Categories and General Algebraic Structures with Applications Published by: Shahid Beheshti University Via human 2 Neural and

Volume 2, Number 1, July 2014, 37-45 ISSN Print: 2345-5853 Online: 2345-5861

Quasi-projective covers of right S-acts

Mohammad Roueentan and Majid Ershad

Abstract. In this paper S is a monoid with a left zero and A_S (or A) is a unitary right S-act. It is shown that a monoid S is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right S-act is quasiprojective. Also it is shown that if every right S-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that every right act has a projective cover.

1 Introduction and Preliminaries

Let S be a monoid. For right S-acts A and B, A is called B-projective or projective relative to B if for every right S-act C, every homomorphism $f: A \to C$ can be lifted with respect to every epimorphism $g: B \to C$, that is there exists a homomorphism $h: A \to B$ such that f = gh. A_S is called projective if it is projective relative to every right S-act. Also A is called *quasi-projective* if A is A-projective and is called *weakly-projective* if A is projective relative to S_S ([1, 7]). There are quite a few papers describing projectivity are principal weak projectivity, Rees weak projectivity and principal Rees weak projectivity, see [6]. Quasi-projective acts have been studied by Ahsan and Saifullah [1]. Also the concept of weakly-projective acts have been introduced by Knauer and Olthmanns [7]. In this paper we study the concept of quasi-projective cover. Recall that over a monoid S, an S-act A has a projective cover P if there is an epimorphism $f: P \to A$

 $^{{\}it Keywords:}\ {\it Projective,\ quasi-projective,\ perfect,\ semiperfect,\ cover.}$

Mathematics Subject Classification [2010]: 20M30, 20M50.

such that, P is projective and $f|_C : C \to A$ is not epimorphism for every subact C of P (see [5]). Similar to projective cover (as above) we can define quasi-projective cover, noting that P has to be quasi-projective in this case. Monoids which have a projective cover for each right act are called right perfect monoids. For more details concerning covers of acts, see [2, 3, 4, 8]. In [2], Fountain proved that a monoid S is right perfect if and only if every strongly flat right S-act is projective. From this point of view, we prove that for a monoid S to be right perfect it is enough to show that every strongly flat right S-act is quasi-projective (see Theorem 2.5). Also we give a characterization for monoids for which every cyclic strongly flat act is projective. To give the main result, we focus our attention on right S-acts which have a unique zero. It is shown that if each right S-act has a quasi-projective cover, then S is right perfect.

Modifying the proof of Lemma 1 of [1], we can deduce the following lemma.

Lemma 1.1. ([1]) Let S be a monoid with a left zero and $\varphi : A_S \to B_S$ be an S-epimorphism. If $A_S \sqcup B_S$ is quasi-projective, then B is a retract of A.

By the above lemma it is easy to see that over a monoid S with a left zero an S-act (a finitely generated S-act) A_S is projective if and only if there exists an epimorphism $g: P \to A$ such that P is a (finitely generated) projective right S-act and $P_S \sqcup A_S$ is quasi-projective. This fact implies the following theorem:

Theorem 1.2. Suppose S is a monoid with a left zero and X is a property of acts which is preserved under coproduct and is weaker than projectivity (such as strongly flatness, flatness and etc.), then the following are equivalent:

- (i) Every (finitely generated) right S-act with property X is quasi-projective.
- (ii) Every (finitely generated) right S-act with property X is projective.

By Theorem 4.10.5 of [5] and Theorem 1.2, the following result holds.

Corollary 1.3. Over a monoid S with a left zero the following are equivalent:

(i) Every principally weakly flat right S-act is quasi-projective.

- (ii) Every weakly flat right S-act is quasi-projective.
- (iii) Every flat right S-act is quasi-projective.
- (iv) Every flat right S-act is projective.

(v) $S = \{1\}$

From Theorem 4.11.8 of [5] and Theorem 1.2, we can deduce the following Corollary.

Corollary 1.4. Suppose S is a monoid with a left zero, then the following are equivalent:

- (i) All finitely generated right S-acts which satisfy Condition (P) are quasi-projective.
- (ii) Every right reversible submonoid of S contains a left zero.

Recall that a right ideal K of a monoid S satisfies Condition (LU) if for every $x \in K$, $x \in Kx$ ([5]).

Proposition 1.5. Let S be a commutative monoid, then the following are equivalent:

- (i) All quasi-projective acts over S are flat.
- (ii) All quasi-projective acts over S are weakly flat.
- (iii) All quasi-projective acts over S are principally weakly flat.
- (iv) S is a regular monoid.

Proof. (i) \Rightarrow (ii), (ii) \Rightarrow (iii) are obvious.

(iii) \Rightarrow (iv). It is easy to see that over commutative monoids every cyclic act is quasi-projective. Thus for every $s \in S, \frac{S}{sS}$ is quasi-projective and so is principally weakly flat by assumption. Hence sS satisfies Condition (LU) and so s is regular.

 $(iv) \Rightarrow (i)$. It is well known that over a commutative regular monoid S, every act is flat.

2 Semiperfect and perfect monoids with a left zero

Recall that a monoid S is right semiperfect if all cyclic strongly flat right S-acts are projective ([9]). In this section we give a new characterization of semiperfect and perfect monoids with a left zero. We present some results that we need in the sequel.

Proposition 2.1. Let B_S be an A_S -projective S-act. If C_S is either an S-homomorphic image or an S-subact of A_S , then B_S is C_S -projective.

Proof. Clearly, if C_S is a homomorphic image of A_S , then the result holds. Thus suppose C_S is a subact of A_S and consider an S-epimorphism $f: C \to \overline{C}$ and an S-homomorphism $g: B \to \overline{C}$ where \overline{C} is a right S-act. Let $\rho = \ker f \cup \Delta_A$ where Δ_A is the diagonal relation on A. Clearly $\overline{C} \simeq C/\ker f$. Thus if $\pi: A \to A/\rho$ is the natural epimorphism, then π is an extension of f. Since B is A-projective, there exists $h: B \to A$ such that $\pi \circ h = g$. It is easy to see that $h(B) \subseteq C$ and so h is an S-homomorphism from B to C, which proves that B is C-projective. \Box

One can easily see the following result.

Lemma 2.2. Suppose S is a monoid and A_S is a right S-act, then:

(i) If A is a cyclic right S-act, then A is projective if and only if A is weaklyprojective.

(ii) If S contains a left zero and $A = \coprod_{i \in I} A_i$ is weakly-projective, then A_i is weakly-projective for every $i \in I$.

Lemma 2.3. Suppose S is a monoid with a left zero. If every finitely generated (strongly flat) right S-act has a quasi-projective cover, then every finitely generated (strongly flat) right S-act has a projective cover.

Proof. By Lemma 1.1 of [4] (Proposition 3.13.14 of [3] and Proposition 1.6 of [4]), it is sufficient to show that every cyclic (strongly flat) right *S*-act has a projective cover. Let M = mS be a cyclic (strongly flat) right *S*-act and $\varphi : F \to M$ be an epimorphism such that *F* is a free *S*-act. Note that *F* can be regarded as a cyclic right *S*-act , because if $F = \coprod_{i \in I} a_i S$ and $m = \varphi(a_j t)$ for some $t \in S$ and $j \in I$, then $\varphi|_{a_j S} : a_j S \to mS$ is an

epimorphism. Thus if F is not cyclic we can consider the new epimorphism replace φ . Clearly, $F_S \sqcup M_S$ is finitely generated (strongly flat) and has a quasi-projective cover Q with an epimorphism $\psi : Q \to F_S \sqcup M_S$. Since F is cyclic, Q is finitely generated with two generators. If F = aS, then there exist $p, q \in Q$ such that $\psi(p) = m, \psi(q) = a$ and $Q = pS \sqcup qS$. Thus $\pi_F \circ \psi : Q \to F$ is an epimorphism. Since F is projective, there exists a homomorphism $h : F \to Q$ such that $\pi_F \circ \psi \circ h = 1_F$ and hence h is a coretraction. Since $F_S \simeq S_S$ and h is a monomorphism, S_S is a subact of Q. Thus by Proposition 2.1, Q is weakly-projective and by Lemma 2.2(i), it is projective. Clearly pS is the projective cover of M.

By the following theorem, we show that for a monoid S with a left zero to be semiperfect it is enough to show that every finitely generated strongly flat right S-act has a quasi-projective cover.

Theorem 2.4. For a monoid S with a left zero the following are equivalent:

- (i) S is right semiperfect.
- (ii) Every finitely generated strongly flat right S-act has a quasi-projective cover.
- (iii) Every finitely generated strongly flat right S-act has a weakly-projective cover.
- (iv) Every cyclic strongly flat right S-act has a weakly-projective cover.
- (v) Every left collapsible submonoid of S contains a left zero (Condition (K)).

Proof. (i)⇒(ii), (i)⇒(iii). By Proposition 3.13.14 of [5] are clear. (iii)⇒(iv) is clear. (ii)⇒(i). By Lemma 2.3, every finitely generated strongly flat right S-act A_S , has a projective cover and so it is projective by Proposition 1.7 of [4]. (iv)⇒(i). If A = aS is a strongly flat right S-act, then every cover of A is cyclic. Now the result follows by Proposition 1.7 of [4] and Lemma 2.2(i). The equivalence of (i) and (v) follows by Theorem 4.11.2 of [5]. □

Recall that a monoid S satisfies Condition(A) if every right S-act satisfies the ascending chain condition for its cyclic subacts ([5]). Fountain in [2], proved that a monoid S is right perfect if and only if every strongly flat right S-act is projective. The next theorem improves this result by the notion of quasi-projectivity.

Theorem 2.5. Let S be a monoid with a left zero. The following are equivalent:

- (i) S is right perfect.
- (ii) Every strongly flat right S-act is quasi-projective.
- (iii) S satisfies Condition (A) and every finitely generated strongly flat right S-act has a quasi-projective cover.
- (iv) S satisfies Condition (A) and every cyclic strongly flat right S-act has a weakly-projective cover.

Proof. (i) \Rightarrow (ii) is clear. (ii) \Rightarrow (i). Suppose every strongly flat right *S*-act is quasi-projective. Then by Theorem 1.2, every strongly flat right *S*-act is projective. Thus *S* is right perfect by Theorem 1.8 of [4]. The equivalences of (i) and (iii), and also (i) and (iv) follow by Theorem 4.11.6 of [5] and Theorem 2.4.

Now we state the main result.

Theorem 2.6. Suppose S is a monoid with a left zero and every right S-act has only one zero element. If every right S-act has a quasi-projective cover, then S is right perfect.

Proof. We show that every right S-act has a projective cover. Suppose M_S is a right S-act and $\phi : F \to M$ is an epimorphism such that F_S is a free S-act. Let $F' = F - \{\theta_F\}$ and $M' = M - \{\theta_M\}$ and $B = F' \sqcup M' \sqcup \theta$, where θ is the one-element right S-act. Then B is a right S-act by the right S-action, $\theta \cdot s = \theta$ and

$$b.s = \begin{cases} \theta, & \text{if } bs = \theta_F \text{ or } \theta_M; \\ bs, & otherwise \end{cases}$$
(1)

for every $s \in S$ and $b \in F' \sqcup M'$. Suppose Q is a quasi-projective cover of $F' \sqcup M' \sqcup \theta$ with an epimorphism $\pi: Q \to F' \sqcup M' \sqcup \theta$. Now define $q: F' \sqcup M' \sqcup \theta \to F' \sqcup \theta$ by

$$q(x) = \begin{cases} x, & x \in F' \sqcup \theta; \\ \theta, & x \in M'. \end{cases}$$
(2)

Clearly q is a homomorphism. Now consider the following diagram:

$$\begin{array}{ccc} F' \sqcup \theta \\ & & \downarrow^{1_{F' \sqcup \theta}} \end{array}$$

$$Q \xrightarrow{\pi} F' \sqcup M' \xrightarrow{q} F' \sqcup \theta$$

Since $F' \sqcup \theta \simeq F$ is projective, there exists $i : F' \sqcup \theta \to Q$ such that $q \circ \pi \circ i = 1_{F' \sqcup \theta}$. Thus i is a monomorphism and we can regard F as a subact of Q. Let $K = \{x \in Q : q(\pi(x)) = \theta_F\}$ and $K' = K - \{\theta_Q\}$. Clearly $K' \sqcup i(F' \sqcup \theta)$ is a subact of Q. We show that $\pi_1 = \pi|_{K' \sqcup i(F' \sqcup \theta)} : K' \sqcup i(F' \sqcup \theta) \to F' \sqcup M' \sqcup \theta$ is an epimorphism. For this we show that $\pi(i(x)) = x$, for every $x \in F' \sqcup \theta$. Suppose $x \in F' \sqcup \theta$. If $x = \theta$, then clearly $\pi(i(\theta)) = \theta$. Suppose $x \in F' \sqcup \theta$. If $x = q(\pi(i(x))) = x$. Thus $q(z) = x \in F'$. By the definition of q, q(z) = z, i.e., z = x. Thus $\pi(i(x)) = x$ for every $x \in F' \sqcup \theta$. Thus π_1 is an epimorphism and since π is coessential, $Q = K' \sqcup i(F' \sqcup \theta) \simeq K' \sqcup F' \sqcup \theta$. Since π is coessential π_2 is a coessential epimorphism. Since F is a projective S-act, there exists $\phi' : F \to K$ such that the diagram

$$F$$

$$\phi' \swarrow \qquad \downarrow Q$$

$$K \xrightarrow{\pi_2} M$$

is commutative and $\pi_2 \circ \phi' = \phi$. Thus $\pi_2(\phi'(F)) = \phi(F) = M$ and, since π_2 is coessential, ϕ' is an epimorphism. Now define $q': F' \sqcup K' \sqcup \theta \to K' \sqcup \theta$ by

$$q'(x) = \begin{cases} x, & x \in K' \sqcup \theta; \\ \theta, & x \in F', \end{cases}$$
(3)

and $q'': F' \sqcup K' \sqcup \theta \to F' \sqcup \theta$ by

$$q''(x) = \begin{cases} x, & x \in F' \sqcup \theta; \\ \theta, & x \in K'. \end{cases}$$
(4)

Clearly q' and q'' are homomorphism. Now consider the following diagram

$$F' \sqcup K' \sqcup \theta \xrightarrow{q''} (F' \sqcup \theta) \simeq F \xrightarrow{\phi'} (K' \sqcup \theta) \simeq K$$

Since $F' \sqcup K' \sqcup \theta \simeq Q$ is quasi-projective, there exists $h : F' \sqcup K' \sqcup \theta \rightarrow F' \sqcup K' \sqcup \theta$ such that $\phi' \circ q'' \circ h = 1_{K' \sqcup \theta} \circ q'$. If $j : K' \sqcup \theta \rightarrow F' \sqcup K' \sqcup \theta$ is the canonical injection, then $q' \circ j = 1_{K' \sqcup \theta}$ and so $\phi' \circ q'' \circ h \circ j = 1_{K' \sqcup \theta}$. Thus $K \simeq K' \sqcup \theta$ is a retract of $F' \sqcup \theta \simeq F$ and so is projective. Hence K is the projective cover of M. \Box

Acknowledgement

The authors thank the anonymous referees for remarks which have helped in the revision of the first version of this paper.

References

- J. Ahsan and K. Saifullah, Completely quasi-projective monoids, Semigroup Forum 38 (1989), 123-126.
- [2] J. Fountain, Perfect semigroups, Proc. Edinburgh Math. Soc. 20(3) (1976), 87-93.
- [3] J. Isbell, *Perfect monoids*, Semigroup Forum 2 (1971), 95-118.
- [4] R. Khosravi, M. Ershad, and M. Sedaghatjoo, Storngly flat and condition (P) covers of acts over monoids, Comm. Algebra 38(12) (2010), 4520-4530.
- [5] M. Kilp, U. Knauer, and A. Mikhalev, "Monoids, Acts and Categories, With Application to Wreath Products and Graphs"; Berlin, New York, 2000.

- [6] U. Knauer and H. Oltmanns, On Rees weakly projective right acts, J. Math. Sci. 139(4) (2006), 6715-6722.
- [7] U. Knauer and H. Oltmanns, Weak projectivities for S-acts, Proceeding of the Conference on General Algebra and Discrete Math. (postsdam), Aachen (1999), 143-159.
- [8] M. Mahmoudi and J. Renshaw, On covers of cyclic acts over monoids, Semigroup Forum 77 (2008), 325-338.
- [9] J. Wei, On a question of Kilp and Knauer, Comm. Algebra 32(6) (2004), 2269-2272.

Mohammad Roueentan, Department of Mathematics, College of science, Shiraz University, Shiraz 71454, Iran.

Email: m.rooeintan@yahoo.com

Majid Ershad, Department of Mathematics, College of science, Shiraz University, Shiraz 71454, Iran.

Email: ershad@shirazu.ac.ir