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Total graph of a 0-distributive lattice
S. Ebrahimi Atani, S. Dolati, M. Khoramdel∗, and M. Sedghi

Abstract. Let £ be a 0-distributive lattice with the least element 0, the
greatest element 1, and Z(£) its set of zero-divisors. In this paper, we in-
troduce the total graph of £, denoted by T(G(£)). It is the graph with all
elements of £ as vertices, and for distinct x, y ∈ £, the vertices x and y
are adjacent if and only if x ∨ y ∈ Z(£). The basic properties of the graph
T(G(£)) and its subgraphs are studied. We investigate the properties of the
total graph of 0-distributive lattices as diameter, girth, clique number, radius,
and the independence number.

1 Introduction

There has been a lot of activity over the past several years in associating a
graph to an algebraic system such as a ring or semiring [1, 3, 5, 8, 9, 11, 14].
Recently, the study of the total graph property in the rings and modules has
become quite popular. In many ways this program began with the paper
in 2008, by D.F. Anderson and A. Badawi [2]. They introduced the total
graph of a commutative ring R. Let Z(R) be the set of zero-divisors of R.
The total graph of R, denoted by T(Γ(R)), is the graph with all elements
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of R as vertices, and two distinct vertices x, y ∈ R are adjacent if and
only if x + y ∈ Z(R). In [2], they studied the three (induced) subgraphs
Nil(Γ(R)), Z(Γ(R)), and Reg(Γ(R)) of T(Γ(R)) with vertices Nil(R), Z(R),
and Reg(R), respectively.

The study of zero-divisor graph of a poset was initiated by Halaš and
Jukl [13]. There are many papers which study the zero-divisor graph of
lattices [11, 14, 16, 17]. Let £ be a lattice with the least element 0 and the
greatest element 1. An element a of £ is said to be zero-divisor if there exists
0 6= b ∈ £ such that a ∧ b = 0. Let Z(£) be its set of zero-divisors. The
zero-divisor graph, G(£), is the graph with vertices Z(£)∗ = Z(£) \ {0}, the
set of non-zero zero-divisors of £, and for distinct x, y ∈ Z(£)∗, the vertices
x and y are adjacent if and only if x ∧ y = 0.

In this paper, we introduce the total graph of a lattice £ with respect
to zero-divisor elements of £, denoted by T(G(£)). It is the graph with all
elements of £ as vertices, and for distinct x, y ∈ £, the vertices x and y
are adjacent if and only if x ∨ y ∈ Z(£). We are interested in investigating
the total graph of a lattice to use other notions of total graph and associate
which exist in the literature as laid forth in [2].

Now, we summarize the content of the paper. In the present paper,
we study three (induced) subgraphs Z(G(£)), Reg(G(£)), and Z∗(G(£)) of
T(G(£)), with vertices Z(£), £ \ Z(£), and Z(£)∗, respectively. In Section
2, we show that T(G(£)) is not connected, but its subgraph Z(G(£)) is
always connected with diam(Z(G(£))) ∈ {1, 2} and gr(Z(G(£))) ∈ {3,∞}.
It is shown that diam(Z(G(£))) = 1 if and only if Z(£) is an ideal of £
and gr(Z(G(£))) = 3 if and only if |Z(£)| ≥ 4. Moreover, we give a de-
scription of a lower bound for the clique number of Z(G(£)). In Section
3, it is proved that Z∗(G(£)) is connected if and only if |min(£)| 6= 2.
Also, if Z∗(G(£)) is connected, then diam(Z∗(G(£))) ∈ {1, 2}. More-
over, gr(Z∗(G(£))) ∈ {3,∞}. It is investigated when diam(Z∗(G(£))) =
diam(Z(G(£))) or gr(Z(G(£))) = gr(Z∗(G(£))). Further, we prove that if
£ is a lattice with min(£) is finite, then there is no vertex of Z∗(G(£)) which
is adjacent to every other vertex of Z∗(G(£)) and the radius of Z∗(G(£)) is
2, provided that Z∗(G(£)) is connected. It is shown that if £ is a lattice
with min(£) is finite, then the independence number of Z∗(G(£)) is equal
to |min(£)|.

In order to make this paper easier to follow, we recall in this section
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various notions which will be used in the sequel. For a graph G by E(G)
and V (G) we denote the set of all edges and vertices, respectively. We recall
that a graph is connected if every two distinct vertices is connected by a
path. A graph G is said to be totally disconnected if it has no edge. The
distance between two distinct vertices a and b, denoted by d(a, b), is the
length of the shortest path connecting them (if such a path does not exist,
then d(a, a) = 0 and d(a, b) = ∞). The diameter of a graph G, denoted
by diam(G), is equal to sup{d(a, b) : a, b ∈ V (G)}. If a and b are two
adjacent vertices of G, then we write a − b. The eccentricity of a vertex a
is defined as e(a) = max{d(a, b) : b ∈ V (G)} and the radius of G is given
by rad(G) = min{e(x) : x ∈ V (G)}. A graph is complete if it is connected
with diameter less than or equal to one. We denote the complete graph
on n vertices by Kn. The girth of a graph G, denoted by gr(G), is the
length of the shortest cycle in G, provided G contains a cycle; otherwise,
gr(G) =∞. A complete bipartite graph with part sizes m and n is denoted
by Km,n. A clique of a graph is its maximal complete subgraph and the
number of vertices in the largest clique of a graph G, denoted by w(G), is
called the clique number of G. An induced subgraph of a graph G by the set
S ⊆ V (G) is a subgraph H of G where vertices are adjacent in H precisely
when adjacent in G. In a graph G = (V,E), a set S ⊆ V is an independent
set if the subgraph induced by S is totally disconnected. The independence
number α(G) is the maximum size of an independent set in G [7].

A lattice is a poset (£,≤) in which every pair of elements x, y has a g.l.b.
(called the meet of x and y, and written x ∧ y) and a l.u.b. (called the join
of x and y, and written x ∨ y). A lattice £ is complete when each of its
subsets X has a l.u.b. and a g.l.b. in £. Setting X = £, we see that any
complete lattice contains the least element 0 and the greatest element 1 (in
this case, we say that £ is a lattice with 0 and 1). A non-empty subset I of
a lattice £ is called an ideal, if for a ∈ I, b ∈ £, b ≤ a implies b ∈ I (then
I is called a down-directed set) and for every a, b ∈ I we have a ∨ b ∈ I.
A non-empty subset F of a lattice £ is called a filter, if for a ∈ F , b ∈ £,
a ≤ b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so if £ is a lattice
with 1, then {1} is a filter of £). A lattice £ with 0 is called £-domain if
a ∧ b = 0 (a, b ∈ £), then a = 0 or b = 0. We say that a subset D ⊆ £ is
meet closed if 1 ∈ D and a ∧ b ∈ D for all a, b ∈ D. A proper ideal P of
£ is called prime if x ∧ y ∈ P , then x ∈ P or y ∈ P . A prime ideal P of
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a lattice £ is said to be a minimal prime ideal, if it is minimal among all
prime ideals containing {0} (note that in an £-domain, the only minimal
prime ideal is {0}). The set of all minimal prime ideals of £ is denoted
by min(£). An element a of a lattice £ is called an atom, if there is no
y ∈ £ such that 0 < y < a [6]. A 0-distributive lattice £ is a lattice with
0 in which a ∧ b = 0 = a ∧ c implies a ∧ (b ∨ c) = 0 [4]. Note that every
distributive lattice with 0 is a 0-distributive lattice. Let I be an ideal of a
lattice £. A prime ideal P containing an ideal I of a lattice £ is said to be
a maximal N -prime of I, if P is maximal with respect to the property of
being contained in ZI(£) = {x ∈ £ : x ∧ y ∈ I for some y ∈ £ \ I} [15].

Proposition 1.1. (1) Let £ be a lattice with the least element 0 and the
greatest element 1. A non-empty subset I of £ is an ideal of £ if and only
if a ∧ c ∈ I and a ∨ b ∈ I for all a, b ∈ I and c ∈ £. Moreover, if I is an
ideal and x ∨ y ∈ I, then x, y ∈ I for every x, y ∈ £ and 0 ∈ I.

(2) Let £ be a lattice with 0 and a ∈ £. Then the set (0 : a) = {b ∈ £ :
b ∧ a = 0} is a down-directed set. Moreover, £ is a 0-distributive lattice if
and only if (0 : a) is an ideal for every a ∈ £.

Proposition 1.2. [4, Theorem 3.1] Let £ be a 0-distributive lattice and
{Pα}α∈Λ the set of all prime ideals of £. Then

⋂
α∈Λ Pα = {0}. Moreover,

if P1, · · · , Pn are the only distinct minimal prime ideals of £, then
⋂n
i=1 Pi =

{0}.

2 Basic structures of T(G(£)) and the subgraph Z(G(£))

In this section, we study two (induced) subgraphs Z(G(£)) and Reg(G(£))
of T(G(£)), with vertices Z(£) and £ \ Z(£), respectively. It is clear that
V (T(G(£))) = Z(£) ∪ (£ \ Z(£)).

Proposition 2.1. T(G(£)) = ∅ if and only if £ is an £-domain.

Proof. Suppose that T(G(£)) = ∅ and let x ∧ y = 0 with x 6= 0. If y 6= 0,
then x ∈ Z(£); hence 0− x is a path in T(G(£)), a contradiction. Thus £
is an £-domain. Conversely, assume on the contrary, T(G(£)) 6= ∅. Then
there exist a, b ∈ £ such that a ∨ b ∈ Z(£) with a 6= b, so (a ∨ b) ∧ c = 0 for
some 0 6= c ∈ £. It is clear that (a ∧ c) ∨ (b ∧ c) ≤ (a ∨ b) ∧ c. Therefore
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a ∧ c = 0 = b ∧ c. Thus a = b = 0, which is a contradiction. Hence
T(G(£)) = ∅.

Theorem 2.2. Reg(G(£)) is totally disconnected. Thus, in particular,
T(G(£)) is always disconnected.

Proof. First, we show that no element of £\Z(£) is adjacent to any element
of Z(£). Let x ∈ £ \ Z(£) (so x 6= 0). If x ∨ y ∈ Z(£) for some y ∈ Z(£),
then there exists 0 6= r ∈ Z(£) such that (x ∨ y) ∧ r = 0, so x ∨ y ∈ (0 : r).
As (x ∧ r) ∨ (y ∧ r) ≤ (x ∨ y) ∧ r = 0, x ∈ (0 : r) ⊆ Z(£), a contradiction.
Similarly, if x, y ∈ £ \ Z(£), then x ∨ y /∈ Z(£). Finally, Reg(G(£)) being
totally disconnected gives T(G(£)) is always disconnected.

From now on, unless otherwise stated, we assume that£ is a 0-distributive
lattice with the least element 0 and the greatest element 1.

Remark 2.3. It is well-known that diam(G(£)) ≤ 3 and if G(£) contains a
cycle, then gr(G(£)) ≤ 4 ( [11] and [17]). Assume that G(£) is complete and
let a, b, and c be distinct elements of Z(£)∗. Then a ∧ b = 0, a ∧ c = 0, and
b∧c = 0. Thus b∨c ∈ (0 : a), since (0 : a) is an ideal of £. Clearly, b∨c 6= 0.
Hence b∨c ∈ Z(£)∗. If b∨c = c, then b ≤ c, so 0 = b∧c implies b = 0, which
is a contradiction. So b ∨ c 6= c. Since G(£) is complete, (b ∨ c) ∧ c = 0;
hence c = 0 which is impossible. Therefore G(£) is not complete. Also,
G(£) contains no loop. Thus if |Z(£)∗| ≥ 3, then diam(G(£)) ∈ {2, 3}.

The next theorem gives a more explicit description of the diameter of
Z(G(£)).

Theorem 2.4. The following hold:
(1) Z(G(£)) is connected with diam(Z(G(£))) ≤ 2.
(2) If T(G(£)) 6= ∅, then Z(G(£)) is a complete graph if and only if

Z∗(G(£)) is a complete graph if and only if Z(£) is an ideal of £ if and only
if Z(£) is a join sub-semilattice of £.

(3) If T(G(£)) 6= ∅, then diam(Z(G(£))) = 2 if and only if Z(£) is not
an ideal of £.

Proof. (1) Since 0 ∧ a = 0 for every a ∈ £, 0 ∈ Z(£). Thus x − 0 − y is a
path in Z(G(£)) for distinct x, y ∈ Z(£). Thus Z(G(£)) is connected with
diam(Z(G(£))) ∈ {1, 2}.
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(2) Let Z(G(£)) be a complete graph and x, y ∈ Z(£), z ∈ £. Then
x∨ y ∈ Z(£) and x∧ c = 0 for some 0 6= c ∈ £. Now (x∧ z)∧ c = 0∧ z = 0
gives x ∧ z ∈ Z(£). Thus Z(£) is an ideal of £. The other implications are
clear.

(3) It is clear from (2).

Our next theorem characterizes the girth of subgraph Z(G(£)) of T(G(£)).

Theorem 2.5. The following hold:
(1) gr(Z(G(£))) ∈ {3,∞}.
(2) If T(G(£)) 6= ∅, then |Z(£)| = 3 if and only if gr(Z(G(£))) =∞.
(3) If T(G(£)) 6= ∅, then |Z(£)| ≥ 4 if and only if gr(Z(G(£))) = 3.

Proof. (1) If x∨y ∈ Z(£) for some x, y ∈ Z(£)∗ with x 6= y, then 0−x−y−0
is a cycle in Z(G(£)); hence gr(Z(G(£))) = 3. Let x ∨ y /∈ Z(£) for each
x, y ∈ Z(£)∗. So Z(G(£)) does not contain any cycle; hence gr(Z(G(£))) =
∞.

(2) Let Z(£) = {0, a, b}. If Z(£) is an ideal of £, then either a ∨ b = b
or a ∨ b = a. We can assume that a ∨ b = b. Then a ∧ b = 0 gives
a = a ∧ (a ∨ b) = a ∧ b = 0, which is impossible. Thus Z(£) is not an ideal
of £, and so a ∨ b /∈ Z(£); hence we have the path a − 0 − b, which gives
gr(Z(G(£))) = ∞. Conversely, let gr(Z(G(£))) = ∞. By Proposition 2.1,
it is not hard to see that |Z(£)| 6= 1, 2. We show that |Z(£)| = 3. Suppose
on the contrary that |Z(£)| ≥ 4. Since diam(G(£)) ∈ {2, 3}, by Remark
2.3, there exist a, b ∈ Z(£)∗ such that d(a, b) = 2. Thus there is c ∈ Z(£)∗

such that a − c − b is a path in G(£); hence a ∧ c = 0 and b ∧ c = 0. So
a, b ∈ (0 : c) which gives a ∨ b ∈ (0 : c) ⊆ Z(£), because (0 : c) is an
ideal of £. So 0 − a − b − 0 is a cycle in Z(G(£)) and gr(Z(G(£))) = 3, a
contradiction.

(3) Let |Z(£)| ≥ 4. SinceG(£) is not complete and diam(G(£)) ∈ {2, 3},
by Remark 2.3, there exist a, b ∈ Z(£)∗ such that d(a, b) = 2 in G(£), so
there exists c ∈ Z(£)∗ such that a−c−b is a path inG(£); hence a, b ∈ (0 : c),
which gives a ∨ b ∈ (0 : c) ⊆ Z(£). This implies 0 − a − b − 0 is a cycle in
Z(G(£)) and gr(Z(G(£))) = 3. Conversely, assume that gr(Z(G(£))) = 3;
we show that |Z(£)| ≥ 4. Clearly, |Z(£)| 6= 1, 2. Suppose, on the contrary,
that Z(£) = {0, a, b}. Since gr(Z(G(£))) = 3, a and b are adjacent in
Z(G(£)), which gives a ∨ b ∈ Z(£). Hence Z(£) is an ideal of £, which is a
contradiction. Therefore |Z(£)| ≥ 4.
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The next theorem gives a description of a lower bound for the clique
number of Z(G(£)) in terms of the number of atoms in £.

Theorem 2.6. Let A(£) be the set of all atoms in £. Then we have
ω(Z(G(£))) ≥ |A(£)|.

Proof. If |A(£)| ∈ {1, 2}, then there is nothing to prove, because Z(G(£))
is connected. Let |A(£)| > 2 and x, y ∈ A(£). As |A(£)| ≥ 3, there exists
z ∈ A(£) such that x 6= z and y 6= z. Clearly, x∧ z = 0 and y∧ z = 0. Thus
(x ∨ y) ∧ z = 0; and x ∨ y ∈ Z(£). Therefore A(£) is a clique in Z(G(£)),
and so ω(Z(G(£))) ≥ |A(£)|.

Proposition 2.7. ω(Z(G(£))) ≥ |{|C| : C is a chain in Z(£)}|.

Proof. It is clear.

3 Properties of the subgraph Z∗(G(£))

We continue to use the notations already established, so £ is a 0-distributive
lattice with 0 and 1. In this section, we refine our results on diam(Z∗(G(£))),
gr(Z∗(G(£))), and the relation between Z∗(G(£)) and Z(G(£)).

Remark 3.1. It is not hard to see that (using mathematical induction on
n): If I is an ideal and P1, P2, · · · , Pn are prime ideals of £ with I ⊆ ⋃n

i=1 Pi,
then I ⊆ Pr for some 1 ≤ r ≤ n.

Theorem 3.2. The following hold:
(1) If min(£) = {Pα}α∈Λ, then Z(£) = ∪α∈ΛPα.
(2) If T(G(£)) 6= ∅, then Z∗(G(£)) is connected if and only if |min(£)| 6=

2. Moreover, if Z∗(G(£)) is connected, then we have diam(Z∗(G(£))) ∈
{1, 2}.

(3) If T(G(£)) 6= ∅ and Z∗(G(£)) is a complete graph, then both Z(£)
and min(£) are infinite.

Proof. (1) It follows on the lines of Remark 1.2 of [15].
(2) Assume that Z∗(G(£)) is connected and let min(£) = {P1, P2}. Then

Z(£) = P1 ∪ P2, by (1). If 0 6= x ∈ P1 and 0 6= y ∈ P2, then x ∨ y /∈ Z(£)
(for if x∨ y ∈ Z(£), then x∨ y ∈ P1 or x∨ y ∈ P2 and so x ∈ P2 ∩P1 = {0}
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or y ∈ P1 ∩ P2 = {0}, which is a contradiction, by Proposition 1.2). Then
x ∨ y /∈ Z(£) gives none of elements of P1 and P2 are adjacent in Z(G(£));
so Z∗(G(£)) is not connected, a contradiction. Conversely, suppose that
|min(£)| 6= 2. If |min(£)| = 1, then Z(£) = P = {0} for some minimal
prime ideal P of £, by (1) and Proposition 1.2. Let a ∧ b = 0 for some
a, b ∈ £ with a 6= 0; so b ∈ Z(£) = {0}. Hence £ is an £-domain, which
is impossible by Proposition 2.1. Therefore |min(£)| ≥ 3. We claim that
Pi ∩ Pj 6= {0} for each Pi, Pj ∈ min(£). Suppose, on the contrary, that
Pi ∩ Pj = {0} for some Pi, Pj ∈ min(£). We show that Z(£) = Pi ∪ Pj .
If x ∈ Z(£)∗ \ Pi ∪ Pj , then there exists y ∈ Z(£)∗ such that x ∧ y = 0 ∈
Pi ∩ Pj . Since x /∈ Pi, Pj , we have y ∈ Pi ∩ Pj = {0}, a contradiction. Thus
Z(£) ⊆ Pi ∪ Pj ; hence Z(£) = Pi ∪ Pj , which implies min(£) = {Pi, Pj}
(because, if there exists Pk ∈ min(£) \ {Pi, Pj}, then Pk ⊆ Z(£) = Pi ∪ Pj ,
by (1), which implies Pk ⊆ Pi or Pk ⊆ Pj , by Remark 3.1, a contradiction).
Thus Pi ∩ Pj 6= {0} for each minimal prime ideals Pi, Pj of £. Now, let
x, y ∈ Z(£)∗. If x ∨ y ∈ Z(£)∗, then d(x, y) = 1. Let x ∨ y /∈ Z(£)∗.
So x ∈ Pi and y ∈ Pj , where Pi, Pj are distinct minimal prime ideals of
£. Choose 0 6= z ∈ Pi ∩ Pj . Then x − z − y is a path in Z∗(G(£)) and
d(x, y) = 2.

(3) Since Z∗(G(£)) is a complete graph, Z(£) is an ideal of £. If Z(£) =
{x1, x2, · · · , xn}, then

∨n
i=1 xi ∈ Z(£); hence

∨n
i=1 xi = xj 6= 0 for some

1 ≤ j ≤ n. Since xj ∈ Z(£), there exists 0 6= xk ∈ Z(£) such that
xj ∧xk = 0. So xk = (x1∨x2∨ · · · ∨xn)∧xk = xj ∧xk = 0, a contradiction.
Hence Z(£) is infinite. We show that min(£) is infinite. Suppose min(£) is
finite. So Z(£) =

⋃n
i=1 Pi, where P

,
i s are minimal prime ideals of £, by (1).

Since Z(£) is an ideal of £, Z(£) = Pi for some 1 ≤ i ≤ n, by Remark 3.1.
Thus Z(£) = Pi = {0}, by Proposition 1.2, which gives £ is an £-domain,
which is a contradiction, by Proposition 2.1.

Proposition 3.3. Let T(G(£)) 6= ∅. If diam(G(£)) = 2 and min(£) is a
finite set, then |min(£)| = 2.

Proof. Since diam(G(£)) = 2, |Z(£)| ≥ 3; hence |min(£)| 6= 1. Let
min(£) = {P1, P2, · · · , Pn}. By Remark 3.1, P1 6⊆

⋃n
i=2 Pi, so there ex-

ists an element in Z(£) which is contained in a unique minimal prime ideal
P1 of £. Let a ∈ P1 \

⋃n
i=2 Pi. Suppose, on the contrary, that there are at

least two other minimal prime ideals P2 and P3. If P2 \ P1 ∪ P3 = ∅, then
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P2 ⊆ P1 ∪ P3, and so P2 ⊆ P1 or P2 ⊆ P3, by Remark 3.1, a contradiction.
Thus P2 \P1 ∪P3 6= ∅. Let b ∈ P2 \P1 ∪P3. We show that a∨ b ∈ £ \Z(£).
Since a /∈ ⋃n

i=2 Pi, a ∈
⋂n
i=2(£\Pi). It is not hard to see that £\Pi is a filter

for each i. It follows that a∨b ∈ ⋂n
i=2(£\Pi). Since b /∈ P1, b ∈ £\P1, which

gives a∨b ∈ £\P1, since it is a filter. Thus a∨b ∈ ⋂n
i=1(£\Pi) = £\Z(£).

If d(a, b) = 1 in G(£), then a ∧ b = 0 ∈ P3, which gives a ∈ P3 or b ∈ P3,
since P3 is a prime ideal of £, a contradiction. If d(a, b) = 2 in G(£), then
a, b ∈ (0 : c) for some c ∈ Z(£)∗, which gives a ∨ b ∈ (0 : c) ⊆ Z(£), a
contradiction with a ∨ b ∈ £ \ Z(£). Hence |min(£)| = 2.

Theorem 3.4. If T(G(£)) 6= ∅ and min(£) is a finite set, then the following
hold:

(1) diam(G(£)) = 2 if and only if Z∗(G(£)) is not connected and |Z(£)∗| ≥
3.

(2) diam(G(£)) = 3 if and only if Z∗(G(£)) is connected.

Proof. (1) Let diam(G(£)) = 2 (so |Z(£)∗| ≥ 3). Thus |min(£)| = 2,
by Proposition 3.3; hence Z∗(G(£)) is not connected, by Theorem 3.2(2).
Conversely, assume that Z∗(G(£)) is not connected and |Z(£)∗| ≥ 3. So
|min(£)| = 2, by Theorem 3.2(2), say min(£) = {P1, P2}. Then P1 ∩ P2 =
{0}, by Proposition 1.2. Moreover, Z(£) = P1 ∪P2, by Theorem 3.2(1). Set
V1 = P1 \ {0} and V2 = P2 \ {0}. Let x, y ∈ V1. If x ∧ y = 0 ∈ P2, then
x ∈ P2 or y ∈ P2, which is a contradiction. Thus none of the elements of
V1 are adjacent together. Similarly, none of the elements of V2 are adjacent.
This means that G(£) is a bipartite graph with parts V1 and V2 (note that
at least one of the parts has more than one vertex). Thus diam(G(£)) = 2.

(2) If diam(G(£)) = 3, thenG(£) is not complete bipartite. If |min(£)| =
2, then by an argument like that in (1), G(£) is complete bipartite, which is
impossible. So min(£) 6= 2, and hence Z∗(G(£)) is connected, by Theorem
3.2(2). Conversely, assume that diam(G(£)) 6= 3. By (1), diam(G(£)) 6= 2.
Hence diam(G(£)) = 1 and |Z(£)∗| = 2, by Remark 2.3. Hence Z(£) is not
an ideal of £ (see Theorem 2.5(2)). Now Z∗(G(£)) being connected gives
Z(£) is an ideal of £, a contradiction. Thus diam(G(£)) = 3.

Theorem 3.5. The following hold:
(1) gr(Z∗(G(£))) ∈ {3,∞}.
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(2) If T(G(£)) 6= ∅ and |min(£)| 6= 2, then

diam(Z∗(G(£))) = diam(Z(G(£)));

(3) If T(G(£)) 6= ∅ and |Z(£)| 6= 4, 5, then we have gr(Z(G(£))) =
gr(Z∗(G(£))).

Proof. (1) By Theorem 3.2(1), Z(£) =
⋃
Pi, where P

,
i s are minimal prime

ideals of £. If |min(£)| = 1, then there is nothing to prove. If |min(£)| = 2,
then Z(£) = P1 ∪ P2. If |P1| ≥ 4 or |P2| ≥ 4, then P1 \ {0} and P2 \ {0}
are complete subgraphs of Z∗(G(£)); so gr(Z∗(G(£))) = 3. If |P1|, |P2| ≤ 3,
then there is no cycle in P1 and P2. Also there is no cycle between the
elements of P1 and P2, since none of the elements of P1 and P2 are adjacent,
by the proof of Theorem 3.2(2). Hence there is no cycle in Z∗(G(£)), and
so gr(Z∗(G(£))) =∞. Thus, suppose that |min(£)| ≥ 3. We show that for
each Pi ∈ min(£), |Pi| ≥ 3. If there exists a minimal prime ideal Pi of £
such that Pi = {0, x}, then, by the proof of Theorem 3.2(2), Pi ∩ Pj 6= {0}
for each Pj ∈ min(£). Hence Pi ∩ Pj = {0, x}, which implies Pi ⊆ Pj , a
contradiction. So |Pi| ≥ 3 for any minimal prime ideal Pi of £. If |Pi| ≥ 4 for
some Pi ∈ min(£), then Pi \{0} is a complete subgraph of Z∗(G(£)), and so
gr(Z∗(G(£))) = 3 . Now suppose that |Pi| = 3 for each minimal prime ideal
Pi of £, and set Pi = {0, x1, x2}. Since x1 6= 0, there exists a minimal prime
ideal Pj of £ such that x1 /∈ Pj , by Proposition 1.2. Hence Pi∩Pj = {0, x2},
since Pi ∩ Pj 6= {0}. As x2 6= 0, there exists Pj 6= Pk ∈ min(£) such that
x2 /∈ Pk; so Pi∩Pk = {0, x1}. On the other hand, Pk∩Pj 6= {0}, x2 ∈ Pj\Pk,
and x1 ∈ Pk \ Pj , and so there exists 0 6= x ∈ Z(£) such that x ∈ Pj ∩ Pk.
Thus Pj = {0, x1, x} and Pk = {0, x2, x}. So x1 − x − x2 − x1 is a cycle in
Z∗(G(£)) and gr(Z∗(G(£))) = 3.

(2) If diam(Z(G(£))) = 1, then Z(£) being an ideal of £ gives a ∨
b ∈ Z(£)∗ for each a, b ∈ Z(£)∗, which implies diam(Z∗(G(£))) = 1.
If diam(Z(G(£)) = 2, then there exist c, d ∈ Z(£)∗ such that c ∨ d /∈
Z(£)∗. By Theorem 3.2(2), there exists e ∈ Z(£)∗ such that c − e − d is
a path in Z∗(G(£)); hence diam(Z∗(G(£))) = 2. Thus diam(Z(G(£))) =
diam(Z∗(G(£))).

(3) By Proposition 2.1, £ is not an £-domain, and so |Z(£)| 6= 1, 2. If
|Z(£)| = 3, then gr(Z(G(£))) = ∞, by Theorem 2.5(2). Also |Z(£)∗| = 2
gives Z∗(G(£)) contains no cycle; so gr(Z∗(G(£))) =∞. Thus gr(Z(G(£))) =
gr(Z∗(G(£))). If |Z(£)| ≥ 6, then gr(Z(G(£))) = 3, by Theorem 2.5(3).
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Now we show that gr(Z∗(G(£))) = 3. If |min(£)| ≥ 3, then gr(Z∗(G(£))) =
3, by the proof of (1). If |min(£)| = 2 and P1, P2 are two minimal prime
ideals of £, then at least one of the P ,i s has more than 3 vertices, and thus
each Pi \ {0} is a complete subgraph of Z∗(G(£)); hence gr(Z∗(G(£))) = 3.
Therefore gr(Z(G(£))) = gr(Z∗(G(£))).

Proposition 3.6. Let £ be a lattice and min(£) be finite. Then the follow-
ing hold:

(1) There is no vertex of Z∗(G(£)) which is adjacent to every other vertex
of Z∗(G(£)).

(2) If Z∗(G(£)) is connected, then rad(Z∗(G(£))) = 2.

Proof. (1) Let x be a vertex of Z∗(G(£)) which is adjacent to every other
vertex of Z∗(G(£)). As x 6= 0, x 6∈ Pi for some Pi ∈ min(£). Let y ∈
Pi\

⋃
j 6=i,Pj∈min(£) Pj (by Remark 3.1, Pi\

⋃
j 6=i,Pj∈min(£) Pj 6= ∅). As x∨y ∈

Z(£), we have either x ∨ y ∈ Pi or x ∨ y ∈
⋃
j 6=i,Pj∈min(£) Pj . In two cases,

we have a contradiction. Hence, there is no vertex of Z∗(G(£)) which is
adjacent to every other vertex of Z∗(G(£)).

(2) By (1), e(x) 6= 1 for all x ∈ V (Z∗(G(£))). Therefore, rad(Z∗(G(£)))
is not equal to 1. As rad(Z∗(G(£))) ≤ diam(Z∗(G(£))) ≤ 2, we get
rad(Z∗(G(£))) = 2.

Theorem 3.7. Let £ be a lattice and min(£) be finite. Then we have
α(Z∗(G(£))) = |min(£)|.

Proof. Let min(£) = {P1, P2, ..., Pn}. For each 1 ≤ i ≤ n, let xi ∈
Pi \

⋃
j 6=i,Pj∈min(£) Pj . Set I = {x1, x2, ..., xn}. We will show that I is

an independent set. If xs ∨ xt ∈ Z(£) for some xs, xt ∈ I, where s 6= t, then
xs ∨ xt ∈ Pk for some 1 ≤ k ≤ n. This implies that xs ∈ Pk and xt ∈ Pk.
Hence s = t = k, a contradiction. Thus I is an independent set and so
α(Z∗(G(£))) ≥ n. Now, let α(Z∗(G(£))) = m and S = {y1, y2, ..., ym} be a
maximal independent set in Z∗(G(£)). If m > n, then by Pigeon hole prin-
ciple, there exist 1 ≤ i, j ≤ n and P ∈ min(£) such that yi, yj ∈ P . Hence
yi ∨ yj ∈ P ⊆ Z(£), a contradiction. Hence α(Z∗(G(£))) = |min(£)|.

The following example shows that the condition “min(£) is finite" is not
superficial in Proposition 3.6 and Theorem 3.7.
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Example 3.8. Consider the set N of natural numbers. Let £ = N∪{0} and
a, b ∈ £. We write a ≤ b if and only if a|b, that is, b = ac for some c ∈ £.
Then £ becomes a lattice with the smallest element 1, the greatest element 0,
and x∧y = gcd(x, y), x∨y = lcm(x, y). One can show that Z∗(£) = N and
the number of minimal prime ideals is infinite. However α(Z∗(G(£))) = 0
(because Z∗(G(£)) is complete). Moreover rad(Z∗(G(£))) = 1.
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