma 4.6. Let x, y ∈ L. Then

(1) x = 1 or x ≤ x′

(2) x ∨ y = 1 or x ≤ (x ∨ y)′

(3) x ≤ y or x ∨ y′ = 1.

Proof. Suppose x 6= 1. Then

x ∧ x′ = (x ∧ x′) ∨ (x ∧ x′∗) by (SC)

= x ∧ (x′ ∨ x′∗)
= x ∧ (x′ ∨ x′∗ ∨ x′∗′) by Lemma 4.5(1)

= x ∧ 1 by Lemma 4.5(2)

= x,

which proves (1). From (1) we have x ∨ y = 1 or x ∨ y ≤ (x ∨ y)′. The
latter clearly implies x ≤ (x ∨ y)′, proving (2). From (2) we get x ∨ y′ = 1
or x ≤ (x ∨ y′)′. But (x ∨ y′)′ ≤ y′′ ≤ y. Hence (3) holds.



Dually quasi-De Morgan semi-Heyting algebras I 61

Lemma 4.7. Let a, b ∈ L such that 0 < a < b < 1. Then

(1) b ≤ a ∨ a∗

(2) a′ = 1 or a′ = b

(3) a′ = 1

(4) a∗′ = 1

(5) a∗∗′ = 0

(6) a∗ = 0.

Proof. Claim 1: a ≤ b+. We have, from Lemma 4.6(3), a ≤ b+ or a∨b+′ =
1. Suppose the latter holds, then b∧(a∨b′∗′′) = b, which simplifies to b ≤ a,
as b ∧ b′∗′′ ≤ b ∧ b′∗ = 0 since b 6= 1. Then we have a contradiction to the
hypothesis a < b, so Claim 1 is proved.

From Lemma 4.6(3), a ≤ b′∗ or a ∨ b+ = 1. The former would imply
b ∧ a ≤ b ∧ b′∗ = 0 by (SC), contrary to the hypothesis. Hence the latter
holds, from which, using Claim 1, we have b+ = 1. Hence by (M) we get
b = b∧1 = b∧ b+ ≤ a∨a∗, proving (1). Suppose a′ 6= 1. Then from Lemma
4.6(1), a′ ≤ a′′ ≤ b′′ ≤ b; thus a′ ≤ b. On the other hand, as b 6= 1, b ≤ b′ by
Lemma 4.6(1), and we already know b′ ≤ a′, hence b ≤ a′, implying a′ = b
and thus proving (2). Now if a′ 6= 1, then a′ = b by (2) and a′ ≤ a′′ by
Lemma 4.6(1). So b = a′ ≤ a′′ ≤ a–a contradiction, so a′ = 1, proving (3).
For (4) we first need to prove the following
Claim 2: a ≤ a∗′′ or a∗′ = 1. For, suppose a � a∗′′. Then, by Lemma
4.6(3), a∨ a∗′′′ = 1, whence (a∨ a∗′)′ = 0, and so, (a′′ ∨ a∗′)′ = 0. Hence, it
follows from (3) that a∗′′ = 0 and so a∗′ = 1, proving Claim 2.

Thus we have a ≤ a∗′′ or a∗′ = 1, the former of which would imply
a ≤ a∗, leading to a contradiction since a 6= 0. Therefore, a∗′ = 1, which
proves (4). Next, 0 = 1′ = (a∗ ∨ a∗∗)′ = (a∗′′ ∨ a∗∗)′ = a∗∗′ by (4), thus
proving (5). Finally, observe that a∗∗ ≥ a∗∗′′ = 1 by (5), implying a∗ = 0,
proving (6).

Lemma 4.8. If L ∈ RDQDStSH1 satisfies the simplicity condition (SC),
then L is of height at most 2 (that is, no chain in L is of cardinality ≥ 4).
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Proof. Suppose there are a, b ∈ L such that 0 < a < b < 1. Using Lemma
4.7(1), we get b ≤ a ∨ a∗. But a∗ = 0 by Lemma 4.7(6). Thus b ≤ a, which
is a contradiction, proving the lemma.

We are ready to prove the main theorem of this paper.

Theorem 4.9. Let L ∈ RDQDStSH1 with |L| ≥ 2. Then the following
are equivalent:

(1) L is simple

(2) L is subdirectly irreducible

(3) For every x ∈ L, if x 6= 1, then x ∧ x′∗ = 0

(4) L is of height at most 2

(5) L ∈ {2e, 2̄e} ∪C20 ∪ {D1,D2,D3}, up to isomorphism.

Proof. (3)⇒ (4) by Lemma 4.8. Suppose (4) holds. Then it is clear that the
lattice reduct of L is a chain of size 2, 3, or is a 4 element Boolean lattice.
Observe that all algebras listed in (5) are in RDQDStSH1 and are the
only ones of height at most 2. Hence L is isomorphic to one of the algebras
in (5). Thus (5) holds; whence (4) ⇒ (5). As it can be easily verified that
all algebras listed in (5) are simple, (5) ⇒ (1). The rest of the implications
follow from Corollary 4.1.

In concluding this section we point out that RDQDStSH1 is a proper
subvariety of SBDQDStSH1.
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