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Lattice of compactifications of a topological
group

Wei He and Zhiqiang Xiao∗

Abstract. We show that the lattice of compactifications of a topological
group G is a complete lattice which is isomorphic to the lattice of all closed
normal subgroups of the Bohr compactification bG of G. The correspondence
defines a contravariant functor from the category of topological groups to the
category of complete lattices. Some properties of the compactification lattice
of a topological group are obtained.

1 Introduction

Let X be a Tychonoff space. It is well known that the collection K(X) of
all Hausdorff compactifications of X forms a complete upper semi-lattice
under the order relation defined by c1X ≤ c2X if and only if there is a
continuous map f : c2X → c1X, which leaves X pointwise fixed. In general
K(X) is not a complete lattice and it is a complete lattice if and only if X is
locally compact. There are many results studying the relationship between
topological properties of X and the order structure of K(X) (see [4], [9]-
[13], [16]).
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Here we consider the Hausdorff compactfications of a Hausdorff topolog-
ical group G.

Let G be a topological group. Recall that a compactification of G is a
pair (K,ϕ), whereK is a compact Hausdorff group and ϕ : G→ K is a dense
continuous homomorphism. For two compactifications (K,ϕ) and (H,ψ) of
G, we say that (K,ϕ) and (H,ψ) are equivalent if there is a topological
isomorphism h : K → H such that ψ = h ◦ ϕ. This defines an equivalence
relation on the collection of all Hausdorff compactifications of G. We use
the same symbol K(G) (like in the case of topological spaces) to denote the
set of all equivalence classes of the Hausdorff compactifications of G. There
exists a natural order relation on K(G) defined as follows:

(K,ϕ) ≤ (H,ψ) if there exists a continuous homomorphism µ : H → K
such that ϕ = µ ◦ ψ.

The following result is well known. For convenience of the readers we
give a proof here.

Lemma 1.1. Let (K,ϕ) and (H,ψ) be two compactifications of G. Then
(K,ϕ) and (H,ψ) are equivalent if and only if (K,ϕ) ≤ (H,ψ) and (H,ψ) ≤
(K,ϕ) both hold.

Proof. The necessity is clear. We only need to show the sufficiency. Suppose
that (K,ϕ) ≤ (H,ψ) and (H,ψ) ≤ (K,ϕ) both hold. We have continuous
homomorphisms f : H → K and g : K → H such that ϕ = f ◦ψ, ψ = g ◦ϕ.
It follows that g ◦ f ◦ ϕ = g ◦ ψ = ϕ. This implies that g ◦ f = idH since ϕ
is dense. Similarly we have f ◦ g = idK . Hence f : H → K is a topological
isomorphism.

By this lemma, (K(G),≤) is a partially ordered set. Clearly K(G) has
the least element, that is the trivial group and trivial homomorphism, and
also has the largest element, the Bohr compactification of G.

In this note we investigate the order algebraic structure of the compact-
ification lattice K(G) of a given topological group G and its relationship
with the properties of G.

2 Preliminaries

Throughout this paper we consider the category TopGrp of Hausdorff topo-
logical groups and continuous homomorphisms. TopAb and Ab respec-
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tively denote the category of topological abelian groups and the category
of discrete abelian groups. The categories of complete lattice and sup-
preserving maps and the category of complete lattice and inf-preserving
maps are denoted by CLat and CLatop, respectively.

We denote by N the set of positive natural numbers; by Z the integers,
by Q the rationals, by R the reals, and by T the unit circle group which is
identified with R/Z. We write U =

∏∞
n=1 U(n), where U(n) is the group of

all n×n unitary matrices inGLn(C). According to Peter-Weyl’s theorem, for
every compact group K, the continuous homomorphisms K → U separate
the points of K [7]. It follows that every compact group can be topologically
embedded into some power of U. Hence we can take U in TopGrp in the
place of the circle group T in the category TopAb of topological Abelian
groups. The cyclic group of order n > 1 is denoted by Z(n).

The subgroup generated by a subset X of a group G is denoted by 〈X〉,
and 〈x〉 is the cyclic subgroup of G generated by an element x ∈ G. The
abbreviation K ≤ G means that K is a subgroup of G, and N � G means
that N is a normal subgroup of G.

For an arbitrary topological group G, we denote the family of all contin-
uous homomorphisms from G to U by the symbol C∗(G). The Bohr com-
pactification of G is denoted by b : G→ bG. The group G endowed with the
Bohr topology, that is, the topology induced by the family of all continuous
homomorphisms from G to U, is denoted by G+. The von Neumann’s kernel
of G is denoted by N(G), that is, N(G) = ker(b) =

⋂{ker(f) | f ∈ C∗(G)}.
Throughout the paper all topological groups are assumed to be Haus-

dorff. All unexplained topological terms can be found in [3].

3 Compactification lattice of a topological group

Lemma 3.1. For every topological group G, the partially ordered set K(G)
is a complete lattice.

Proof. We only need to show that every family of compactifications of G
has supremum.

Let {ci : G → ciG | i ∈ I} be a family of compactifications of G.
Consider the diagonal map 〈ci〉 : G → ∏

i∈I ciG. Denote by cG = 〈ci〉(G)
the closure of the image of G under 〈ci〉, and c : G → cG the restriction
of the mapping 〈ci〉. Then c : G → cG is a compactification of G, and



42 W. He and Z. Xiao

the equalities pi ◦ c = ci, i ∈ I, imply that c : G → cG is an upper bound
of {ci : G → ciG | i ∈ I}, where pi : cG → ciG is the ith projection.
We now show that the compactification c : G → cG is the supremum of
{ci : G→ ciG | i ∈ I}.

Indeed, suppose that k : G→ K is a compactification of G such that for
each i ∈ I, there exists a continuous homomorphism hi : K → ciG satisfying
ci = hi ◦ k. Then the diagonal map 〈hi〉 : K →∏

i∈I ciG satisfies 〈hi〉 ◦ k =

〈hi ◦ k〉 = 〈ci〉. Also we have 〈hi〉(K) = 〈hi〉(k(G)) ⊆ 〈hi〉(k(G)) = 〈ci〉(G).
Let h : K → cG be the restriction of 〈hi〉, then we have h ◦ k = c.

Let G be a topological group. For every compactification c : G→ cG of
G, c can be uniquely factored through b : G→ bG as c = cb ◦ b:

G
b //

c
  

bG

cb
}}

cG

Clearly, cb is surjective since c is dense and cb is closed. Denote by L(cG) =
ker(cb) the kernel of cb. Then L(cG) is a closed normal subgroup of bG.

Let also CN(bG) be the set of all closed normal subgroups of bG ordered
by inverse inclusion. We have the following result.

Proposition 3.2. L : K(G)→ CN(bG) is an isomorphism.

Proof. Notice that L has an inverse map which sends each closed normal
subgroup N �G to the compactification q ◦ b : G→ bG/N , where q : bG→
bG/N is the quotient map. Also for two compactifications c1 : G → c1G
and c2 : G → c2G of G, it is clear that c1 ≤ c2 if and only if ker(cb2) ⊆
ker(cb1), that is, L(c2G) ⊆ L(c1G). Hence L : K(G) → CN(bG) is an
isomorphism.

Corollary 3.3. Let G and H be topological groups. If bG is topologically
isomorphic to bH, then K(G) and K(H) are isomorphic.

A classical result in [11] showed that if X and Y are locally compact
spaces, then their lattices of compactifications K(X) and K(Y ) are iso-
morphic if and only if βX \ X and βY \ Y are homeomorphic. For a
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topological group G, the remainder bG \ b(G) in general does not deter-
mine the order structure of K(G). Indeed, if we take S(X) the permuta-
tion group of an infinite set X, we know that S(X) is a minimally almost
periodic groups, that is, N(S(X)) = S(X). Put H = T the unit circle
group. Then bS(X) is the trivial group and bH = H. Hence the remainder
bS(X) \ b(S(X)) = bH \ b(H) = ∅. But it is clear that K(bS(X)) is not
isomorphic to K(H).

Corollary 3.4. Let L be a complete lattice. L is isomorphic to the compact-
ification lattice K(G) of a topological group G if and only if L is isomorphic
to the lattice of all closed normal subgroups of a compact group.

Let G be a topological group and let H ≤ G be a dense subgroup of G.
Then for every compactification c : G → cG of G the restriction of c to H
is a compactification of H. Conversely every compactification c : H → cH
of H admits a unique extension c̃ : G → cH. Hence the following result is
clear.

Proposition 3.5. If H is a dense subgroup of a topological group G, then
K(G) = K(H).

If G is a topological Abelian group, we can give an alternative description
ofK(G). Let C∗(G) denote the group of all continuous characters on G, that
is, the group of all continuous homomorphisms f : G → T. Suppose that
N ≤ C∗(G). Then we have a compactification cN : G→ cNG corresponding
to N such that cNG is the closure of the image of G in TN under the diagonal
map cN . For two subgroups N1 ≤ C∗(G), N2 ≤ C∗(G), we write N1 ∼ N2 if
the compactifications cN1 : G → cN1G and cN2 : G → cN2G corresponding
to N1 and N2, respectively, are equivalent. Denote by Subgp(C∗(G))/ ∼
the quotient set of the set Subgp(C∗(G)) of all subgroups of C∗(G). Let
[N ], [M ] ∈ Subgp(C∗(G))/ ∼. Define [N ] ≤ [M ] if and only if cNG ≤ cMG,
where cNG and cMG are the compactifications corresponding to N and M ,
respectively.

Proposition 3.6. The partially ordered set (Subgp(C∗(G))/ ∼,≤) is iso-
morphic to K(G).

Corollary 3.7. Let G be a topological abelian group. Then | K(G) |≤
2|C
∗(G)|.
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Note that the above corollary is true for an arbitrary topological group
G, though then C∗(G) is not a group.

Let L be a complete lattice. An element a ∈ L is called compact if for
every family {ai | i ∈ I} ⊂ L with a ≤ ∨ ai, there exists finite set J ⊂ I
such that a ≤ ∨i∈J ai. Let k(L) be the set of all compact elements of L. A
complete lattice L is said to be an algebraic lattice if a =

∨{c ∈ k(L) | c ≤ a}
for every a ∈ L. L is said to be a dual algebraic lattice if the dual lattice
Lop of L is algebraic.

Theorem 3.8. If L is a compactification lattice of a topological Abelian
group, then there is a dual algebraic lattice S such that L is a retraction of
S.

Proof. Suppose that G is a topological Abelian group and L is order iso-
morphic to the compactifiction lattice K(G) of G. Let S be the lattice of
all subgroups of bG. We first show that S is a dual algebraic lattice (with
respect to the inverse inclusion order).

Indeed, S is a complete lattice and it contains L as a sub-upper semi-
lattice. It is clear that the family of all finitely generated subgroups of
bG and the family of all compact element of Sop coincide, and also every
subgroup H ≤ bG can be represented as a supremum of a family of finitely
generated subgroups of bG.

Let r : S → L be such that for every a ∈ S, r(a) is in the closure of a in
bG. Then r is a retraction.

4 The contravariant lattice-valued functor

Let f : G→ H be a continuous homomorphism. We define K(f) : K(G)→
K(H) as the mapping which sends every compactification c : H → cH
to the compactification c ◦ f : G → c(f(G)) of G, where c(f(G)) means
the closure of c(f(G)) in cH. Equivalently, if we regard K(G) as CN(bG),
and K(H) as CN(bH), then K(f) : CN(bH)→ CN(bG) sends every closed
normal subgroup N�bH to the closed normal subgroup bf−(N)�bG, where
bf : bG→ bH is the extension of f .

Proposition 4.1. The assignment G 7→ K(G) is a contravariant functor
from the category TopGpop to the category CLat of complete lattices.
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Proof. For two continuous homomorphisms f : G → H and g : H → M of
topological groups, it is clear that K(g ◦ f) = K(g) ◦K(f). We only need
to show that K(f) : CN(bH)→ CN(bG) preserves arbitrary joins, for any
continuous homomorphism f : G→ H.

K(f) maps H to G, that is, it preserves the bottom element. Let {Ni |
i ∈ I} be a family of closed normal subgroups of bH. We have

∨
i∈I Ni =⋂

i∈I Ni, and hence

bf−(
∨

i∈I
Ni) = bf−(

⋂

i∈I
Ni) =

⋂

i∈I
bf−(Ni) =

∨

i∈I
bf−(Ni).

This shows that K(f) preserves arbitrary joins.

Lemma 4.2. Let G and H be topological groups and let f : G → H be a
dense continuous homomorphism. Then K(f) : K(H)→ K(G) is injective.

Proof. The composition G → bG → bH = G → H → bH is dense, since
bH : H → bH is dense. It follows that bf : bG→ bH is dense and, hence, it
is surjective since it is closed:

G
f //

��

H

��
bG

bf // bH

Thus K(f) : K(H)→ K(G) is injective.

We know that in the category TopAb of topological abelian groups,
monomorphisms are precisely one-to-one continuous homomorphisms and
epimorphisms are precisely dense continuous homomorphisms. Hence we
have the following result.

Proposition 4.3. The functor K : TopAbop → CLat preserves monomor-
phisms.

Let G be a topological group. We know that the Bohr compactification
bG of G can be obtained in two steps:

first taking pG = (G/N(G))+ the quotient group G/N(G) endowed with
the Bohr topology. Let q : G → pG be the quotient map, which is in fact
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the precompact reflection of G. Next we put bG = %pG to be the Răıkov
completion of pG. Then bG is the Bohr compactification of G. Suppose
that f : G → H is a continuous homomorphism. Then f has a continuous
homomorphism extension pf : pG → pH such that the following diagram
commutes:

G
f //

��

H

��
pG

pf // pH

It is clear that Ker(pf) = {epG} if and only if N(G) = f−(N(H)). By the
construction of the Răıkov completion, we know that Ker(pf) = {epG} if
and only if Ker(bf) = {ebG}:

pG
pf //

��

pH

��
bG

bf // bH

Lemma 4.4. Let f : G→ H be a continuous homomorphism. Then K(f) :
K(H)→ K(G) is surjective if and only if N(G) = f−(N(H)).

Proof. Suppose that N(G) = f−(N(H)). By the above argument, ker(bf)
is trivial, hence bf is one-to-one. It follows that bf : bG → bH is a closed
embedding, thus K(f) : K(H)→ K(G) is surjective.

Conversely, if K(f) : K(H) → K(G) is surjective, then there exists a
closed normal subgroup N � bH such that bf−(N) = {ebG}. It follows that
ker(bf) = {ebG}. This implies that N(G) = f−(N(H)).

Let G and H be two discrete abelian groups and let f : G → H be a
one-to-one homomorphism. Then each homomorphism g : G → T has an
extension ĝ : H → T such that g = ĝ◦f . It follows that N(G) = f−(N(H)).

Corollary 4.5. The functor K : Abop → CLat preserves epimorphisms.

In general the functor K : TopAbop → CLat does not preserve epimor-
phisms. Indeed, if we take a topological Abelian group H such that H is
not maximally almost periodic and denote by G the group H endowed with
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discrete topology, then N(G) is the trivial group and N(H) 6= {eH}. By
Lemma 3.4, K(id) : K(G)→ K(H) is not surjective.

Proposition 4.6. If f : G→ H is a dense continuous homomorphism such
that N(G) = f−(N(H)), then bG and bH are topologically isomorphic. So
K(G) is order isomorphic to K(H).

Proof. Clearly we have ker(bf) = {eG} and hence bf : bG→ bH is injective,
since N(G) = f−(N(H)). Also the composition G → bG → bH = G →
H → bH is dense, since f : G → H is dense. It follows that bf : bG → bH
is dense and surjective, since it is closed.

Furthermore, we have the following result.

Proposition 4.7. Let f : G → H be a continuous homomorphism. Then
K(f) : K(H)→ K(G) is an isomorphism if and only if bf : bG→ bH is an
embedding and for any two closed subgroups N1 and N2 of bH, N1 ∩ bG =
N2 ∩ bG implies that N1 = N2.

Proof. If K(f) : K(H) → K(G) is surjective, then there exists a closed
normal subgroup N � bH such that bf−1(N) = {ebG}, which implies that
ker(bf) = {ebG}. Hence K(f) : K(H) → K(G) is surjective if and only
if bf : bG → bH is an embedding. It is clear that K(f) : K(H) → K(G)
is injective if and only if for any two closed subgroups N1 and N2 of bH,
N1 ∩ bG = N2 ∩ bG implies that N1 = N2.

The functor K : TopGpop → CLat does not preserve coproducts. In-
deed, if we take G = H = Z(2), then bG = bH = Z(2), and b(G × H) =
Z(2)×Z(2). As | K(G×H) |= 5 and | K(G)×K(H) |= 4, so K(G×H) is
not isomorphic to K(G) ×K(H). Since in the category CLat of complete
lattices, coproducts of objects are equivalent to products of objects, hence
K(G×H) is not the coproduct of K(G) and K(H).

The following result was proved in [6].

Lemma 4.8. Let {Gi | i ∈ I} be a family of topological groups. Then
b
∏
i∈I Gi is topologically isomorphic to

∏
i∈I bGi.

Proposition 4.9. Let {Gi | i ∈ I} be a family of topological groups. Then∏
K(Gi) is a sub-complete lattice of the complete lattice K(

∏
Gi), and there

exists an inf-preserving mapping r : K(
∏
Gi) →

∏
K(Gi) which leaves∏

K(Gi) pointwise fixed.
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Proof. First
∏
K(Gi) is isomorphic to

∏
CN(bGi). By Lemma 4.8,K(

∏
Gi)

is isomorphic to CN(
∏
bGi). So we have a natural embedding

f :
∏
CN(bGi) → CN(

∏
bGi) of complete lattices which sends every el-

ement (Ni) ∈
∏
CN(bGi) to the element

∏
Ni ∈ CN(

∏
bGi).

Let r : CN(
∏
bGi) →

∏
CN(bGi) such that for each closed normal

subgroup N �
∏
bGi, r(N) = (pi(N)), where pi :

∏
bGi → bGi is the

projection to ith coordinate. Then r is a mapping satisfying the required
condition.

Let {Gi | i ∈ I} be a family of topological groups. We write
⊗
Gi

the coproduct of {Gi | i ∈ I}. It is clear that C∗(
⊗
Gi) is a one-to-one

correspondence to
∏
C∗(Gi). It is natural to ask the following question.

Open Question 4.10. Does the functor K : TopGpop → CLat preserve
products?

When focused on topological abelian groups, we have a functor from the
category TopAb of topological abelian groups to the category CLatop of
complete lattices.

Indeed, let G, H be topological abelian groups and let f : G → H
be a continuous homomorphism. Denote by K̂(G) and K̂(H) the closed
subgroup lattice (with respect to the inverse inclusion order) of bG and bH,
respectively. Then K̂(G) and K̂(H) are isomorphic to the compactification
lattices of G and H, respectively, and bf : bG → bH maps each closed
subgroup N ≤ bG onto a closed subgroup bf(N) ≤ bH. Suppose that
{Nj | j ∈ J} is a family of closed subgroups of bG. Then bf(

∧
Nj) =

bf(〈⋃Nj〉) = bf(〈⋃Nj〉) = 〈⋃ bf(Nj)〉 =
∧
bf(Nj). This implies that we

have a functor K̂ : TopAb→ CLatop.

Proposition 4.11. Let f : G→ H be a continuous homomorphism of topo-
logical abelian groups. Then K̂(f) : K̂(G)→ K̂(K) is an order isomorphism
if and only if bf : bG→ bH is a topological isomorphism.

Proof. Suppose that K̂(f) : K̂(G)→ K̂(H) is an order isomorphism. Then
bf is surjective, since bf(bG) = bH, and bf({ebG}) = bf(ker(bf)) = {ebH}
implies that ker(bf) = {ebG}, since K̂(f) is injective. It follows that bf is a
topological isomorphism, since bf is closed. The converse is clear.
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It is a natural question whether for two topological abelian groups G
and H, K(G) isomorphic to K(H) implies that bG and bH are topological
isomorphic. But in general this is not true. For example, we take G = Z(2)
and H = Z(3), then K(G) = K(H) are two-elements lattices, but bG = G,
bH = H.

Open Question 4.12. Let G and H be topological groups. Can one give
sufficient and necessary conditions on G and H for K(G) to be isomorphic
to K(H)?
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