[1] Balbes, R. and Dwinger, P., “Distributive lattices”, XIII. University of Missouri Press, 1974.
[2] Borumand Saeid, A. and Pourkhatoun, M., Obstinate filters in residuated lattices, Bull. Math. Soc. Sci. Math. Roumanie, Nouvelle Série 55 (103)(4) (2012) 413-422.
[3] Ciungu, L.C., Bosbach and Rieˇcan states on residuated lattices, J. Appl. Funct. Anal. 3(1) (2008), 175-188.
[4] Dvureˇcenskij, A., States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327.
[5] Forouzesh, F., Eslami, E., and Borumand Saeid, A., On obstinate ideals in MV-Algebras, U.P.B. Sci. Bull., Series A, 76(2) (2014), 53-62.
[6] Georgescu, G., Bosbach states on fuzzy structures, Soft Comput. 8 (2004), 217-230.
[7] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., and Scott, D.S., “Continuous Lattices and Domains”, Cambridge University Press, 2003.
[8] Gratzer, G., “Lattice theory”, First Concepts and Distributive Lattices, A Series of Books in Mathematics, W.H. Freeman and Company, 1972.
[9] Hajek, P., “Metamathematics of Fuzzy Logic”, Trends in Logic Studia Logica Library 4, Kluwer Academic Publishers, 1998.
[10] He, P., Xin, X., and Yang, Y., On state residuated lattices, Soft Comput. 19 (2015), 2083-2094.
[11] Kroupa, T., Every state on semisimple MV-algebra is integral, Fuzzy Sets and Systems 157 (2006), 2771-2782.
[12] Liu, L. and Li, K., Boolean filters and positive implicative filters of residuated lattices, Inf. Sci. 177 (2007), 5725-5738.
[13] Liu, L.Z. and Zhang, X.Y., States on finite linearly ordered IMT L-algebras, Soft Comput. 15 (2011), 2021-2028.
[14] Liu, L.Z. and Zhang, X.Y., States on R0-algebras, Soft Comput. 12 (2008), 1099-1104.
[15] Liu, L.Z., On the existence of states on MT L-algebras, Inf. Sci. 220 (2013), 559-567.
[16] Mundici, D., Averaging the truth-value in Łukasiewicz sentential logic, Studia Logica 55 (1995), 113-127.
[17] Muresan, C., Dense elements and classes of residuated lattices, Bull. Math. Soc. Sci. Math. Roumanie. 53 (2010), 11-24.
[18] Piciu, D., “Algebras of Fuzzy Logic”. Ed. Universitaria, 2007.
[19] Rieˇcan, B., On the probability on BL-algebras, Acta Math. Nitra 4 (2000), 3-13.
[20] Turunen, E. and Mertanen, J., States on semi-divisible residuated lattices, Soft Comput. 12 (2008), 353-357.
[21] Turunen, E. “Mathematics Behind Fuzzy Logic”, Advances in Soft Computing, Physica-Verlag, 1999.
[22] Gasse, B. Van., Deschrijver, G., Cornelis, C., and Kerre, E.E., Filters of residuated lattices and triangle algebras, Inform. Sci. 180 (2010), 3006-3020.
[23] Ward, M. and Dilworth, P.R., Residuated lattice, Trans Am. Math. Soc. 45 (1939), 335-354.