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On property (A) and the socle of the f-ring
Frm(P(R), L)

A.As. Estaji, E. Hashemi, and A.A. Estaji∗

Abstract. For a frame L, consider the f -ring FPL = Frm(P(R), L). In
this paper, first we show that each minimal ideal of FPL is a principal ideal
generated by fa, where a is an atom of L. Then we show that if L is an
FP -completely regular frame, then the socle of FPL consists of those f for
which coz(f) is a join of finitely many atoms. Also it is shown that not only
FPL has Property (A) but also if L has a finite number of atoms then the
residue class ring FPL/Soc(FPL) has Property (A).

1 Introduction

The socle of a ring R, denoted by Soc(R), is the ideal generated by the
minimal ideals of R. In [19], the authors showed that for a completely regular
Hausdorff space X, the socle of the ring C(X), which is denoted by CF (X),
is the ideal consisting of all functions which are zero everywhere except on a
finite number of points. In [8] it is shown that X is a P -space if and only if
C(X) is an ℵ0-selfinjective ring or, equivalently, if and only if C(X)/CF (X)
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is ℵ0-selfinjective (also see [1]). In [6, 7] the authors showed that the socle
of RL, the ring of real-valued continuous functions on a completely regular
frame L, is the ideal consisting of functions whose cozero elements are finite
joins of atoms of L which is a pointfree version of C(X).

Let L be a frame and F (L) := Frm(L(R),SL), where SL is the dual
of the co-frame of all sublocales of L. In [10], they showed that the lattice
ordered ring F (L) is a pointfree counterpart of the ring RX with X a topo-
logical space (also see [9, 11]). They thus have a pointfree analogue of the
concept of an arbitrary, not necessarily (semi) continuous, real function on
L. In [25], they showed that F (L) = C(Sc(L)) is always order complete,
where Sc(L) is a frame of closedly generated sublocales. Also, Karimi Feiz-
abadi et al. in [18] showed that FPL := Frm(P(R), L) is an f -ring, as a
generalization of all functions from a setX into R, because RX ∼= FP(P(X)).
Also, they showed that FPL is isomorphic to a sub-f -ring of R(L), the ring
of real-valued continuous functions on L.

One of the important properties of commutative Noetherian rings is that
the annihilator of an ideal I consisting entirely of zero-divisors is nonzero [17,
p.56]. However this result fails for some non-Noetherian ring, even if the
ideal I is finitely generated [17, p.63]. Huckaba and Keller [15] introduced
the following: A commutative ring R has Property (A) if every finitely gener-
ated ideal of R consisting entirely of zero-divisors has a nonzero annihilator.
Property (A) was originally studied by Quentel [26]. The class of commu-
tative rings with property (A) is quite large and has been studied by many
authors [2, 12, 14, 15]. Polynomial rings, rings whose classical ring of quo-
tionts is von Neumann regular, Noetherian rings [17, p. 56], and rings whose
prime ideals are maximal [12] are well known examples of rings in this class.
In [13], Hong et al. extend Property(A) to non-commutative rings as follows:
A ring R has right (left) Property (A) if every finitely generated tow-sided
ideal of R consisting entirely of left (right) zero-divisors has a right (left)
non-zero annihilator. A ring R is said to have Property (A) if R has right
and left Property (A).

In this paper, for the f -ring FPL, first we show that each minimal ideal
of FPL is a principal ideal generated by fa, where a is an atom of frame
L. Then we show that if L is an FP -completely regular frame, then the
socle of FPL consists of those f for which coz(f) is a join of finitely many
atoms. Also it is shown that not only FPL has Property (A) but also if L
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has a finite number of atoms then the residue class ring FPL/Soc(FPL) has
Property (A).

2 Preliminaries

For a general theory of frames we refer to [16, 24]. Here we collect a few
facts that will be relevant for our discussion. A frame is a complete lattice
L in which the infinite distributive law

x ∧∨S =
∨{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊆ L. We denote the top element and the bottom
element of L by > and ⊥, respectively. The frame of all subsets of a set
X is denoted by P (X). A frame homomorphism (or frame map) is a map
between frames which preserves finite meets, including the top element, and
arbitrary joins, including the bottom element.

Let L be a lattice and a ∈ L. Then a is said to be atom if a 6= ⊥
and there exists no element x with ⊥ < x < a. Also, an element a of
a frame L is said to be rather below an element b, written a ≺ b, in case
there is an element s, called a separating element, such that a ∧ s = ⊥ and
s ∨ b = >. On the other hand, a is completely below b, written a ≺≺ b, if
there are elements (cq) indexed by the rational numbers Q∩ [0, 1] such that
c0 = a, c1 = b, and cp ≺ cq for p < q. A frame L is said to be completely
regular if a =

∨{x ∈ L | x ≺≺ a} for each a ∈ L.
We denote the frame of reals and the ring of continuous of real-valued

functions on a completely regular frame L, by L(R) and RL, respectively.
Recall that RL is the collection of frame homomorphisms from L(R) into L
(see [3, 4]). The cozero map (see [4, 5] for details) is the map coz : RL→ L
given by

cozf =
∨
{f(p, 0) ∨ f(0, q) | p, q ∈ Q} = f((−∞, 0) ∨ (0,+∞)).

A cozero element of L in RL is an element of the form coz(α), for some
α ∈ RL. A frame L is completely regular if and only if Coz(RL) generates
L, where Coz(RL) = {coz(α) |α ∈ RL}.

A lattice-ordered ring (`-ring) is a commutative ring A with the identity
1 whose underlying set is endowed with a lattice ordering such that for each
a, b, c ∈ A, (a∧ b) + c = (a+ c)∧ (b+ c), and ab ≥ 0 , whenever a, b ≥ 0. An



64 A.As. Estaji, E. Hashemi, and A.A. Estaji

f -ring is an `-ring A which satisfies (a ∧ b)c = (ac) ∧ (bc) for any a, b ∈ A
and c ≥ 0 in A.

A real-valued function on a frame L is a frame homomorphism f :
P (R) → L, where one assumes (P (R),⊆) to be a Boolean frame. The
set of all real-valued functions on a frame L is denoted by FPL. In [18] the
authors showed that, the set FPL by operation � : R×R→ R is a sub-f -ring
of RL in which for all f, g ∈ FPL, f � g : P (R)→ L defined by

(f � g)(X) =
∨{f(Y ) ∧ g(Z) : Y � Z ⊂ X},

where � ∈ {+,−,∧,∨} and Y �Z = {y �z : y ∈ Y, z ∈ Z}. For any frame L,
the mapping FPL→ RL taking any f to f ◦ j is an f -ring monomorphism,
where j : L(R) → O(R) taking (p, q) to �p, q~:= {x ∈ R : p < x < q} is an
isomorphism (see [18, Theorem 6.1]).

The constant real-valued function on a frame L in FPL is

c(X) =

{
> if c ∈ X
⊥ if c 6∈ X ,

for every X ∈ P (R) and c ∈ R. According to [27], for every f ∈ FPL,
f({0}) is denoted by z(f) and is called a zero-element. Any element in L
which is a zero-element of some frame map in FPL is called a zero-element of
L. Thus, z is a mapping from the ring FPL onto the set of all zero-elements
in L. Also a cozero-element of L in FPL is defined by coz(f) := f(R \ {0})
for some f ∈ FPL. It is clear that z(f) = (coz(f))′. Now we recall some
properties of FPL which will be used in the sequel.

Theorem 2.1. [27] For every f, g ∈ FPL, we have
(1) for every n ∈ N, z(f) = z(−f) = z(|f |) = z(fn),
(2) z(fg) = z(f) ∨ z(g),
(3) z(f + g) ≥ z(f) ∧ z(g),
(4) z(f + g) = z(f) ∧ z(g), while f, g ≥ 0,
(5) z(f) = > if and only if f = 0,
(6) z(f) = ⊥ if and only if f is a unit element of FPL.

Proof. We prove the last assertion. Suppose that f is a unit of FPL. Then
there exists g ∈ FPL such that fg = 1. So by part (2), ⊥ = z(1) = z(fg) =
z(f) ∨ z(g), and hence z(f) = ⊥.
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Conversely, assume that f ∈ FPL and z(f) = ⊥. Define

g(X) :=
∨
{f{1

x
} | x ∈ X − {0}} .

We show that g belongs to FPL which is the multiplicative inverse of f in
FPL. The proof consists of four steps to check:
Step 1. The first step is verifying that g(R) = >. Since f{0} = ⊥, we have

g(R) =
∨{f{ 1

x} | x ∈ R− {0}}
= ⊥ ∨∨{f{ 1

x} | x ∈ R− {0}}
= f{0} ∨∨{f{ 1

x} | x ∈ R− {0}}
= f(R)

= >.

Step 2. Let {Xi}i∈I ⊆ P (R). If for all i, Xi = ∅ or {0}, then obviously,

g(
⋃

i∈I
Xi) = ⊥ =

∨

i∈I
g(Xi),

or else there is an i which Xi 6= ∅, {0}, then

g(
⋃
i∈I Xi) =

∨{f{ 1
x} | x ∈ (

⋃
i∈I Xi)− {0}}

=
∨{f{ 1

x} | x ∈
⋃
i∈I(Xi − {0})}

=
∨
i∈I
∨{f{ 1

x} | x ∈ Xi − {0}}
=

∨
i∈I g(Xi) .

Step 3. Let X,Y ∈ P (R). If X,Y ∈ {∅, {0}}, then obviously,

g(X ∩ Y ) = ⊥ = g(X) ∧ g(Y ),

or else we have

g(X ∩ Y ) =
∨{f{ 1

x} | x ∈ (X ∩ Y )− {0}}
=

∨{f{ 1
x} | x ∈ (X − {0}) ∩ (Y − {0})}

=
∨{f{ 1

x} ∧ f{ 1
y} | x ∈ X − {0}, y ∈ Y − {0}}

=
∨{f{ 1

x} | x ∈ X − {0}} ∧
∨{f{ 1

y} | y ∈ Y − {0}}
= g(X) ∧ g(Y ) .
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Step 4. In the last step, we show that fg = 1. We have

(fg)({1}) =
∨{f({x}) ∧ g({y}) | xy = 1}

=
∨{f({x}) ∧ g({ 1

x}) | 0 6= x ∈ R}
=

∨{f({x}) ∧ f({x}) | 0 6= x ∈ R}
=

∨{f({x}) | 0 6= x ∈ R}
= f({0})∨{f({x}) | 0 6= x ∈ R}
= f(R)

= >
and

(fg)({0}) =
∨{f({x}) ∧ g({y}) | xy = 0}

=
∨{f({x}) ∧ g({y}) | x = 0} ∨∨{f({x}) ∧ g({y}) | y = 0}

=
∨{⊥ ∧ g({y})} ∨∨{f({x}) ∧ ⊥}

= ⊥.

Also, if r 6= 0, 1, then

(fg)({r}) =
∨{f({x}) ∧ g({y}) | xy = r}

=
∨{f({x}) ∧ g({ rx}) | 0 6= x ∈ R}

=
∨{f({x}) ∧ f({xr }) | x 6= 0}

=
∨{f(∅) | x 6= 0}

= ⊥
and thus fg = 1. The proof is now complete.

3 On minimal ideals of FPL

We recall from [20, p. 63] that a minimal ideal of a reduced ring (a ring
without any nonzero nilpotent element) is generated by an idempotent. Fur-
thermore, if R is a reduced ring and e2 = e ∈ R, then eR is a minimal ideal
if and only if eR is a field with the multiplicative identity e. In this section,
we study minimal ideals of FPL and we show that if I is a minimal ideal of
FPL and a =

∨
f∈I coz(f) then I is generated by fa, where fa is introduced

in the following proposition.
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Proposition 3.1. Let a be a complemented element of the frame L. Then
fa : P (R)→ L, defined by

fa(X) =





> if 0, 1 ∈ X
a′ if 0 ∈ X and 1 6∈ X
a if 0 6∈ X and 1 ∈ X
⊥ if 0 6∈ X and 1 6∈ X,

is a real-valued function on L.

Proof. Let {Xλ : λ ∈ Λ} be a family of subsets of R. Then

fa(
⋃
λ∈ΛXλ) =





> if ∃λ1, λ2 ∈ Λ such that 0 ∈ Xλ1 and 1 ∈ Xλ2 ,

a′ if 0 ∈ Xλ and 1 6∈ Xλ, for every λ ∈ Λ,

a if 0 6∈ Xλ and 1 ∈ Xλ, for every λ ∈ Λ,

⊥ if 0 6∈ Xλ and 1 6∈ Xλ, for every λ ∈ Λ,

=
∨
λ∈Λ fa(Xλ).

A straightforward calculation shows that fa(A ∩ B) = fa(A) ∧ fa(B), for
every A,B ∈ P (R). Since fa(R) = > and fa(∅) = ⊥, we conclude that fa is
a real-valued function on L.

From now on, unless specified otherwise, fa denotes the real-valued func-
tion from the power set of R into L, defined in Proposition 3.1.

Proposition 3.2. Let a be a complemented element of L. Then f2
a = fa.

Proof. Let x be a nonzero element of R. Then

f2
a ({x}) =

∨
06=y∈R fa({y}) ∧ fa({xy})

=
∨

06=y∈R fa({y} ∩ {xy})

=

{
fa({1}) if x = 1,

⊥ if x 6= 1

= fa({x}).

Since z(f2
a ) = z(fa), we conclude that f2

a ({0}) = fa({0}). Hence f2
a =

fa.
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Proposition 3.3. Let a be a complemented element of L. Then for every
f ∈ FPL and X ∈ P (R),

ffa(X) =

{
a′ ∨ f(X) if 0 ∈ X,
a ∧ f(X) if 0 6∈ X.

Proof. By Theorem 2.1, we have

ffa({0}) = z(ffa) = z(f) ∨ z(fa) = f({0}) ∨ a′.
Now, let x be a nonzero element of R. Then

ffa({x}) =
∨

06=y∈R f({y}) ∧ fa({xy})
= f({x}) ∧ fa({1})
= f({x}) ∧ a.

We consider the following two cases:
Case 1: Let X ∈ P (R) with 0 ∈ X. Then

ffa(X) = ffa({0}) ∨ ffa(X \ {0})
= (f({0}) ∨ a′) ∨∨x∈X\{0} ffa({x})
= (f({0}) ∨ a′) ∨∨x∈X\{0} f({x}) ∧ a
= (f({0}) ∨ a′) ∨ (a ∧∨x∈X\{0} f({x}))
= (f({0}) ∨ a′) ∨ (a ∧ f(X \ {0}))
= (f({0}) ∨ a′ ∨ a) ∧ (f({0}) ∨ a′ ∨ f(X \ {0}))
= > ∧ (a′ ∨ f(X))

= a′ ∨ f(X).

Case 2: Let X ∈ P (R) with 0 6∈ X. Then

ffa(X) =
∨
x∈X ffa({x})

=
∨
x∈X f({x}) ∧ a

= a ∧∨x∈X f({x})
= a ∧ f(X).

Hence

ffa(X) =

{
a′ ∨ f(X) if 0 ∈ X,
a ∧ f(X) if 0 6∈ X,

for every X ⊆ R.
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For an element a of a frame L, let RFP (a) := {f ∈ FPL | coz(f) ≤ a}.
Clearly RFP (a) is an ideal of FPL.
Proposition 3.4. Let a be a complemented element of a frame L. Then
RFP (a) is a principal ideal generated by fa.

Proof. Suppose that 0 6= f ∈ RFP (a). Then coz(f) ≤ a and z(f) ≥ a′. Let
X ∈ P (R) with 0 ∈ X. Then a′ ≤ f({0}) ≤ f(X) and, using Proposition
3.3, we have

f(X) = a′ ∨ f(X) = ffa(X).

Now, we assume that X ∈ P (R) with 0 6∈ X. Since

f(X) ⊆ f(R \ {0}) = coz(f) ≤ a,

we conclude from Proposition 3.3 that f(X) = F (X) ∧ a = ffa(X). Hence
RFP (a) ⊆< fa >. Evidently, < fa >⊆ RFP (a) , since coz(fa) = a.

Remark 3.5. We have the following conclusions:
(1) RFP (>) = FPL and RFP (⊥) = (0).
(2) For each pair of complemented elements a, b ∈ L, fafb = fa∧b.
(3) fa + fa′ = 1.

Lemma 3.6. If a is an atom element of a frame L and 0 6= g ∈ RFP (a),
then h : P (R)→ L defined by

h(X) =

{
a′ ∨∨06=x∈X g({ 1

x}) if 0 ∈ X,
a ∧∨x∈X g({ 1

x}) if 0 6∈ X,

is a real-valued function on L.

Proof. Let {Xλ : λ ∈ Λ} be a family of subsets of R. We put Λ0 := {λ ∈
Λ | 0 ∈ Xλ} and Λ1 := {λ ∈ Λ | 0 6∈ Xλ}. Then
∨
λ∈Λ h(Xλ) =

∨
λ∈Λ0

h(Xλ) ∨∨λ∈Λ1
h(Xλ)

=
∨
λ∈Λ0

(a′ ∨∨06=x∈Xλ g({ 1
x})) ∨

∨
λ∈Λ1

(a ∧∨x∈Xλ g({ 1
x}))

= (a′ ∨∨λ∈Λ0

∨
06=x∈Xλ g{

1
x}) ∨ (a ∧∨λ∈Λ1

∨
x∈Xλ g{

1
x})

= (a′ ∨∨06=x∈⋃λ∈Λ0
Xλ
g{ 1

x}) ∨ (a ∧∨x∈⋃λ∈Λ1
Xλ
g{ 1

x})
= (a′ ∨∨06=x∈⋃λ∈Λ0

Xλ
g{ 1

x} ∨ a) ∧ (a′ ∨∨06=x∈⋃λ∈ΛXλ
g{ 1

x})
= h(

⋃
λ∈ΛXλ).
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Assume that A,B ∈ P (R). If 0 6∈ A and 0 6∈ B, then

h(A) ∧ h(B) = (a ∧∨x∈A g({ 1
x})) ∧ (a ∧∨y∈B g({ 1

y}))
= a ∧∨x∈A,y∈B(g({ 1

x}) ∧ g({ 1
y}))

= a ∧∨x∈A,y∈B(g({ 1
x} ∩ { 1

y}))
= a ∧∨x∈A∩B g({ 1

x})
= h(A ∩B).

If 0 ∈ A and 0 6∈ B, then

h(A) ∧ h(B) = (a′ ∨∨0 6=x∈A g({ 1
x})) ∧ (a ∧∨y∈B g({ 1

y}))
= (a′ ∧ a ∧∨y∈B g{ 1

y}) ∨ (a ∧∨06=x∈A,y∈B g({ 1
x} ∩ { 1

y}))
= a ∧∨x∈A∩B g({ 1

x})
= h(A ∩B).

If 0 ∈ A and 0 ∈ B, then

h(A) ∧ h(B) = (a′ ∨∨06=x∈A g({ 1
x})) ∧ (a′ ∨∨06=y∈B g({ 1

y}))
= a′ ∨ (

∨
06=x∈A g({ 1

x}) ∧
∨

06=y∈B g({ 1
y}))

= a′ ∨∨06=x∈A,06=y∈B g({ 1
x} ∩ { 1

y})
= a′ ∨∨06=x∈A∩B g({ 1

x})
= h(A ∩B).

Therefore, h(A ∩ B) = h(A) ∧ h(B), for every A,B ∈ P (R). Also, since a
is an atom element of L and ⊥ < coz(g) ≤ a, we conclude that coz(g) = a.
Finaly, from

h(R) = a′ ∨
∨

06=x∈A
g({1

x
}) = a′ ∨ coz(g) = a′ ∨ a = >

and
h(∅) = a ∧

∨

x∈∅
g({1

x
}) = a ∧ ⊥ = ⊥,

we infer that h is a real-valued function on L.

Lemma 3.7. Let a be an atom element of a frame L and 0 6= g ∈ RFP (a).
If h ∈ RFP (a) is the same function of Lemma 3.6, then hg = fa.
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Proof. Let X be a subset of R. If {0, 1} ⊆ X, then

hg(X) = hg({0}) ∨ hg({1}) ∨ hg(X \ {0, 1})
= (h{0} ∨ g{0}) ∨ (

∨
06=x∈R(h{x} ∧ g{ 1

x})) ∨ hg(X \ {0, 1})
= (a′ ∨ a′) ∨ (

∨
06=x∈R(a ∧ g{ 1

x} ∧ g{ 1
x})) ∨ hg(X \ {0, 1})

= a′ ∨ (a ∧∨06=x∈R g{ 1
x}) ∨ hg(X \ {0, 1})

= a′ ∨ (a ∧ coz(g)) ∨ hg(X \ {0, 1})
= a′ ∨ a ∨ hg(X \ {0, 1})
= >
= fa(X).

If 0 ∈ X and 1 6∈ X, then

hg(X) = hg({0}) ∨ hg(X \ {0})
= (h({0}) ∨ g({0})) ∨ (

∨
06=xy∈X(h({x}) ∧ g({y})))

= a′ ∨ (
∨

06=x∈R(a ∧ g({ 1
x}) ∧ g({y})))

= a′ ∨ (
∨

06=x∈R(a ∧ g({ 1
x} ∩ {y})))

= a′ ∨ (a ∧ ⊥)

= a′

= fa(X).

If 0 6∈ X and 1 ∈ X, then

hg(X) = hg({1}) ∨ hg(X \ {1})
= (

∨
06=x∈R(h({x}) ∧ g({ 1

x}))) ∨ (
∨

16=xy∈X(h({x}) ∧ g({y})))
= (

∨
06=x∈R(a ∧ g{ 1

x} ∧ g{ 1
x})) ∨ (

∨
16=xy∈X(a ∧ g{ 1

x} ∧ g{y}))
= (a ∧∨06=x∈R(g({ 1

x}))) ∨ (
∨

16=xy∈X(a ∧ g({ 1
x} ∩ {y})))

= (a ∧ coz(g)) ∨ (
∨

16=xy∈X(a ∧ ⊥))

= a

= fa(X).



72 A.As. Estaji, E. Hashemi, and A.A. Estaji

If 0 6∈ X and 1 6∈ X, then

hg(X) =
∨
xy∈X(h({x}) ∧ g({y}))

=
∨
xy∈X(a ∧ g({ 1

x}) ∧ g({y}))
=

∨
xy∈X(a ∧ g({ 1

x} ∩ {y}))
=

∨
xy∈X(a ∧ ⊥)

= ⊥
= fa(X).

Hence hg = fa.

Proposition 3.8. Let a be an atom of a frame L. Then RFP (a) is a minimal
ideal of FPL.

Proof. By Lemmas 3.6 and 3.7, RFP (a) is a field with the multiplicative
identity fa. Hence, by Propositions 3.2 and 3.4, RFP (a) is a minimal ideal
of FPL.

Let R be a commutative ring with unit. We let M denote its maximal
ideal space of R and put M (a) = {M ∈ M | a ∈ M} for all a ∈ R. An
ideal I of R is called a z-ideal if M (a) = M (b) and a ∈ I, then b ∈ I.
Equivalently, since M (a) ⊆M (b) if and only if M (ab) = M (b), hence I is
a z-ideal if and only if M (a) ⊆M (b) and a ∈ I implies b ∈ I (see [23]). It
is well known that if R has minimal nonzero ideals, then they are z-ideals
(see [23]).

Lemma 3.9. Let I be a minimal ideal of FPL. Then I = RFP (a), for some
complemented element a of L.

Proof. Clearly every minimal ideal of FPL is generated by an idempotent.
Hence there exists an idempotent e ∈ I such that I = eFPL. Now consider
a = coz(e). Since I is a z-ideal and z(fa) = a′ = z(e), we conclude that
fa ∈ I. Proposition 3.4 insures that RFP (a) ⊆ I and the minimality of I
implies that I = RFP (a).

Definition 3.10. A frame L is called an FP -completely regular frame pro-
vided there exists A ⊆ FP such that a =

∨
f∈A coz(f), for every a ∈ L.
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If L is an FP -completely regular frame and a ∈ L, then there exists
A ⊆ FP such that a =

∨
f∈A coz(f) =

∨
f∈A coz(f ◦ j), which shows that L

is a completely regular frame.

Proposition 3.11. Let L be an FP-completely regular frame. Then for an
ideal I of FPL, the following statements are equivalent.

(1) The ideal I is a minimal ideal of FPL.
(2) I = RFP (a), for some atom a of L.

Proof. (1)⇒(2) There exists a complemented element a of L such that I =
RFP (a), by Lemma 3.9. Suppose that there exists s ∈ L such that ⊥ <
s ≤ a. Since L is an FP -completely regular frame, we conclude that there
exists g ∈ FPL such that ⊥ < coz(g) ≤ s ≤ a, which shows that 0 6= g ∈ I,
and so I =< g >, because I is a minimal ideal of FPL. Hence there exists
h ∈ FPL such that fa = hg, which implies that a = coz(fa) ≤ coz(g) and
so coz(g) = s = a. Therefore, a is an atom and I = RFP (a).

(2)⇒(1) By Proposition 3.8, it is evident.

4 On Property (A) of FPL

Recall that a commutative ring R has Property (A) if every finitely generated
ideal of R consisting entirely of zero-divisors has a nonzero annihilator. In [2]
the authors showed that C(X) has Property (A). In this section, we show
that (i) FPL has Property (A), (ii) if L has a finite number of atoms, then
the residue class ring FPL/Soc(FPL) has Property (A).

Proposition 4.1. Let L be a frame. Then f -ring FPL has Property (A).

Proof. Let I =
∑n

i=1 fiFPL ⊆ Z(FPL). Since f =
∑n

i=1 f
2
i ∈ I, we con-

clude that there exists 0 < g ∈ FPL such that fg = 0, which shows that
coz(fg) = ⊥. Let h =

∑n
i=1 fihi ∈ I. Then

coz(hg) = coz(
∑n

i=1 fihig)

≤ ∨n
i=1 coz(|fi||hi|g)

≤ ∨n
i=1 coz(f

2
i g)

= coz(
∑n

i=1 f
2
i g)

= coz(fg)

= ⊥.
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Hence hg = 0, which implies that g ∈ Ann(I). Therefore, FPL has Property
(A).

Lemma 4.2. Let a1, . . . , an be disjoint atomic elements of a frame L. Then
for every f ∈ FPL and X ∈ P (R),

n∑

i=1

ffai(X) =

{
(
∧n
i=1 a

′
i) ∨ f(X) if 0 ∈ X,

(
∨n
i=1 ai) ∧ f(X) if 0 6∈ X.

Proof. We prove it by induction on the number of complemented elements.
For n = 1, it follows from Proposition 3.3. For n > 1 let g =

∑n−1
i=1 ffai .

Then

g({0})∧ffan({0}) = [(
∧n−1
i=1 a

′
i)∨f({0})]∧[a′n∨f({0})] = (

∧n
i=1 a

′
i)∨f({0}),

g({x}) ∧ ffan({0}) = [(
∨n−1
i=1 ai) ∧ f({x})] ∧ [a′n ∨ f({0})]

= [(
∨n−1
i=1 ai) ∧ f{x} ∧ a′n] ∨ [(

∨n−1
i=1 ai) ∧ f{x} ∧ f{0}]

= (
∨n−1
i=1 ai) ∧ f({x}),

g({0}) ∧ ffan({x}) = [(
∧n−1
i=1 a

′
i) ∨ f({0})] ∧ [an ∧ f({x})]

= [(
∧n−1
i=1 a

′
i) ∧ an ∧ f({x})] ∨ [f({0}) ∧ an ∧ f({x})]

= an ∧ f({x}),
for every 0 6= x ∈ R. Also if x, y ∈ R with y 6= 0 6= x, then

g({x}) ∧ ffan({y}) = [(

n−1∨

i=1

ai) ∧ f({x})] ∧ [an ∧ f({y})] = ⊥.

Hence

(g+ffan)({0}) =
∨

x∈R
g{x}∧ffan({−x}) = g{0}∧ffan({0}) = (

n∧

i=1

a′i)∨f{0}

and

(g + ffan)({x}) =
∨
y∈R g({y}) ∧ ffan({x− y})

= [g({0}) ∧ ffan({x})] ∨ [g({x}) ∧ ffan({0})]
= [an ∧ f({x})] ∨ [(

∨n−1
i=1 ai) ∧ f({x})]

= (
∨n
i=1 ai) ∧ f({x}).
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Thus if 0 ∈ X ⊆ R, then

(
∑n

i=1 ffai)(X) = (g + ffan)({0}) ∨∨06=x∈X(g + ffan)({x})
= [(

∧n
i=1 a

′
i) ∨ f({0})] ∨∨06=x∈X [(

∨n
i=1 ai) ∧ f({x})]

= [(
∧n
i=1 a

′
i) ∨ f({0})] ∨ [(

∨n
i=1 ai) ∧

∨
06=x∈X f({x})]

= (
∧n
i=1 a

′
i) ∨ f(X),

and if 0 6∈ X ⊆ R, then

(
n∑

i=1

ffai)(X) =
∨

x∈X
(g+ffan)({x}) =

∨

x∈X
[(

n∨

i=1

ai)∧f({x})] = (
n∨

i=1

ai)∧f(X).

This completes the induction.

Corollary 4.3. Let a1, . . . , an be disjoint atomic elements of a frame L.
Then for every f ∈ FPL and X ∈ P (R),

n∑

i=1

fai = fb,

where b =
∨n
i=1 ai.

Proof. Consider b =
∨n
i=1 ai. Hence

(
n∑

i=1

fai)(A) =

{
1(A) ∨ b′ if 0 ∈ A,
1(A) ∧ b if 0 6∈ A, = fb(A),

for all A ⊆ R.

Proposition 4.4. Let L be an FP-completely regular frame. Then the socle
of FPL consists of those f for which coz(f) is a join of finitely many atoms.

Proof. If Soc(FPL) = 0, then there is nothing to prove. Now suppose that
it is nonzero. If f ∈ Soc(FPL), then there exist atoms a1, . . . , ak ∈ L and
f1, . . . , fi ∈ FPL such that

f = f1fa1 + f2fa2 + · · ·+ fkfak ,
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by Propositions 3.4 and 3.11, which implies that coz(f) ≤ ∨k
i=1 ai. Con-

sequently, coz(f) =
∨k
i=1 ai ∧ coz(f). Since each ai is an atom, hence

ai ∧ coz(f) = 0 or ai, which implies that coz(f) is a join of finitely many
atoms.

Conversely, suppose that coz(f) =
∨k
i=1 ai, where each ai is an atom.

By Propositions 3.4 and 3.11, RFP (ai) is a minimal ideal generated by fai .
If 0 6∈ X ⊆ R, then, by Lemma 4.2, we have

(
n∑

i=1

ffai)(X) = (
n∨

i=1

ai) ∧ f(X) = f(X),

since f(X) ≤ coz(f). If 0 ∈ X ⊆ R, then

(

n∑

i=1

ffai)(X) = ((

n∑

i=1

ffai)(R \X))′ = (f(R \X))′ = f(X).

Hence f =
∑n

i=1 ffai ∈
∑n

i=1 RFP (ai) ⊆ Soc(FPL).

An element f of FPL is said to be bounded if |f | ≤ n, for some n ∈ N.
The set of all bounded real-valued functions on a frame L is denoted by
F∗PL.

Proposition 4.5. For f ∈ FPL, the following statements are equivalent.
(1) f ∈ F∗PL.
(2) f(�p, q~) = > for some p, q ∈ Q with p < q.
(3) f((−∞, p~∪ �q,+∞)) = ⊥ for some p, q ∈ Q with p < q.

Proof. Straightforward.

Proposition 4.6. Let L be an FP-completely regular frame. Then every
minimal ideal of FPL consists entirely of bounded functions.

Proof. Let I be a minimal ideal of FPL and f ∈ I. Then there exists an atom
element a of L such that I = RFP (a), by Proposition 3.11. Since f = ffa, we
conclude from Proposition 3.3 that f(�−n, n~) = a′∨f(�−n, n~), for all n ∈
N. The maximality of a′ insures that a′ = f(�−n, n~) or f(�−n, n~) = >. If
a′ = f(�− n, n~) for all n ∈ N, then > = f(R) =

∨
f(�− n, n~) = a′, which

is a contradiction. Therefore there exists n ∈ N such that f(�− n, n~) = >.
Hence f ∈ F∗PL, by Proposition 4.5.
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Corollary 4.7. If L is an FP-completely regular frame, then Soc(FPL) =
Soc(F∗PL).

Proof. Since FP is a reduced f -ring with bounded inversion, then
Soc(FPL) = Soc(F∗PL), by [6, Proposition 3.2] and Proposition 4.6.

Proposition 4.8. Let L be an FP-completely regular frame. If L has a
finite number of atoms, then the following statements hold.

(1) The residue class ring FPL/Soc(FPL) has Property (A).
(2) The residue class ring F∗PL/Soc(FPL) has Property (A).

Proof. (1) Let A = {a1, . . . , an} be the set of all atoms in L. Then

Soc(FPL) =
n∑

i=1

RFP (ai) =
n∑

i=1

faiFPL,

by Propositions 3.4 and 3.11. For every f ∈ FPL, put f̄ = f + Soc(FPL).
Let I = 〈f̄1, . . . , f̄n〉 be a finitely generated ideal of FPL/Soc(FPL) entirely
of zero-divisors. Consider f =

∑n
i=1 f

2
i . Since f̄ =

∑n
i=1 f̄i

2 ∈ I, we
conclude that there exists 0 < g ∈ FPL such that f̄ ḡ = 0 and ḡ 6= 0.
Then coz(fg) =

∨r
j=1 aij , for some ai1 , . . . , air ∈ A. Consider b =

∧n
i=1 a

′
i.

We claim that 0 6= f̄bḡ ∈ Ann(I). If coz(fbg) ≤ ∨n
i=1 ai, then

coz(fbg) = coz(fbg) ∧
n∨

i=1

ai = b ∧ coz(g) ∧
n∨

i=1

ai = ⊥,

which follows that coz(g) ≤ z(fb) =
∨n
i=1 ai. Hence g ∈ Soc(FPL), which is

a contradiction. Thus 0 6= f̄bḡ.
Let h =

∑n
i=1 fihi. Then

coz(hfbg) = coz(
∑n

i=1 fihifbg)

≤ ∨n
i=1 coz(|fi||hi|fbg)

≤ ∨n
i=1 coz(f

2
i fbg)

= coz(
∑n

i=1 f
2
i fbg)

= coz(fgfb)

≤ ∨r
j=1 aij ∧

∧n
i=1 a

′
i

= ⊥.
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Hence h̄f̄bḡ = 0, which implies that f̄bḡ ∈ Ann(I). Therefore FPL/Soc(FPL)
has Property (A).

(2) By a similar argument as used in the proof of item (1), one can prove
it.
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