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Uniformities and covering properties for
partial frames (I)

John Frith and Anneliese Schauerte

Abstract. Partial frames provide a rich context in which to do pointfree
structured and unstructured topology. A small collection of axioms of an
elementary nature allows one to do much traditional pointfree topology, both
on the level of frames or locales, and that of uniform or metric frames. These
axioms are sufficiently general to include as examples bounded distributive
lattices, σ-frames, κ-frames and frames.

Reflective subcategories of uniform and nearness spaces and lately core-
flective subcategories of uniform and nearness frames have been a topic of
considerable interest. In [9] an easily implementable criterion for establishing
certain coreflections in nearness frames was presented. Although the primary
application in that paper was in the setting of nearness frames, it was ob-
served there that similar techniques apply in many categories; we establish
here, in this more general setting of structured partial frames, a technique
that unifies these.

We make use of the notion of a partial frame, which is a meet-semilattice
in which certain designated subsets are required to have joins, and finite
meets distribute over these. After presenting our axiomatization of partial
frames, which we call S-frames, we add structure, in the form of S-covers
and nearness, and provide the promised method of constructing certain core-
flections. We illustrate the method with the examples of uniform, strong and
totally bounded nearness S-frames.

In Part (II) of this paper ([10]) we consider regularity, normality and
compactness for partial frames.
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1 Introduction

Partial frames provide a fertile context in which to do structured and un-
structured topology in a pointfree way. This paper serves to lay the foun-
dations for a long-term investigation of this setting, the aims of which are
many and varied.

It will be seen that a small collection of axioms of an elementary nature
allows one to do much traditional pointfree topology, both on the level of
frames or locales, and that of uniform or metric frames. These axioms are
sufficiently general to include as examples bounded distributive lattices, σ-
frames, κ-frames and frames. Although not the main motivation of this
work, this paper can also act as a self-contained and readable source for
topological material common to these contexts. The smooth flow of this
presentation owes much to the careful choice of the axioms; indeed, at first,
it was not at all obvious to us which axioms would be needed.

Our initial involvement in this topic came from a different source, namely,
reflective subcategories of uniform and nearness spaces. These have been
a topic of abiding interest; latterly a similar interest in coreflective subcat-
egories of uniform and nearness frames has arisen. In [9] an easily imple-
mentable criterion for establishing certain coreflections in nearness frames
was presented. Although the primary application in that paper was in the
setting of nearness frames, it was observed there that similar techniques
apply in other categories, for example, uniform frames, uniform σ-frames,
nearness σ-frames and pre-nearness frames. We will establish here, in this
more general setting of structured partial frames, a technique that unifies
all the above.

An essential aspect of our work is the use of covers: not surprisingly,
they are used in the presentation of uniform and nearness structures, as well
as compactness. Perhaps more unexpectedly, the notions of regularity and
normality are also very naturally defined using covers. This theme of the
richness of covers will continue in our subsequent papers, on complete regu-
larity, coherence and the Lindelöf property. At this stage, the distinguished
rôle of σ-frames will become apparent. Further rewards from pursuing this
point of view will include interesting new results concerning completions.

In [12] Madden states:

“It will be possible, I believe, to formulate a useful notion of a
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partial frame. This would be a meet-semilattice in which certain
distinguished subsets would all have suprema and in which meets
would distribute over joins of such subsets...My hope is that a
theory of partial frames could provide substantial insight into
large classes of epireflective properties and covering properties
in locale theory and topology...”

It is in this spirit that we introduce our notion of a partial frame, which
we call an S-frame. We make use of so-called selection functions to specify
the distinguished subsets that are required to have joins. The idea of using
such selection functions is not new; see, for instance, [14], [20] and [19]. A
selection function must satisfy certain axioms to produce a tractable theory,
and each of the authors cited uses different but overlapping collections of
such axioms, as do we.

After introducing the basics of S-frames and their maps, we consider
sub S-frames and show how to generate sub S-frames from a given set of
elements. Then we add structure, in the form of S-covers and nearness.
Our chosen axioms allow for the formation of uniform images of nearness
structures in a simple way. They also allow us to conclude that the collection
of subobjects of a nearness S-frame forms a complete lattice. With these
ingredients in place, we provide the promised method of constructing certain
coreflections, which we illustrate with the three examples of uniform, strong
and totally bounded nearness S-frames. At this stage it is clear that we have
indeed found a general setting in which our coreflection construction applies.

In Part (II) we return to the unstructured setting to consider regularity
and normality. Both properties are naturally expressed in terms of S-covers,
but can also be characterized in other familiar ways. We see that an S-frame
is normal and regular if and only if the collection of all finite S-covers forms
a basis for an S-uniformity on it.

Next we consider the most fundamental covering property of topol-
ogy: compactness. Various results about strong inclusions culminate in the
proposition that every compact, regular S-frame has a unique compatible
S-uniformity.

For the convenience of the reader, we conclude by considering how our
axioms are related to the formalisms appearing elsewhere in the literature.

The concrete examples of nearness S-frames which occur in this paper
are all instances of what could be termed structured κ-frames. It is an open
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question in the literature (see [19]) whether κ-frames can be characterized
by any of the existing axiomatizations of partial frames; the same applies
to our axiomatization.

2 Background

See [15], [11], [17] and [16] as references for frame theory; see [2], [3], [7]
and [5] for nearness frames; see [4], [13] and [18] for σ-frames.

Frames

1. A meet-semilattice L is a partially ordered set in which all finite sub-
sets have a meet. In particular, we regard the empty set as finite,
so a meet-semilattice comes equipped with a top element, which we
denote by 1. We also insist that a meet-semilattice should have a bot-
tom element, which we denote by 0. (Technically, one might wish to
refer to these as bounded meet-semilattices.) A function f : L→M is
a meet-semilattice map if it preserves finite meets, as well as the top
and the bottom element.

2. A bounded distributive lattice L is a meet-semilattice in which
∨
B

exists for any finite B ⊆ L and for such B, a∧
∨
B =

∨
{a∧ b : b ∈ B}

for all a ∈ L. A bounded distributive lattice map is a meet-semilattice
map between bounded distributive lattices that preserves finite joins.

3. A σ-frame L is a meet-semilattice in which
∨
B exists for any count-

able B ⊆ L and for such B, a ∧
∨
B =

∨
{a ∧ b : b ∈ B} for all

a ∈ L. A σ-frame map is a meet-semilattice map between σ-frames
that preserves countable joins.

4. A κ-frame, where κ is a regular cardinal, has the same definition as
a σ-frame, but the countable subsets are replaced by subsets with
cardinality less than κ.

5. A frame L is a meet-semilattice in which
∨
B exists for any B ⊆ L

and for such B, a∧
∨
B =

∨
{a∧b : b ∈ B} for all a ∈ L. A frame map

is a meet-semilattice map between frames which preserves all joins.
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Nearness and uniformity

The following are well-known:

1. For a frame L, C ⊆ L is a cover of L if
∨
C = 1. For covers C and

D of L, C ∧D = {c ∧ d : c ∈ C, d ∈ D} is again a cover of L. We say
that C refines D if for any c ∈ C there exists d ∈ D with c ≤ d; we
then write C ≤ D.

2. For a, b ∈ L and C a cover of L we write a �C b if Ca =
∨
{c ∈ C :

c ∧ a 6= 0} ≤ b and say a is uniformly below b with respect to C. If
CC = {Cc : c ∈ C} ≤ D, we write C <∗ D.

3. A non-empty collection of covers, NL, of L is a nearness on L if it is
filtered by meet and refinement and satisfies the following compatibility
condition: For any x ∈ L, x =

∨
{t ∈ L : t�C x for some C ∈ NL}.

4. The members of NL are called uniform covers. The pair (L,NL) is
a nearness frame. We also say that if t�C x for some C ∈ NL, then
t is uniformly below x in (L,NL).

5. For a nearness frame (L,NL) if for any uniform cover D there is a
uniform cover C such that C <∗ D, then (L,NL) is a uniform frame
and NL is a uniformity on L.

6. For nearness frames (L,NL) and (M,NM), a frame map f : L→M
is a uniform map if for every C ∈ NL, f [C] = {f(c) : c ∈ C} ∈ NM .
The category of nearness frames and uniform maps is denoted by
NearFrm. The category of uniform frames and uniform maps is
denoted by UniFrm.

Remark 2.1. Nearness and uniform structures for σ-frames occur in the
literature (see [13]). Essentially two modifications are needed: (1) A cover
C of a σ-frame L must be a countable subset of L whose join is the top.
(2) The compatibility condition requires any element of L to be a countable
join of elements uniformly below it.
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3 S-frames

An S-frame is a meet-semilattice in which certain joins are required to exist
and finite meets are required to distribute over these joins. We specify these
joins by means of a selection function as defined below:

Definition 3.1. A selection function is a rule, which we usually denote by
S, which assigns to each meet-semilattice A a collection SA of subsets of A,
such that the following conditions hold (for all meet-semilattices A and B):

(S1) For all x ∈ A, {x} ∈ SA.

(S2) If G,H ∈ SA then {x ∧ y : x ∈ G, y ∈ H} ∈ SA.

(S3) If G ∈ SA and, for all x ∈ G, x =
∨
Hx for some Hx ∈ SA, then⋃

x∈G
Hx ∈ SA.

(S4) For any meet-semilattice map f : A→ B,

S(f [A]) = {f [G] : G ∈ SA} ⊆ SB.

Remark 3.2. 1. Once a selection function, S, has been fixed, we speak
informally of the members of SA as the designated subsets of A.

2. We note that, in Axiom (S4) above, for S(f [A]) to be defined, f [A]
needs to be a meet-semilattice. This is of course so, since meet-
semilattice maps preserve the top element, the bottom element and
finite meets.

3. A consequence of Axiom (S4) is the fact that, for any meet-semilattice
map f : A→ B, G ∈ SA implies f [G] ∈ SB. So any meet-semilattice
map sends designated subsets of the domain to designated subsets of
the codomain.

4. Axioms (S1) to (S4) appear as (A1) to (A4) in Paseka’s [14]. In his list
of axioms a further axiom, (A5), appears; we have no need at present
for this, but it will be important in later work.
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We can now present our particular approach to partial frames, which we
call S-frames.

Definition 3.3. Let S be a selection function.

1. An S-frame, L, is a meet-semilattice that satisfies the following two
conditions:

(a) For all G ∈ SL, G has a join in L (i.e.
∨
G exists).

(b) For all x ∈ L, for all G ∈ SL, x ∧
∨
G =

∨
y∈G

x ∧ y.

2. Let L and M be S-frames. An S-frame map f : L → M is a meet-
semilattice map such that, for all G ∈ SL, f(

∨
G) =

∨
y∈G

f(y).

3. SFrm is the category of S-frames as objects and S-frame maps as
morphisms.

Remark 3.4. 1. With regard to conditions (a) and (b) above, we note
that, since {x} ∈ SL, for any G ∈ SL we have that {x ∧ y : y ∈ G} ∈
SL by Axiom (S2) so

∨
y∈G

x ∧ y exists.

2. With regard to condition 2. above, we note that for G ∈ SL, Axiom
(S4) guarantees that f [G] ∈ SM , so

∨
y∈G

f(y) exists.

Example 3.5. We give several selection functions, together with their cor-
responding categories of S-frames. Throughout, A is an arbitrary meet-
semilattice.

1. SA = {{x} : x ∈ A}. SFrm is just the category of meet-semilattices.

2. SA = {G ⊆ A : G is finite}. SFrm is the category of bounded
distributive lattices.

3. SA = {G ⊆ A : G is countable}. SFrm is the category of σ-frames.

4. SA = {G ⊆ A : card(G) < κ}, where card(G) denotes the cardinality
of G and κ is a regular cardinal. SFrm is the category of κ-frames.

5. SA = PA, the power set of A. SFrm is the category of frames.
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The above examples appear in the literature; see, for example, [14], [12],
[19].

We now introduce an appropriate notion of subobject for S-frames; this
will play a crucial rôle in our construction of coreflections in Section 5.

Definition 3.6. If L is a meet-semilattice andM ⊆ L, we callM a sub meet-
semilattice of L if M is a meet-semilattice with the same finite meet, bottom
and top as L; this is equivalent to 0 ∈M, 1 ∈M and x, y ∈M ⇒ x∧y ∈M .

Remark 3.7. We note that M is then a sub meet-semilattice of L if and
only if the identical embedding i : M → L is a meet-semilattice map. Fur-
ther, in such a case, Axiom (S4) guarantees that, for any selection function
S, G ∈ SM implies that G ∈ SL.

Lemma 3.8. For any S-frame L and M ⊆ L, the following conditions are
equivalent:

1. M is an S-frame and the identical embedding i : M → L is an S-frame
map.

2. M is a sub meet-semilattice of L and G ∈ SM implies that
∨
M

G =∨
L

G.

3. M satisfies the conditions:

(i) 0 ∈M (ii) 1 ∈M (iii) x, y ∈M ⇒ x ∧ y ∈M

(iv) G ∈ SM ⇒
∨
L

G ∈M .

Proof. (1) ⇒ (2): Since, in particular, the identical embedding is a meet-
semilattice map, M is a sub meet-semilattice of L. (See Remark 3.7.) Since
M and L are S-frames, for G ∈ SM we have G ∈ SL, so

∨
M

G and
∨
L

G

exist. By assumption i(
∨
M

G) =
∨
L

i[G], that is
∨
M

G =
∨
L

G.

(2) ⇒ (3): Clear, since
∨
M

G ∈M of course.

(3) ⇒ (1): Clearly M is a meet-semilattice. For G ∈ SM ,
∨
L

G ∈ M and

so this join is also the join of G in M , that is,
∨
L

G =
∨
M

G. Further, for
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any a ∈ M , a ∧
∨
M

G = a ∧
∨
L

G =
∨
L

{a ∧ y : y ∈ G} =
∨
M

{a ∧ y : y ∈ G}.

(Here we use Axioms (S1) and (S2) to obtain {a ∧ y : y ∈ G} ∈ SM .) So
M is an S-frame. That the identical embedding is an S-frame map is then
clear.

Definition 3.9. Let S be a selection function and L an S-frame. We shall
call a subset M of L a sub S-frame of L if it satisfies any of the equivalent
conditions of Lemma 3.8.

The following intuitively appealing axiom allows one to obtain infor-
mation about designated subsets of a sub S-frame. We note that all the
selection functions mentioned in Examples 3.5 are easily seen to satisfy it.
We have not encountered this axiom elsewhere in the literature.
Axiom (S5): For any S-frame L, if M is a sub S-frame of L, G ⊆ M and
G ∈ SL, then G ∈ SM .

From now on, all selection functions in this paper will be assumed
to satisfy Axiom (S5).

Axiom (S5) is used in the result below, but a more vital use will occur
in Proposition 5.2.

Lemma 3.10. For any S-frame L and J ⊆ L define

〈J〉 = {x ∈ L : x =
∨
Hx for some Hx ∈ SL} ∪ {0}

where any such Hx consists of finite meets of elements of J .

(a) 〈J〉 is a sub S-frame of L.

(b) If J is a sub S-frame of L, then 〈J〉 = J .

Proof. (a) 0 ∈ 〈J〉 by definition.
1 ∈ 〈J〉 since {1} ∈ SL and 1 is the meet of the empty set.
Suppose that x, y ∈ 〈J〉. We need only consider the case where x 6=
0, y 6= 0. Take Hx, Hy ∈ SL such that all their elements are finite
meets of members of J and x =

∨
Hx, y =

∨
Hy. Then Axiom (S2)

guarantees that {a∧ b : a ∈ Hx, b ∈ Hy} ∈ SL and clearly all elements
of this set are finite meets of members of J . Then x ∧ y =

∨
{a ∧ b :

a ∈ Hx, b ∈ Hy}. So x ∧ y ∈ 〈J〉.
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Thus far, it has been established that 〈J〉 is a sub meet-semilattice of
L.
Take G ∈ S〈J〉. If G = ∅ then

∨
G = 0 ∈ 〈J〉. Otherwise, for

each x ∈ G, x =
∨
Hx for some Hx ∈ SL such that all elements

of Hx are finite meets of elements of J . Since 〈J〉 is a sub meet-
semilattice of L, G ∈ SL. Apply Axiom (S3) to get

⋃
x∈G

Hx ∈ SL.

Then
∨

(
⋃
x∈G

Hx) ∈ 〈J〉. A straightforward check shows that
∨
G =∨

(
⋃
x∈G

Hx), so
∨
G ∈ 〈J〉, as required.

(b) It is easy to see that J ⊆ 〈J〉. For the converse, one uses Axiom (S5).

Definition 3.11. With the notation of Lemma 3.10, we call 〈J〉 the sub
S-frame of L generated by J .

Remark 3.12. We note that our definition of selection function (see Defini-
tion 3.1) does not require the empty set to be selected. Had that condition
been imposed, the definition of 〈J〉 would automatically result in 0 ∈ 〈J〉.
We chose our formalism to keep the number of axioms to a minimum.

4 Structured S-frames

The definition below provides an appropriate notion of cover for an S-frame,
which we then use to construct nearness and uniform structures.

Definition 4.1. Let S be a selection function and L an S-frame.

1. We call C an S-cover of L if C ∈ SL and
∨
C = 1.

2. If C and D are S-covers of L, then C ∧D = {c ∧ d : c ∈ C, d ∈ D} is
an S-cover of L.

3. If C and D are S-covers of L, we say that C refines D and write
C ≤ D if, for all c ∈ C, there exists d ∈ D such that c ≤ d.

4. If a ∈ L and C is an S-cover of L, we set Ca = {c ∈ C : c∧ a 6= 0}. In
general, one cannot expect

∨
Ca to exist, but when it does, we write

Ca =
∨
Ca, as usual.
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5. If a, b ∈ L and C is an S-cover of L, we write a�C b if Ca ⊆↓b. Here,
↓b = {t ∈ L : t ≤ b} as usual. We say that a is uniformly below b with
respect to C.

6. If C and D are S-covers of L, we say that C star-refines D, and write
C <∗ D, if, for all c ∈ C, there is d ∈ D such that c�C d.

Remark 4.2. (1) The definition of S-cover adopted above appears in [14]
and naturally generalizes the notion of cover of a σ-frame. (See, for instance,
[13].)
(2) We note that the definitions of Ca and �C above appear in [6] but these
authors use a different notion of cover in their paper.

Lemma 4.3. If f : L→M is an S-frame map between S-frames and C is
an S-cover of L, then f [C] is an S-cover of M .

Proof. Since f is, in particular, a meet-semilattice map, Axiom (S4) applies,
so C ∈ SL implies that f [C] ∈ SM . Since f is an S-frame map, it preserves
joins of designated sets, so f(

∨
C) =

∨
f [C], giving

∨
f [C] = 1.

Definition 4.4. Let S be a selection function and L an S-frame. We call
KL an S-nearness on L if

1. KL is a non-empty collection of S-covers of L.

2. For C,D ∈ KL, C ∧D ∈ KL.

3. If C ∈ KL and D is an S-cover of L such that C ≤ D, then D ∈ KL.

4. For each a ∈ L, there exists T ∈ SL such that a =
∨
T and, for each

t ∈ T , t�C a for some C ∈ KL. (This is the compatibility condition.)

• If KL is an S-nearness on L, we call (L,KL) a nearness S-frame.

• We write a� b in (L,KL) if there exists C ∈ KL such that a�C b.

• A nearness S-frame (L,KL) is strong if for all D ∈ KL there exists
C ∈ KL such that, for all c ∈ C there exists d ∈ D and E ∈ KL such
that c�E d. In this case, we write C �D.

• An S-nearness KL on L is totally bounded if for each C ∈ KL, there
exists D ∈ KL such that D is finite and D ≤ C.
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• A nearness S-frame (L,KL) is a uniform S-frame if for all D ∈ KL
there exists C ∈ KL with C <∗ D. We then call KL an S-uniformity
on L.

Definition 4.5. Let (L,KL), (M,KM) be nearness S-frames. Then f :
(L,KL)→ (M,KM) is said to be uniform if f : L→M is an S-frame map
and, for each C ∈ KL, f [C] ∈ KM .

Definition 4.6. NearSFrm is the category having nearness S-frames as
objects and uniform maps as morphisms. UniSFrm is the category having
uniform S-frames as objects and uniform maps as morphisms.

Example 4.7. For the following two examples of selection functions, al-
ready mentioned in Example 3.5, the categories NearSFrm are well-known:

1. For SA = PA, NearSFrm is the category of nearness frames and
UniSFrm is the category of uniform frames.

2. For SA = {G ⊆ A : G is countable}, NearSFrm is the category of
nearness σ-frames and UniSFrm is the category of uniform σ-frames.

Remark 4.8. For any selection function S, the two-element chain {0, 1},
denoted by 2, is an S-frame. It carries a unique S-nearness structure, but
what the structure is depends on S. For SA = {{x} : x ∈ A}, K2 = {{1}}.
For all the other cases of Example 3.5, K2 = {{0, 1}, {1}}.

The following straightforward lemma summarizes the expected elemen-
tary properties of star-refinements.

Lemma 4.9. 1. Let E1, E2, D1 and D2 be S-covers of an S-frame. Then
(i) E1 <

∗ D1 ⇒ E1 ≤ D1 and
(ii) E1 <

∗ D1, E2 <
∗ D2 ⇒ E1 ∧ E2 <

∗ D1 ∧D2.

2. If f is a uniform map from (L,KL) to (M,KM) and C <∗ D in KL
then f [C] <∗ f [D] in KM .

3. Every uniform S-frame is strong.

Proof. All these proofs are routine. We illustrate with a proof of 2. Suppose
that f : (L,KL)→ (M,KM) is a uniform map between nearness S-frames,
and E <∗ D, for E,D ∈ KL. Then, for each e ∈ E, there exists d ∈ D with
Ee ⊆↓d. Then f [E]f(e) ⊆↓f(d), showing that f [E] <∗ f [D].
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As in the case of frames and σ-frames, we have:

Proposition 4.10. A strong, totally bounded nearness S-frame is uniform.

Proof. Let (L,KL) be a strong totally bounded nearness S-frame. Take C ∈
KL. There exists a finite D ∈ KL such that D ≤ C. Further, there exists
E ∈ KL such that E �D. Lastly, take a finite F = {x1, x2, . . . , xn} ∈ KL
such that F ≤ E. Now take A ∈ KL such that, for all j = 1, 2, . . . , n, Axj ⊆↓
cj for some cj ∈ C. Such A exists, since F is finite. One concludes the proof
by showing in a routine way that A ∧ F <∗ C.

Constructing uniform images is an important ingredient in the theory of
uniform and nearness frames; we show now that Axioms (S1) to (S5) allow
us to do the same for nearness S-frames.

Proposition 4.11. Suppose that L and M are S-frames, (L,KL) is a near-
ness S-frame and f : L → M is an S-frame map. Define f(L,KL) =
(f [L], 〈f [KL]〉), where f [L] = {f(x) : x ∈ L} and 〈f [KL]〉 = {D ∈ SM :
D ≥ f [C], for some C ∈ KL}. Then f(L,KL) is a nearness S-frame, and
f : (L,KL)→ f(L,KL) is a uniform map.

Proof. First we show that f [L] is an S-frame. As mentioned in Remark
3.2 (2), f [L] is a meet-semilattice. Now take H ∈ S(f [L]). By Axiom
(S4) H = f [G], for some G ∈ SL. Since f is an S-frame map, f(

∨
G) =∨

f [G] =
∨
H, so

∨
H does exist. To check the required distributivity, take

y ∈ f [L]. Then y = f(x), for some x ∈ L.
Then

y ∧
∨
H = f(x) ∧

∨
f [G] = f(x) ∧ f(

∨
G) = f(x ∧

∨
G)

= f(
∨
a∈G

x ∧ a) =
∨
a∈G

f(x ∧ a) =
∨
a∈G

f(x) ∧ f(a) =
∨
b∈H

y ∧ b.

We note that the fifth equality uses the fact that {x ∧ a : a ∈ G} ∈ SL
which follows from the facts that {x}, G ∈ SL and Axiom (S2).

Next we show that 〈f [KL]〉 is an S-nearness on f [L]. By Lemma 4.3,
if C ∈ KL, then f [C] is an S-cover of M , and also of f [L], by (S5). So
〈f [KL]〉 does consist of S-covers of f [L].
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If D1, D2 ∈ 〈f [KL]〉, then D1 ≥ f [C1] and D2 ≥ f [C2] for some C1, C2 ∈
KL. Then D1∧D2 ≥ f [C1]∧f [C2] = f [C1∧C2] and C1∧C2 ∈ KL. Further,
D1 ∧D2 ∈ SM , by Axiom (S2). So 〈f [KL]〉 is closed under finite meets.

It is clear that, if D ∈ 〈f [KL]〉 and E is an S-cover of f [L] such that
E ≥ D, then E ∈ 〈f [KL]〉.

For the compatibility condition, begin with b ∈ f [L]. Then b = f(a) for
some a ∈ L. Now a =

∨
T for some T ∈ SL such that t ∈ T implies that

t�Ca for some C ∈ KL. Then f [C] ∈ 〈f [KL]〉 and f(a) = f(
∨
T ) =

∨
f [T ],

since f is an S-frame map. We conclude the proof by showing that t�C a
implies that f(t) �f [C] f(a):

f [C]f(t) = {f(c) : c ∈ C, f(c) ∧ f(t) 6= 0} ⊆ {f(c) : c ∈ C, c ∧ t 6= 0}
= f [Ct] ⊆ f [↓a] ⊆↓f(a)

The fact that f : (L,KL) → f(L,KL) is then uniform is clear, since
C ∈ KL implies that f [C] ∈ 〈f [KL]〉, as remarked above.

5 Constructing coreflections

We now investigate the structure of the sub nearness S-frames of a given
nearness S-frame, showing that they form a complete lattice.

Definition 5.1. Let (L,KL) and (M,KM) be nearness S-frames. We call
(L,KL) a sub nearness S-frame of (M,KM) if L is a sub S-frame of M
and KL ⊆ KM . We note that this is equivalent to the identical embedding
from (L,KL) to (M,KM) being a uniform map. We then write (L,KL) ≤
(M,KM).

Proposition 5.2. Let (L,KL) be a nearness S-frame. The collection of all
sub nearness S-frames of (L,KL) forms a complete lattice.

Proof. The relation ≤ given in Definition 5.1 is a partial order. The bottom
element is clearly the two element frame with its unique S-nearness (except
in the case where L is degenerate, in which case it is L itself).
Let {(Lα,KLα) : α ∈ I} be a non-empty collection of sub nearness S-frames
of (L,KL).
• Let L̃ be the sub S-frame of L generated by

⋃
α∈I

Lα.
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• Define KL̃ as follows: C ∈ KL̃ if and only if C ∈ SL̃ and there exists a
natural number n and Dαj ∈ KLαj for j = 1, . . . , n such that Dα1 ∧ . . . ∧
Dαn ≤ C.
We now show that (L̃,KL̃) is the join of {(Lα,KLα) : α ∈ I}, by noting the
following points:

1. For each α ∈ I, KLα ⊆ KL̃.

2. For a, b ∈ Lα, a� b in (Lα,KLα) implies that a� b in (L̃,KL̃), since
Ca ⊆↓b for some C ∈ KLα gives Ca ⊆↓b for that same C ∈ KL̃.

3. KL̃ is closed under finite meets.

4. If C ∈ KL̃, D ∈ SL̃ and C ≤ D, then D ∈ KL̃.

5. Take a ∈ L̃. The case a = 0 presents no difficulties. Write a =
∨
H

for some H ∈ SL such that all the elements of H are finite meets of
elements of B =

⋃
α∈I

Lα.

Fix x ∈ H. Write x = bα1 ∧ . . . ∧ bαn for some bαj ∈ Lαj . For each
j = 1, . . . , n, bαj =

∨
Gαj for some Gαj ∈ SLαj such that u ∈ Gαj ⇒

u� bαj in (Lαj ,KLαj ), and hence in (L̃,KL̃).

Let Zx = Gα1 ∧ . . . ∧ Gαn . Then Zx ∈ SL̃ and w ∈ Zx ⇒ w � x in
(L̃,KL̃). Further, x =

∨
Zx.

Now let Z =
⋃
x∈H

Zx. Then a =
∨
Z and w ∈ Z ⇒ w � a in (L̃,KL̃).

What remains to be shown is that Z ∈ SL̃.
Since a =

∨
H, H ∈ SL and for all x ∈ H, x =

∨
Zx for Zx ∈ SL,

Axiom (S3) guarantees that Z ∈ SL. Since L̃ is a sub S-frame of L,
Z ⊆ L̃ and Z ∈ SL, Axiom (S5) guarantees that Z ∈ SL̃.

6. (L̃,KL̃) is a nearness S-frame from 3,4 and 5 above.

7. (L̃,KL̃) is a sub nearness S-frame of (L,KL), since L̃ is a sub S-
frame of L and KL̃ ⊆ KL. The latter follows since KLα ⊆ KL and
if C ∈ SL̃ with Dα1 ∧ . . . ∧ Dαn ≤ C, for some Dαj ∈ KLαj , then
Dα1 ∧ . . . ∧Dαn ∈ KL and so C ∈ KL.

8. If (M,KM) is a sub nearness S-frame of (L,KL) such that (Lα,KLα) ≤
(M,KM) for all α ∈ I, then Lα is a sub S-frame of M and KLα ⊆ KM
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for all α ∈ I. So L̃ is a sub S-frame of M and KL̃ ⊆ KM . We see
that (L̃,KL̃) is indeed the join of {(Lα,KLα) : α ∈ I}, as required.

In this paper, we will use P to denote an arbitrary property that a
nearness S-frame might have. We introduce the idea of a P -approximation
of a nearness S-frame and use it to construct a functor from NearSFrm to
itself, in the case that the property P is preserved by uniform images.

Definition 5.3. Let (L,KL) be a nearness S-frame.

1. We call those sub nearness S-frames of (L,KL) that have property P ,
the P -approximations of (L,KL).

2. Define ΓP (L,KL) to be the join of all the P -approximations of (L,KL)
(as provided in Proposition 5.2 of course).

By Proposition 5.2, ΓP (L,KL) is a nearness S-frame. We make no claim
that ΓP (L,KL) necessarily satisfies property P , but will, of course, be most
interested in those properties P where it does.

We note that ΓP (L,KL) is defined in the case where a given nearness
S-frame has no P -approximations. It is the empty join.

Remark 5.4. Let h : (L,KL)→ (M,KM) be a uniform map between near-
ness S-frames. If we define h(L,KL) as in Proposition 4.11 it is straight-
forward to check that h(L,KL) is a sub nearness S-frame of (M,KM) and
that h : (L,KL)→ h(L,KL) is a uniform map.

Definition 5.5. If a property P satisfies the condition that, whenever a
nearness S-frame (L,KL) has property P , then h(L,KL) has property P
for any uniform h, we say that P is preserved by uniform images.

Proposition 5.6. Let P be a property that is preserved by uniform images.
Then ΓP : NearSFrm→ NearSFrm is a functor.

Proof. ΓP was defined on objects in Definition 5.3. We define ΓP on mor-
phisms as follows. Let h : (L,KL) → (M,KM) be a uniform map between
nearness S-frames. We show below that ΓP h : ΓP (L,KL) → ΓP (M,KM)
given by restricting the domain and codomain of h is again a uniform map.
For brevity we write ΓP (L,KL) = (L̃,KL̃) and ΓP (M,KM) = (M̃,KM̃).
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Let {(Lα,KLα) : α ∈ I} be the collection of all P -approximations of
(L,KL). For any α ∈ I, by assumption, h(Lα,KLα) is a P -approximation

of (M,KM). So h(Lα,KLα) ≤ (M̃,KM̃). Then h[Lα] ⊆ M̃ for all α ∈ I,

giving h[L̃] ⊆ M̃ . Further, h[KLα] ⊆ KM̃ for all α ∈ I, so 〈h[KL̃]〉 ⊆ KM̃ .
That ΓP preserves identities and composition is clear.

We are now in a position to provide the promised construction of certain
coreflections.

Theorem 5.7. Let P be a property satisfying the conditions:

1. P is preserved by uniform images, and

2. for any nearness S-frame (L,KL), the join ΓP (L,KL) of all
P -approximations of (L,KL) has property P .

Then the nearness S-frames with property P form a full monocoreflective
subcategory of all nearness S-frames.

Proof. Let P be a property described as above and let (L,KL) be a nearness
S-frame. We show that the identical embedding ηP : ΓP (L,KL)→ (L,KL)
is the desired coreflection map.
Let (M,KM) be a nearness S-frame with property P and f : (M,KM) →
(L,KL) a uniform map. Now f(M,KM) is a sub nearness S-frame of
(L,KL) and has property P , so is a P -approximation of (L,KL). This
makes the identical embedding i : f(M,KM)→ ΓP (L,KL) a uniform map
and we have the following obvious commuting diagram:

ΓP (L,KL) (L,KL)

f(M,KM) (M,KM)

ηP

f

i f

The factorization of f is unique, because ηP is 1 − 1, and hence a
monomorphism.

Definition 5.8. We call the coreflection constructed in Theorem 5.7 the
P -coreflection of nearness S-frames.
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We note that a morphism h : (L,KL) → (M,KM) in NearSFrm is
an isomorphism if and only if h : L → M is an S-frame isomorphism and
〈h[KL]〉 = KM . Further, if f : (L,KL) → (M,KM) is a morphism in
NearSFrm and f is 1 − 1, then (L,KL) is isomorphic to f(L,KL) which
is a sub nearness S-frame of (M,KM).

In the next result, we show that any full, isomorphism-closed coreflective
subcategory, H, of NearSFrm for which the coreflection maps are all 1−1,
can in fact be obtained by the construction of Theorem 5.7. We simply
define (L,KL) to have property P whenever (L,KL) is an object of H; the
details are as in the corresponding result in [9].

Proposition 5.9. Let H be a full, isomorphism-closed, coreflective sub-
category of NearSFrm for which the H-coreflection maps are all 1 − 1.
Define P by stating that a nearness S-frame (L,KL) satisfies P if and only
if (L,KL) is an object of H. Then the P -coreflection and the H-coreflection
of any nearness S-frame are isomorphic.

The results in this section can of course be used to obtain the corre-
sponding results for nearness frames in [9].

6 Three applications

It is well known that uniform frames are coreflective in nearness frames and
that totally bounded nearness frames are coreflective in nearness frames
[8], [1]; the fact that strong nearness frames are coreflective in nearness
frames was established only recently, in [9]. These three results can now be
generalized elegantly to the nearness S-frame setting, using the techniques
of the previous section.

Proposition 6.1. The strong nearness S-frames form a coreflective sub-
category of all nearness S-frames.

Proof. We apply Theorem 5.7.
We begin by showing that the uniform image of a strong nearness S-frame
is again strong. Let (L,KL) be strong and f : (L,KL)→ f(L,KL) provide
a uniform image, as defined in Proposition 4.11. For any F ∈ 〈f [KL]〉,
F ≥ f [E] for some E ∈ KL. Since KL is strong, there exists D ∈ KL such
that D � E. So, for all d ∈ D, there exists e ∈ E and C ∈ KL such that
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d�C e, that is, Cd = {c ∈ C : c∧d 6= 0} ⊆↓e. Then f(d)�f [C] f(e) as shown
in the proof of Proposition 4.11. So f [D]�f [E]. So we have f [D] ∈ 〈f [KL]〉
such that f [D] � F , as required.

For the second condition, let (L,KL) be a nearness S-frame, {(Lα,KLα) :
α ∈ I} the set of its strong approximations and (L̃,KL̃) their join. (So this is
ΓP (L,KL) where P is the property of being strong.) We show that (L̃,KL̃)
is strong.
For C ∈ KL̃, C ≥ Dα1 ∧ . . . ∧ Dαn for some Dαj ∈ KLαj , j = 1, . . . , n.
For all j, take Eαj ∈ KLαj such that Eαj � Dαj in (Lαj ,KLαj ), and let

E = Eα1 ∧ . . .∧Eαn . Then E ∈ KL̃, since KLαj ⊆ KL̃ and KL̃ is closed un-

der finite meets. We conclude the proof by showing that E �C in (L̃,KL̃).
For this, begin with e = e1 ∧ . . . ∧ en ∈ E, where ej ∈ Eαj . For each
j = 1, . . . , n, there exists dj ∈ Dαj and F j ∈ KLαj such that ej �F j dj in
(Lαj ,KLαj ). Write F = F 1 ∧ . . . ∧ Fn and d = d1 ∧ . . . ∧ dn. A straight-

forward calculation shows that Fe ⊆ F jej ⊆↓dj for all j = 1, . . . , n giving
Fe ⊆↓d and so e�F d as required.

Proposition 6.2. The totally bounded nearness S-frames form a coreflec-
tive subcategory of all nearness S-frames.

Proof. One checks routinely that uniform images of totally bounded near-
ness S-frames remain totally bounded, and that the join of all totally
bounded approximations of a nearness S-frame is again totally bounded.
Theorem 5.7 then applies.

Proposition 6.3. The uniform S-frames form a coreflective subcategory of
all nearness S-frames.

Proof. We show that Theorem 5.7 applies: To check that uniform images
of uniform nearness S-frames are uniform, use Lemma 4.9(2) to see that if
A <∗ B then h[A] <∗ h[B], where h is a uniform map.
Let (L,KL) be a nearness S-frame, {(Lα,KLα) : α ∈ I} the set of its
uniform approximations and (L̃,KL̃) their join. We show that (L̃,KL̃) is
uniform.
For C ∈ KL̃, C ≥ Dα1 ∧ . . . ∧ Dαn for some Dαj ∈ KLαj , j = 1, . . . , n.
For all j, take Eαj ∈ KLαj such that Eαj <

∗ Dαj in (Lαj ,KLαj ). Let
E = Eα1 ∧ . . . ∧ Eαn . Then E <∗ Dα1 ∧ . . . ∧ Dαn (see Lemma 4.9) and
E ∈ KL̃, since KLαj ⊆ KL̃ and KL̃ is closed under finite meets.
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In Part (II) of this paper ([10]) we consider regularity, normality and
compactness for partial frames.
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