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On property (A) and the socle of the f-ring
Frm(P(R), L)

A.As. Estaji, E. Hashemi, and A.A. Estaji*

Abstract. For a frame L, consider the f-ring FpL = Frm(P(R),L). In
this paper, first we show that each minimal ideal of Fp L is a principal ideal
generated by f., where a is an atom of L. Then we show that if L is an
Fp-completely regular frame, then the socle of Fp L consists of those f for
which coz(f) is a join of finitely many atoms. Also it is shown that not only
FpL has Property (A) but also if L has a finite number of atoms then the
residue class ring FpL/Soc(FpL) has Property (A).

1 Introduction

The socle of a ring R, denoted by Soc(R), is the ideal generated by the
minimal ideals of R. In [19], the authors showed that for a completely regular
Hausdorff space X, the socle of the ring C'(X), which is denoted by Cr(X),
is the ideal consisting of all functions which are zero everywhere except on a
finite number of points. In [8] it is shown that X is a P-space if and only if
C(X) is an Ny-selfinjective ring or, equivalently, if and only if C'(X)/Cr(X)
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is No-selfinjective (also see [1]). In [6, 7] the authors showed that the socle
of RL, the ring of real-valued continuous functions on a completely regular
frame L, is the ideal consisting of functions whose cozero elements are finite
joins of atoms of L which is a pointfree version of C'(X).

Let L be a frame and F(L) := Frm(L(R),SL), where SL is the dual
of the co-frame of all sublocales of L. In [10], they showed that the lattice
ordered ring F(L) is a pointfree counterpart of the ring R* with X a topo-
logical space (also see |9, 11]). They thus have a pointfree analogue of the
concept of an arbitrary, not necessarily (semi) continuous, real function on
L. In |25], they showed that F(L) = C(S.(L)) is always order complete,
where S¢(L) is a frame of closedly generated sublocales. Also, Karimi Feiz-
abadi et al. in [18| showed that FpL := Frm(P(R),L) is an f-ring, as a
generalization of all functions from a set X into R, because R = Fp(P(X)).
Also, they showed that FpL is isomorphic to a sub-f-ring of R(L), the ring
of real-valued continuous functions on L.

One of the important properties of commutative Noetherian rings is that
the annihilator of an ideal I consisting entirely of zero-divisors is nonzero [17,
p.56]. However this result fails for some non-Noetherian ring, even if the
ideal I is finitely generated [17, p.63]. Huckaba and Keller [15] introduced
the following: A commutative ring R has Property (A) if every finitely gener-
ated ideal of R consisting entirely of zero-divisors has a nonzero annihilator.
Property (A) was originally studied by Quentel [26]. The class of commu-
tative rings with property (A) is quite large and has been studied by many
authors [2, 12, 14, 15|. Polynomial rings, rings whose classical ring of quo-
tionts is von Neumann regular, Noetherian rings [17, p. 56|, and rings whose
prime ideals are maximal [12] are well known examples of rings in this class.
In [13], Hong et al. extend Property(A) to non-commutative rings as follows:
A ring R has right (left) Property (A) if every finitely generated tow-sided
ideal of R consisting entirely of left (right) zero-divisors has a right (left)
non-zero annihilator. A ring R is said to have Property (A) if R has right
and left Property (A).

In this paper, for the f-ring FpL, first we show that each minimal ideal
of FpL is a principal ideal generated by f,, where a is an atom of frame
L. Then we show that if L is an Fp-completely regular frame, then the
socle of FpL consists of those f for which coz(f) is a join of finitely many
atoms. Also it is shown that not only FpL has Property (A) but also if L
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has a finite number of atoms then the residue class ring FpL/Soc(FpL) has
Property (A).

2  Preliminaries

For a general theory of frames we refer to [16, 24]. Here we collect a few
facts that will be relevant for our discussion. A frame is a complete lattice
L in which the infinite distributive law

e AV S=V{zAs:seS}

holds for all z € L and S C L. We denote the top element and the bottom
element of L by T and L, respectively. The frame of all subsets of a set
X is denoted by P(X). A frame homomorphism (or frame map) is a map
between frames which preserves finite meets, including the top element, and
arbitrary joins, including the bottom element.

Let L be a lattice and a € L. Then a is said to be atom if a # L
and there exists no element x with 1L < z < a. Also, an element a of
a frame L is said to be rather below an element b, written a < b, in case
there is an element s, called a separating element, such that a A s = 1 and
sV b= T. On the other hand, a is completely below b, written a << b, if
there are elements (cq) indexed by the rational numbers Q N[0, 1] such that
co =a, cg = b, and ¢, < ¢4 for p < ¢q. A frame L is said to be completely
regular if a = \/{z € L | + << a} for each a € L.

We denote the frame of reals and the ring of continuous of real-valued
functions on a completely regular frame L, by £(R) and RL, respectively.
Recall that RL is the collection of frame homomorphisms from £(R) into L
(see [3, 4]). The cozero map (see [4, 5] for details) is the map coz : RL — L
given by

cozf = \/{f(,0) V f(0,9) | p,q € Q} = f((—00,0) V (0, +00)).

A cozero element of L in RL is an element of the form coz(a), for some
a € RL. A frame L is completely regular if and only if Coz(RL) generates
L, where Coz(RL) = {coz(a) | € RL}.

A lattice-ordered ring ({-ring) is a commutative ring A with the identity
1 whose underlying set is endowed with a lattice ordering such that for each
a,b,c€ A, (anb)+c=(a+c)A(b+c), and ab > 0, whenever a,b > 0. An
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f-ring is an ¢-ring A which satisfies (a A b)c = (ac) A (be) for any a,b € A
and ¢ > 01in A.

A real-valued function on a frame L is a frame homomorphism f :
P(R) — L, where one assumes (P(R),C) to be a Boolean frame. The
set of all real-valued functions on a frame L is denoted by FpL. In [18] the
authors showed that, the set FpL by operation ¢ : RxR — R is a sub- f-ring
of RL in which for all f,g € FpL, fog: P(R) — L defined by

(fog)(X) =V{f(Y)ng(2): Y o Z C X},

where o € {+,—,A\,V}and Yo Z ={ycoz:y €Y, z € Z}. For any frame L,
the mapping FpL — RL taking any f to fojis an f-ring monomorphism,
where j : L(R) — O(R) taking (p,q) to Ip,ql:={z € R:p <z < ¢} is an
isomorphism (see [18, Theorem 6.1]).

The constant real-valued function on a frame L in FpL is

T ifeeX
X)=9 | ifeex,

for every X € P(R) and ¢ € R. According to [27], for every f € FpL,
f({0}) is denoted by z(f) and is called a zero-element. Any element in L
which is a zero-element of some frame map in Fp L is called a zero-element of
L. Thus, z is a mapping from the ring Fp L onto the set of all zero-elements
in L. Also a cozero-element of L in FpL is defined by coz(f) = f(R\ {0})
for some f € FpL. It is clear that z(f) = (coz(f))’. Now we recall some
properties of FpL which will be used in the sequel.

Theorem 2.1. [27] For every f,g € FpL, we have
(1) for every n €N, 2(f) = z(—f) = 2(|f]) = =(f"),
(2) 2(fg) = 2(f) v 2(9),
(3) 2(f +g) = 2(f) N z(9),
(4) 2(f +9) = z(f) N z(g), while f,g >0,
253 z2(f) =T if and only if f =0,

6) z(f) = L if and only if [ is a unit element of FpL.

Proof. We prove the last assertion. Suppose that f is a unit of FpL. Then
there exists g € FpL such that fg = 1. So by part (2), L = z(1) = 2(fg) =
z(f) V z(g), and hence z(f) = L.
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Conversely, assume that f € FpL and z(f) = L. Define

o(X) =\/{f} |z € X~ {0}}.

We show that g belongs to FpL which is the multiplicative inverse of f in
FpL. The proof consists of four steps to check:
Step 1. The first step is verifying that g(R) = T. Since f{0} = L, we have

g®) = V{f{z} =z eR-{0}}
= LvV{f{i} [z eR-{0}}
= Hop vV} 2 eR—{0}}
= f(R)
= T.

Step 2. Let {X;}ier € P(R). If for all 4, X; = 0) or {0}, then obviously,
gl Xi) =1L =\ g(X),
icl el
or else there is an ¢ which X; # 0, {0}, then

9Uier Xi) = V{f{z} [z € (Uies Xi) — {0}}
= VI {3}z € Ui (Xi = {0})}
= Vi VIf{3} |z € Xi — {0}}
= \/z‘elg(Xi)'
Step 3. Let X,Y € P(R). If X,Y € {0, {0}}, then obviously,
g(XNY)=_1=g(X)ngY),
or else we have
g(XnY) = V{f{3}lze(XnY)—{0}}
= V{f {3}z e (X —{0})n(¥Y —{0})}
= VIrZia iy} lee X —{0},y e Y —{0}}

= VIfZ e e X — {0 AV{f{;} lyeY —{0}}
= 9(X)Ag(Y).
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Step 4. In the last step, we show that fg = 1. We have

(Ffo9{1}) = V{f{azh) Ag({y}) 2y =1}
= V{f{zh Ang{z}) |0 # 2 e R}
= V{/{z) A f({z}) [0 # 2 € R}
= VU/({z}) [ 0#z € R}
= JHOHV{f{z}) |0 #z e R}
= f(R)
= T

and

(f9){0}) = V{f{z}) Ag({y}) [ zy =0}
= VIf{zh) Ag({yd) 2 =0} vV{f({z}) Ag({y}) [y = 0}

= Vit Ag{yh} v V{r{ep) A L}
= L

Also, if r # 0,1, then

(f9){rh) = V{f({=zh) Ag({y}) | ey =7}
= V{f{zp) Ag({31) [0# 2 e R}
= Vif{e) A f{3h) [ = # 0}
= V{f(0) [z #0}
= 1
and thus fg = 1. The proof is now complete. O

3 On minimal ideals of FpL

We recall from [20, p. 63| that a minimal ideal of a reduced ring (a ring
without any nonzero nilpotent element) is generated by an idempotent. Fur-
thermore, if R is a reduced ring and e? = e € R, then eR is a minimal ideal
if and only if eR is a field with the multiplicative identity e. In this section,
we study minimal ideals of FpL and we show that if I is a minimal ideal of
FpL and a =\ yc;coz(f) then I is generated by fu, where f, is introduced
in the following proposition.
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Proposition 3.1. Let a be a complemented element of the frame L. Then
fa: P(R) — L, defined by

T if0,1eX
a if0eXandlgX
faX) =9 if0e€X andle X

1L 00X andl g X,

is a real-valued function on L.

Proof. Let {X) : A € A} be a family of subsets of R. Then

T if 93X, A2 € A such that 0 € X, and 1 € X,,
a if 0€ X, and 1 & X, for every A € A,
a if 0¢€ X, and 1 € X, for every A € A,
1 if 0 Xy and 1 & X, for every A € A,
= \//\EA fa(X/\)-
A straightforward calculation shows that f,(A N B) = fo(A) A fo(B), for
0)

every A, B € P(R). Since f,(R) =T and f,(0) = L, we conclude that f, is
a real-valued function on L. O

fa(U)\eA X3)

From now on, unless specified otherwise, f, denotes the real-valued func-
tion from the power set of R into L, defined in Proposition 3.1.

Proposition 3.2. Let a be a complemented element of L. Then f2 = f,.

Proof. Let x be a nonzero element of R. Then

fald@}) = Voryer fa{yh) A fal{5})

= \/o;éyeR fa{y}n {%})
o fa({l}) ifz=1,
] L if  #1
= fa({z}).

Since z(f2?) = 2(f.), we conclude that f2({0}) = f.({0}). Hence f2 =
fa- O
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Proposition 3.3. Let a be a complemented element of L.
feFpL and X € P(R),

[ dVviX) ifoeX,
ffa(X)_{a/\f(X) if0 ¢ X.

Proof. By Theorem 2.1, we have
ffa({o}) = z(ffa) - z(f) v Z(fa) - f({O}) v

Now, let z be a nonzero element of R. Then

FRa{a)) = Vosyen SN A L{ED)
— f{a)) A L))
— f{z}) A

We consider the following two cases:
Case 1: Let X € P(R) with 0 € X. Then

FR(X) = FRUODV F(X\{0})

= (JHO) V)V V,exi oy Fall})
{OD V&)V V,ex oy F({2}) Aa
{0V @) V (@A Vyexyop SH2D)
{0 va)v
({0})

(f
(f
(f({0} (@A FX\{0}))
(f

TA(dV f(X))
= dV f(X).
Case 2: Let X € P(R) with 0 ¢ X. Then

flaX) = Viex ffa({z})
= Vieex f({z}) Aa
= aAVpex f({2})
= aA f(X).

Hence
avVvf(X) if0eX,

ff“(X):{ anf(X) if0¢X,

for every X C R.

Then for every

{0y va'va) A (f({0}) Va'V F(X\{0}))
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For an element a of a frame L, let Rz, (a) := {f € FpL|coz(f) < a}.
Clearly Rz, (a) is an ideal of FpL.

Proposition 3.4. Let a be a complemented element of a frame L. Then
Rz, (a) is a principal ideal generated by f,.

Proof. Suppose that 0 # f € Rr,(a). Then coz(f) < a and z(f) > a’. Let
X € P(R) with 0 € X. Then ¢’ < f({0}) < f(X) and, using Proposition
3.3, we have

f(X)=a'V f(X) = ffa(X).
Now, we assume that X € P(R) with 0 ¢ X. Since

f(X) € F(R\A{O}) = coz(f) < a,
we conclude from Proposition 3.3 that f(X) = F(X) Aa = ff,(X). Hence
Rz, (a) C< fo >. Evidently, < f, >C Rz, (a) , since coz(f,) = a. O

Remark 3.5. We have the following conclusions:
(1) Rr,(T) = FpL and Rx, (L) = (0).
(2) For each pair of complemented elements a,b € L, fofp = farp-

(3) fa+ far =1

Lemma 3.6. If a is an atom element of a frame L and 0 # g € Rr,(a),
then h : P(R) — L defined by

] dVVosex9{3)) if0eX,
" _{ aAVpex9({2})  ifOEX,

is a real-valued function on L.

Proof. Let {X : A € A} be a family of subsets of R. We put Ay := {\ €
Al0e Xy} and Ay :={A € A|0 & X,}. Then

Vaea HXN) = Vaea, MXN) V Vien, MXN)
= Vieno @V Vorwex, S{EN)V Viaen, (@ A Vex, 9{3)
= (@' V' Vea, Voreex, {31 V (@A Vien, Vaex, 931
= @V Ve, 0 9DV @AV x93
= (a’ \ \/o;&meUAGAO Xy 9{%} Va) A (a’ \4 \/o;&er%A Xy 9{%})
= h(Uxea Xn)-
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Assume that A, B € P(R). If 0 ¢ A and 0 ¢ B, then

h(A)AR(B) = (aAVuea 9z A @A Vyep a({y 1)
= aAVeayes@{zhH) Ag({5})
= aMVeenyeslo{zN{})
= aAl \/xeAmB 9({%})
= h(ANB).
If0€ Aand 0 ¢ B, then

h(A) AR(B) = (a'V Vozea 9z D) A (@A Vyep 9({51)
= (@ NaAV,yepa{yH) V(@A Voseayen 9z N D)
= aAVeeanp9({z})
= h(ANB).
If 0 € A and 0 € B, then

hWA)AWB) = (a'V Vorea {3 D) A @V Voryen 9{31)
@'V (Vogzea 943D A Voryen 945 1)

= ' VVoseaomen {3 N{;1)

= @'V Voszeann 9z}

= h(ANB).

Therefore, h(A N B) = h(A) A h(B), for every A, B € P(R). Also, since a
is an atom element of L and L < coz(g) < a, we conclude that coz(g) = a.
Finaly, from

y=d Vv \/ { VW=d Vcoz(g)=d' Va=T

0#x€A
and )
h(®) = a A \/g({g}) —anl=1,
el
we infer that h is a real-valued function on L. O

Lemma 3.7. Let a be an atom element of a frame L and 0 # g € Rr,(a).
If h € Rr,(a) is the same function of Lemma 3.6, then hg = f,.
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Proof. Let X be a subset of R. If {0,1} C X, then

hg(X)

hg({0}) v hg({1}) v hg(X \ {0, 1})

(7{0} v g{0}) V (Vo zper ({2} A g{3}) V hg(X \ {0,1})
(V&) V (Vosmer(a A 9{E} A g{E) V hg(X \ 0,13)
&V (@ A Vo gaog {11V hg(X 1\ {0, 1)

a' Vv (a A coz(g)) Vhg(X\{0,1})

aVvaVvhg(X\{0,1})

T

fa(X).

If0e X and 1 ¢ X, then

hg(X)

= hg({0}) v hg(X '\ {0})

(h({0}) v g({01)) V (Vorayex (h({z}) A g({y})))
'V (Vogser(ang({3}) A g({y}))

'V Voraer(an ({33 N {y})))

= dVanl)

a/

= fa(X)'

If0Z X and 1 € X, then

hg(X)

hg({1}) Vv hg(X \ {1})

(Voseer(R{zH) A g{ED) V (Vizayex (h({z}) A g({y})))
(Vorwer(@A g{z} A g{aD) V (Visayex (@A g{i} A g{y}))
(@A Voreer(@{Z D)V Vigayex @A g({33 0 {y}))

a A coz(g)) V (\/1¢xyeX(a A L))

a

fa(X).
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If0¢ X and 1 ¢ X, then

hg(X) = Vayex(h({z}) Ag({y}))
= Vayex(@ana{zh A g({y})
= Vagex(ana{310{y}))
= nyeX(a/\J—)
= 1
= fa(X).

Hence hg = f,. O

Proposition 3.8. Let a be an atom of a frame L. Then Rx, (a) is a minimal
ideal of FpL.

Proof. By Lemmas 3.6 and 3.7, Rz, (a) is a field with the multiplicative
identity f,. Hence, by Propositions 3.2 and 3.4, Rz, (a) is a minimal ideal
of pr. O

Let R be a commutative ring with unit. We let .# denote its maximal
ideal space of R and put #(a) = {M € #|a € M} for all a € R. An
ideal I of R is called a z-ideal if #(a) = #(b) and a € I, then b € I.
Equivalently, since .# (a) C .# (b) if and only if .# (ab) = .# (b), hence I is
a z-ideal if and only if .#(a) C .#(b) and a € I implies b € I (see [23]). It
is well known that if R has minimal nonzero ideals, then they are z-ideals
(see [23]).

Lemma 3.9. Let I be a minimal ideal of FpL. Then I = Rx,(a), for some
complemented element a of L.

Proof. Clearly every minimal ideal of FpL is generated by an idempotent.
Hence there exists an idempotent e € I such that I = eFpL. Now consider
a = coz(e). Since I is a z-ideal and z(f,) = ¢’ = z(e), we conclude that
fa € I. Proposition 3.4 insures that Sz, (a) C I and the minimality of 1
implies that I =Rz, (a). O

Definition 3.10. A frame L is called an Fp-completely regular frame pro-
vided there exists A C Fp such that a =/ ;4 coz(f), for every a € L.
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If L is an Fp-completely regular frame and a € L, then there exists
A C Fp such that a =\ g coz(f) =V ¢ 4 coz(f o j), which shows that L
is a completely regular frame.

Proposition 3.11. Let L be an Fp-completely reqular frame. Then for an
tdeal I of FpL, the following statements are equivalent.

(1) The ideal I is a minimal ideal of FpL.

(2) I =Rz, (a), for some atom a of L.

Proof. (1)=(2) There exists a complemented element a of L such that I =
RAr,(a), by Lemma 3.9. Suppose that there exists s € L such that L <
s < a. Since L is an Fp-completely regular frame, we conclude that there
exists g € FpL such that L < coz(g) < s < a, which shows that 0 # g € I,
and so I =< g >, because [ is a minimal ideal of FpL. Hence there exists
h € FpL such that f, = hg, which implies that a = coz(f,) < coz(g) and
so coz(g) = s = a. Therefore, a is an atom and I = Rz, (a).

(2)=-(1) By Proposition 3.8, it is evident. O

4 On Property (A) of FpL

Recall that a commutative ring R has Property (A) if every finitely generated
ideal of R consisting entirely of zero-divisors has a nonzero annihilator. In [2]
the authors showed that C'(X) has Property (A). In this section, we show
that (i) FpL has Property (A), (ii) if L has a finite number of atoms, then
the residue class ring FpL/Soc(FpL) has Property (A).

Proposition 4.1. Let L be a frame. Then f-ring FpL has Property (A).

Proof. Let I = Y0, fi{FpL C Z(FpL). Since f = >_I | f? € I, we con-
clude that there exists 0 < g € FpL such that fg = 0, which shows that
coz(fg) = L. Let h=>"" fih; € I. Then

coz(hg) = coz(3 iy fihig)
Vizy coz(|fillhilg)
Viey coz(f2g)
coz(3iLy £19)
coz(fg)

= 1.

IA A
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Hence hg = 0, which implies that g € Ann(I). Therefore, Fp L has Property
(A). O

Lemma 4.2. Letaq,..., an be disjoint atomic elements of a frame L. Then
for every f € FpL and X € P(R),

fo _ (Niciai) vV f(X) if 0€X,
" (Viga) A f(X) if 0 X.
Proof. We prove it by induction on the number of complemented elements.

For n = 1, it follows from Proposition 3.3. For n > 1 let g = Z?;ll ffa;-
Then

gHON AT fan (10}) = [(Aiy i)V F{ONIA e,V FHODT = (Aimy ag) V F({0}),

g{z}) A ffa,({0}) = [(\/z- ai) A f({zh)] Ala, v F({0})]
= [(ViZ @) A flay Aap] VIS ai) A e} A F{0)]
= (Vig ai) A f({2}),
g{ON A ffa({z}) = [N @) v FHODIA [an A f({2})]
[

(NS @) Aag A FHED]V [FHOY) Aan A f({2})]
an A f({z}),
for every 0 # x € R. Also if z,y € R with y # 0 # z, then

g{z}) A f fa, ({y}) = \/ A fHzD] A lan A f{YH] =

Hence

(947 fan)({0}) = \/ g{@}Af fan({=2}) = g{O}AS fu, ({0}) = /\a )V {0}

z€eR

and

9+ fla){z}) = Vyer9({yh) A ffa.({z —y})

[9({0}) A f fa, ({zD] V [9({2}) A f fa, ({0})]
lan A PPV VIS ai) A F({2})]
= (Vicia) A f({z}).
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Thus if 0 € X C R, then

ity ffa)(X) = (9+ [fa){OD) V Visaex (9 + ffa,)({2})
= [(ANiz1a) V FHODIV Voseex[(Viey @) A f({z})]
= |
(

(Nizr @) vV FHOD]V [(ViZg @) A Voggex f({2})]
Ny @) V f(X),

and if 0 ¢ X C R, then

O £fa)(X) =\ g+ fa){2}) = V[V adnf{zh)] = (\/ a)nf(X).
=1 zeX rzeX =1 =1

This completes the induction. O
Corollary 4.3. Let ai,...,a, be disjoint atomic elements of a frame L.

Then for every f € FpL and X € P(R),

> fay = for
=1

where b = \/"_ a;.
Proof. Consider b= \/}"_; a;. Hence

n LA VY if0 e A,
(Z;faz)(A): { ]_(A)/\b 1fO¢A, :fb(A)7

for all A C R.
O

Proposition 4.4. Let L be an Fp-completely regular frame. Then the socle
of FpL consists of those f for which coz(f) is a join of finitely many atoms.

Proof. 1f Soc(FpL) = 0, then there is nothing to prove. Now suppose that
it is nonzero. If f € Soc(FpL), then there exist atoms aq,...,ar € L and
fi,-.., fi € FpL such that

f = flfm +f2fa2 + e +fkfaka
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by Propositions 3.4 and 3.11, which implies that coz(f) < \/f:1 a;. Con-
sequently, coz(f) = \/f:1 a; A\ coz(f). Since each a; is an atom, hence
a; A\ coz(f) = 0 or a;, which implies that coz(f) is a join of finitely many
atoms.

Conversely, suppose that coz(f) = \/f:1 a;, where each a; is an atom.
By Propositions 3.4 and 3.11, Rz, (a;) is a minimal ideal generated by fq,.

If 0 ¢ X CR, then, by Lemma 4.2, we have

ai) A f(X) = f(X),

=

(Z ff(lz)(X) = (
=1

=1

since f(X) < coz(f). If 0 € X CR, then
(Z ffa)(X) = ((Z Fla) R\ X)) = (f(R\ X))" = f(X).

Hence f =" ffa € >oi g Rrp(ai) C Soc(FpL). O

An element f of FpL is said to be bounded if |f| < n, for some n € N.
The set of all bounded real-valued functions on a frame L is denoted by
FpL.

Proposition 4.5. For f € FpL, the following statements are equivalent.
(1) fe FrL.
(2) f(Ip,qll) =T for some p,q € Q with p < q.
(3) f((—o0,plUllg, +00)) = L for some p,q € Q with p < q.

Proof. Straightforward. O

Proposition 4.6. Let L be an Fp-completely reqular frame. Then every
minimal ideal of FpL consists entirely of bounded functions.

Proof. Let I be aminimal ideal of FpL and f € I. Then there exists an atom
element a of L such that I = Rz, (a), by Proposition 3.11. Since f = f f,, we
conclude from Proposition 3.3 that f(I—n,nl) = o'V f(1—n,nl), for alln €
N. The maximality of @’ insures that ' = f(]—n,n[) or f(1—n,n[) = T. If
a = f(—n,nl) for all n € N, then T = f(R) =\ f(1 —n,nl) = a, which
is a contradiction. Therefore there exists n € N such that f(] —n,nl[) = T.
Hence f € F5L, by Proposition 4.5. O
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Corollary 4.7. If L is an Fp-completely regular frame, then Soc(FplL) =
Soc(FpL).

Proof. Since Fp is a reduced f-ring with bounded inversion, then
Soc(FpL) = Soc(FpL), by |6, Proposition 3.2] and Proposition 4.6. O

Proposition 4.8. Let L be an Fp-completely reqular frame. If L has a
finite number of atoms, then the following statements hold.

(1) The residue class ring FpL/Soc(FpL) has Property (A).

(2) The residue class ring F5L/Soc(FpL) has Property (A).

Proof. (1) Let A ={a1,...,a,} be the set of all atoms in L. Then
Soc(FpL) = jgjsarp (a;) = fa, FrL,

by Propositions 3.4 and 3.11. For every f € FpL, put f = f + Soc(FpL).
Let I = (fi,..., fn) be a finitely generated ideal of FpL/Soc(]:pL) entirely
of zero-divisors. Consider f = ", f2. Since f = Y1, fZ e I, we
conclude that there exists 0 < g € FpL such that fg = 0 and g # 0.
Then coz(fg) = Vj_; ai;, for some a;,, ..., a; € A. Consider b = Al a;.
We claim that 0 # f,g € Ann(I). If coz(fbg) < Vi, ai, then

n

coz(frg) = coz(frg) A \/ a; =b A coz(g) A \/ a; =1,
i=1 i=1

which follows that coz(g) < z(fy) = Vi_; a;. Hence g € Soc(FpL), which is
a contradiction. Thus 0 # f;g.
Let h = Z?:l fzhz Then

coz(hfpg)

coz(3iy fihifog)
Viz coz(|fillhil fog)
Vie, coz(f7 frg)

= coz(X iy [T fvg)

= coz(fgfp)

\/;=1 @i; N Niz1 a;
1.
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Hence hf,g = 0, which implies that f,g € Ann(I). Therefore FpL/Soc(FpL)
has Property (A).

it.

(2) By a similar argument as used in the proof of item (1), one can prove

O]

Acknowledgement

We are very thankful to the referee for his/her thorough reading of the paper
and giving very helpful comments.

References

1]

2]

[10]

[11]

Azarpanah, F., Karamzadeh, O.A.S., and Rahmati, S., C(X) vs. C(X) modulo its
Socle, Collog. Math. 111(2) (2008), 315-336.

Azarpanah, F., Karamzadeh, O.A.S., and Rezai Aliabad, A., On ideals consisting
entirely of zero divisors, Comm. Algebra 28(2) (2000), 1061-1073.

Ball, R.N. and Walters-Wayland, J., C- and C*-quotients in pointfree topology, Dis-
sertationes Math. (Rozprawy Mat.) 412 (2002), 62 pages.

Banaschewski, B., “The Real Numbers in Pointfree Topology”, Textos Mat. Sér. B,
12, University of Coimbra, 1997.

Banaschewski, B. and Gilmour, C., Cozero bases of frames, J. Pure and Appl. Al-
gebra 157 (2001), 1-22.

Dube, T., A note on the socle of certain type of f-rings, Bull. Iranian Math. Soc.
38(2) (2012), 517-528.

Dube, T., Contracting the socle in rings of continuous functions, Rend. Sem. Mat.
Univ. Padova 123 (2010), 37-53.

Estaji, A.A. and Karamzadeh, O.A.S., On C(X) modulo its socle, Comm. Algebra
31(4) (2003), 1561-1571.

Ferreira, M.J., Gutiérrez Garcia, J., and Picado, J., Completely normal frames and
real-valued functions, Topology Appl. 156 (2009), 2932-2941.

Gutiérrez Garcia, J., Kubiak, T., and Picado, J., Localic real functions: A general
setting, J. Pure Appl. Algebra 213 (2009), 1064-1074.

Gutiérrez Garcia, J. and Picado, J., Rings of real functions in pointfree topology,
Topology Appl. 158 (2011), 2264-2287.



On property (A) and the socle of the f-ring Frm(P(R), L) 79

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

23]

24]

[25]

[26]

27]

Henriksen, H. and Jerison, M., The space of minimal prime ideals of a commutative
ring, Trans. Amer. Math. Soc. 115 (1965) 110-130.

Hong, C.Y., Kim, N.K., Lee, Y., and Ryu, S.J., Rings with property (A) and their
extensions, J. Algebra 315 (2007), 612-628.

Huckaba, J.A., “Commutative Rings with Zero Divisors”, Marcel Dekker Inc., 1987.

Huckaba, J.A. and Keller, J.M., Annihilation of ideals in commutative rings, Pacific
J. Math. 83 (1979), 375-379.

Johnstone, P.T., “Stone Space”, Cambridge University Press, 1982.

Kaplansky, I., “Commutative Rings”, Rev. Ed. Chicago: University of Chicago Press,
1974.

Karimi Feizabadi, A., Estaji, A.A., and Zarghani, M., The ring of real-valued func-
tions on a frame, Categ. General Alg. Struct. Appl. 5(1) (2016), 85-102.

Karamzadeh, O.A.S and Rostami, M., On the intrinsic topology and some related
tdeals of C(X), Proc. Amer. Math. Soc. 93 (1985), 179-184.

Lambek, J., “Lecture Notes on Rings and Modules”, Chelsea Publishing Co., 1976.

Lucas, T.G., Two annihilator conditions: Property (A) and (A.C.), Comm. Algebra
14(3) (1986), 557-580.

Marks, G., Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311-
318.

Mason, G., z-ideals and prime z-ideals, J. Algebra 2 (1973), 280-297.

Picado, J. and Pultr, A., “Frames and Locales: Topology without Points”, Frontiers
in Mathematics, Springer Basel, 2012.

Picado, J. and Pultr, A., A Boolean extension of a frame and a representation of
discontinuity, Pré-Publicagoes do Departamento de Matematica Universidade de
Coimbra, Preprint Number 16-46.

Quentel, Y., Sur la compacité du spectre minimal d’un anneau, Bull. Soc. Math.
France 99 (1971), 265-272.

Zarghani, M. and Karimi Feizabadi, A., Zero elements in lattice theory, Proceeedings
of the 25" Iranian Algebra Seminar, Hakim Sabzevari University, Sabzevar, Iran,
19-20 July 2016.



80 A.As. Estaji, E. Hashemi, and A.A. Estaji

Ali Asghar Estaji, Department of Mathematics, Shahrood University of Technology, Shahrood,
Iran.

Email:  as.estaji@hsu.ac.ir

Ebrahim Hashemsi, Department of Mathematics, Shahrood University of Technology, Shahrood,

Iran.

Email: eb_ hashemi@yahoo.com, eb_ hashemi@shahroodut.ac.ir

Ali Akbar Estaji, Faculty of Mathematics and Computer Sciences, Hakim Sabzevari Univer-

sity, Sabzevar, Iran.

Email: aaestaji@hsu.ac.ir, aa— estaji@yahoo.com



