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Abstract. The much-studied projectable hull of an /-group G < pG is
an essential extension, so that, in the case that G is archimedean with weak
unit, “G € W”, we have for the Yosida representation spaces a “covering
map” YG < YpG. We have earlier [8] shown that (1) this cover has a
characteristic minimality property, and that (2) knowing Y pG, one can write
down pG. We now show directly that for &/, the boolean algebra in the
power set of the minimal prime spectrum Min(G), generated by the sets
U(g) = {P € Min(G) : g ¢ P} (g € G), the Stone space S« is a cover of
Y G with the minimal property of (1); this extends the result from [1] for the
strong unit case. Then, applying (2) gives the pre-existing description of pG,
which includes the strong unit description of [1]. The present methods are
largely topological, involving details of covering maps and Stone duality.
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166 A. W. Hager, and Warren Wm. McGovern

1 Introduction

For G € W, the topological space Min(G) has the open base consisting of
all U(g) = {P € Min(G) : g ¢ P} (g € G), and these sets are clopen. We
denote Min(G) \ U(g) by V(g). Let & be the boolean algebra defined in
the abstract, S its Stone space. We then have

Min(G) ¢ So7

y

YG

where A(P) is the unique M € Y'G with P C M. The map A is a continuous
surjection and &/ 3 A — clA C S« is the isomorphism & = Clop S«
The following will be shown in Sections 5 and 6.

Theorem 1.1. The map X : Min(G) — Y G extends continuously to a map
NS = YG.
Min(G) 8 So

)\i P g
27 A
YG

The map X is irreducible (a covering map), and (S</,\) is the minimum
among those zero-dimensional covers (W, h) of Y G which have clyyh™! coz g
open for all g € G.

That is the property characterizing Y pG ([8, Theorem 3.6 and Corollary
2.5]), whence we obtain immediately the following.

Theorem 1.2. The projectable hull pG is the W-object of extended real-
valued functions on S/ = YpG of the form

F= (gi°oMxu,
for a finite sum, g; € G, {U;} a clopen partition of S<f .

This extends [1] by a simple appeal to [8]. We also have shown this in [9]
via a different approach.
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2 Background and Preliminaries

In this section we set the notation and concepts needed from the theory of
f-groups. Our aim is to give a quick overview of the projectable hull of an
archimedean lattice-ordered group with weak unit. Our standard references
for the theory of ¢-groups are [4] and [2].

Let G be an abelian f-group. A convex f-subgroup P of G is called
prime if a A b € P implies either a € P or b € P. The set of all prime
subgroups of G is called the prime spectrum of G and is denoted by Spec(G).
Assuming Zorn’s Lemma, primes exist in all /-groups. In particular, given
0 < g € G, there are convex {-subgroups which are maximal with respect to
not containing g. These subgroups are known as values of g and we denote
the set of them by Val(g). Observe that Val(g) = Val(|g|).

We put S(a) = {P € Spec(G) : a ¢ P}. Observe that S(a) = S(|al)
and that for any 0 < a,b € G, S(a) N S(b) = S(a A b) and S(a) U S(b) =
S(aVb). Thus, we can topologize Spec(G) by taking as a base of open sets
the collection {S(a) : @ € G}. Further, Spec(G) forms a root system, that
is, given a prime P € Spec(G) the set of prime subgroups containing P
forms a chain under inclusion. Thus, there is a map p : S(a)— Val(a) that
takes a P € S(a) to the unique value of a containing P, denoted by u(P).
For each 0 # a € G, the space S(a) is quasi-compact. Since Val(a) C S(a),
Val(a) inherits the subspace topology from S(a), and this is identical to the
hull-kernel topology on Val(a). Moreover, Val(a) is Hausdorff; we shall have
more to say in Section 4.

Min(G) is the collection of minimal prime subgroups topologized with
the topology inherited from Spec(G). Minimal prime subgroups are charac-
terized amongst the primes as those P that have the property that for each
0 < g € P, there is some h € G\ P such that g A h = 0. It follows that
if 0 < u € G is a weak order unit then it does not belong to any minimal
prime subgroup.

Another way of constructing convex f-subgroups is as follows. Given
S C G, we define the polar of S as

St={geG:|g|A|s|=0forall se S}

This is clearly nonempty as 0 € S+ for any subset S C G, and St is a
convex f-subgroup, called a polar. When S = {g} we instead write g=;



168 A. W. Hager, and Warren Wm. McGovern

notice that g* = |g|*. If gt = {0}, then g is called a weak order unit of G.
A strong order unit is a weak order unit.

Let W be the category whose objects are pairs (G,u), where G is an
archimedean /-group and u € G is a weak order unit, and a morphism
between objects (G, u) and (H,v) be an ¢-group homomorphism p : G—H
for which p(u) = v. For (G,u) € W put YG = Val(u). We have the Yosida
functor from W to the category of compact Hausdorff spaces, which we now
explain.

Put R = RU {4} with the obvious topology and order. For a space X,

D(X)={f:X—R: f is continous and f~*(R) is dense in X}.

This is a lattice when ordered pointwise. In general, D(X) need not be a
group as addition is only partially defined. A subset A C D(X) which is a
sublattice, is closed under pointwise addition and subtraction, and contains
1 is a W-object in D(X), and then we write G < D(X).

See [10] for details of the following.

Theorem 2.1 (The Yosida functor). (a) Suppose (G,u) € W. Then, there
is an isomorphism G = G < D(YG) with 4 =1, and G separates the points
of YG.

(b) Suppose (G,u) 2 (H,v) € W. Then, there is a unique continuous

YG Y YH for which p(g) = (Yp) o g for each g € G. If p is an injection,
then Y p is a surjection.

We frequently write simply G € W and “G < D(Y@G)” (that is, drop
the “u” and identify G with its G.)

The (-group is called projectable if for all g € G, G = g~ + g++. Every
representable ¢-group has a projectable hull G < pG, the unique minimum
essential extension to a projectable /-group. When G is archimedean, so is
pG, and when G € W, the unit of G is a unit of pG because the embedding
is essential, and we construe G < pG in W.

Now, ([11]) G & H in W is essential if and only if Y@ Y YH s
irreducible (the image of a proper closed set is proper). Thus, G < pG (in

W) produces an irreducible surjection YG il Y pG; we reserve “o” for this
map. This places our situation in a topological context, as follows.
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In compact Hausdorfl spaces, for irreducible X «]i Y, (Y, f) is called

a cover of X. For two covers (Y;, f;) of X, if there is a Y} & Ys with
fa = fi1oh, then h is also irreducible and we write (Y1, f1) < (Y2, f2),
and say the two are equivalent if h is a homeomorphism. The collection of
equivalence classes of covers is a set, denoted by cov X, and it is a complete
lattice. For details, see [7] and [15].

Thus, for G € W, (YpG, o) € covY G, and its position in covY G is of
central importance to this paper, as will be explained in Sections 5 and 6.

3 Lemmas on irreducible maps

We collect some rather dry topological items. A reader might skip this, and

. . f . . .
refer back when needed. In this section X — Y is a continuous surjection
of Tychonoff spaces.

Definition 3.1. Here are some properties that f might possess.

1. f has (o) means: if W is a nonempty open subset of X, then there is
a nonempty open subset of Y, say V, with f=%(V) C W.

2. f is irreducible means: if F' is closed and proper in X, then f(F) is
proper in Y.

3. f is skeletal means: if D is dense in Y, then f~1(D) is dense in X.

In the next section we show that A has (a).

Definition 3.2. For W C X, set

OfwW={yeY|f'({y}) cW}

and notice that OfW =Y \ f(X \ W). Furthermore, the surjectivity of f
implies O fW C f(W).

The proofs of the following are straightforward. For more information
see [7, 2.6].

Lemma 3.3. (1) f has («) if and only if for each nonempty open subset
W C X, intOfW % 0.
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(2) If f is closed and W open, then O fW is open.

(3) If f is closed and irreducible and W is open, then f~Y(OfW) is dense
in W and f(W) CclyOfW.

Proposition 3.4. (a) If f has («), then f is irreducible and skeletal.
(b) If f is closed, then irreducibility implies that f has (a).

Proof. (a) Suppose f has («) and let D CY be a dense subset. For an open
nonempty subset W C X, the condition («), implies there is a nonempty
open subset of Y, say V, such that f~1(V) C W. By density there is some
y € DNV. Choose x € W such that f(z) = y. Then z € f~Y(D)nW.
Consequently, f~1(D) is dense in X.

Next, suppose F' is a proper closed subset of X and set W = X \ F,
nonempty and open. By (1) of Lemma 3.3, we gather that () # intOfW C
OfW =Y\ f(X\W) =Y\ f(F), whence f(F) is proper.

(b) Suppose f is closed and irreducible and let W C X be nonempty and
open. Setting F' = X \W, a proper closed subset, the hypothesis implies that
f(F) is both proper and closed. Therefore, OfW =Y\ f(X\W) =Y\ f(F)
is nonempty and open. By (1) of Lemma 3.3, we conclude that f has (o). O

The next two propositions show that («) goes both up and down in
certain cases.

Proposition 3.5. Suppqse X is dense in L, and there is a continuous
extension of f to L, say f: L — Y. If f has (), then f has (a).

Proof. We shall use the following property of density twice in our proof.
For any nonempty open subset O of L, cl,(O N X) = ;0.

Assume that f has (). To show that f has () let T be nonempty and
open subset of L set W = T N X, nonempty and open in X by density.
Choose ) # W' C W such that clyWW' C W. Since f has («) there is
a nonempty open subset of Y, say V, such that f~'(V) € W’. Notice
that density together with the fact that f~'(V) C L is open, yields that
cdpfY (V) = (f~" (V)N X). Thus,

0# (V) Cen(FH(V)NX) =clpfH(V) Celp(WNX) = W CT

where density is used again for the last equality. O
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Proposition 3.6. Suppose E is a regular closed in X. If f has («), then
the restriction of f to E onto f(E) also has ().

Proof. We shall denote the restriction of f to E by f’ and set Y’ = f(E).
Then we have a continuous surjection f’: E—Y".

Assume that f has («) and let O be a nonempty subset of E. Let O be
an open subset of X for which O'NE = O. Set W = O'N intE, a nonempty
open subset of X. Since f has («), there is a nonempty subset of Y, say V,
such that f=1(V) C W. Notice that V C Y’ and so

FRV) = VINE=F(V) 0.

4 Properties of the map )\

For a W-object G, or (G,u), we have the map u : S(u)— Val(u) = YG,
from Section 2. The restriction of p to Min(G) is the map of Section 1,
A Min(G)—YG.

Let g € G. We have these subsets of YG.

coz(g) = {M € YG : g ¢ M} and Z(g) = YG \ coz(g);
and the subsets of Min(G),
U(g) = {P € Min(G) : g ¢ P} and V(g) = Min(G) \ U(g).
Summing up:

Proposition 4.1. (a) The space Y G is compact Hausdorff, with {coz(g) :
g € G} an open basis.

(b) The space Min(G) is zero-dimensional Hausdorff, with {U(g) : g €
G} an open basis.

(¢) The map X\ : Min(G)—=Y G is a continuous surjection.

We establish some other properties of A.

Theorem 4.2. Let (G,u) € W. For each g € G, we have
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(1) A~ (coz(g)) € U(g); coz(g) € AU (9)),

(2) A(U(g)) is compact, hence a closed subset of YG.
(3) A~ (intZ(g)) € V(9),

(4) MU(9)) = clyc cozg.

Proof. (1) Let Q € A(coz(g)). This means that A(Q) € coz(g) and so
g ¢ MQ). Since Q < A\(Q), it follows that g ¢ @, that is, Q € U(g). Next,
if P € coz(g), then for any minimal prime @ < P (which indeed exists), it
follows that A(Q) = P. Since g ¢ P, we gather that Q € U(g).

(2) Fix the map u : S(u)—Y G. We claim that AN(U(g)) = pu(S(|g| Aw)).
Since S(|g| Au) is quasi-compact, so is x(S(|g| Aw) by continuity. Therefore,
A(U(g)) is a compact subset, whence a closed subset of Y'G. As for the claim
for any prime subgroup P, if |g| Au ¢ P, then v ¢ P and so u(P) € YG.
Furthermore, for any @ € Min(G) with @ < P, we know that g ¢ P, thus
Q € U(g). For any Q € U(g), it is also the case that Q € S(|g| A u).

(3) Let Q € A 1(intZ(g)), that is, A(Q) € intZ(g). Since sets of the
form coz(h) form a base for the open sets of Y'G, we can find an 0 < h such
that AM(Q) € coz(h) C Z(g). In the Yosida representation, it follows that
hAg=0. Now Q € A (coz(h)) C U(h) by (1) and therefore, g € Q by
primality, that is, @ € V(g).

(4) By (1), coz(g) € A(U(g). By (2), A(U(g)) is closed and therefore,
clyGeoz(g) € AU(g)). For the reverse direction, let P € A\(U(g)) and
choose @@ € U(g) such that \(Q) = P. If P € YG \ clygcoz(g), then
P € intZ(g), and thus by (3), @ € V(g), a contradiction. O

Corollary 4.3. Let (G,u) € W. Then, the map X : Min(G)—Y G has («).

Proof. Let W be a nonempty open subset of Min(G). Choose g € G such
that U(g) is nonempty and U(g) C W. Observe that g # 0 and so coz(g) #
0. By (1) of Theorem 4.2, A~!(coz(g)) C U(g). Therefore, A has (o). O
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5 8« is a cover of Y@

We restate and prove half of Theorem 1.1. The following is pivotal ([5, 3.2]
and [15, 4.1 (m)])

Theorem 5.1 (Taimonov’s Theorem). For Tychonoff spaces, suppose f :
X—=Y is continuous with Y compact, and X dense in L. Then, f extends
continuously over L if and only if E,F closed and disjoint in Y implies
ClLf_l(E) N ClLf_l(F) = 0.

Theorem 5.2. Let (G,u) € W. Then,
(a) there is a continuous \ : SoZ — Y G extending .
(b) X has (), thence is skeletal and irreducible, whence (S<7/,\) € cov Y G.

Proof. (a) Suppose E and F' are disjoint closed sets in YG. That Y@
is a compact Hausdorff space provides us with a ¢ € G* with E C cozg,
F CintZ(g). Then, by (1) and (2) of Theorem 4.2, A\"1(E) C A\~ !(coz(g)) C
U(g), and A™1(F) C A~ 1(intZ(g)) C V(g). Since U(g) are complementary
members of &7, we have cls,U(g)NclsV (g) = (), by Stone Representation.
By Taimonov’s Theorem, we have the extension A.

(b) By Corollary 4.3, A has («), and since («) goes up (Proposition 3.5),
A also has () and thus is irreducible and skeletal (Proposition 3.4). O

6 (S, is (YpG,o); a Theorem about minimal covers

We are going to apply the following.

Theorem 6.1. [8, 3.6] (YpG, o) is the minimum in covY G among covers
(W, h) with W zero-dimensional and satisfying for all g € G, clygh~(coz(g))
1S open.

(This result is also visible (with some thought) in [14, 4.6].) For brevity’s
sake we shall denote the condition: for all g € G, clygh™!(coz(g)) is open,

by ().

Proposition 6.2. For all g € G, Cls%;il(COZ(g)) = clszU(g), so this is
open.
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Proof. Note that this result is in fact a corollary to Theorem 4.2.

Let M = Min(G) and S = S&/. Then, by Theorem 4.2, we have
clyA " (coz(g)) = U(g). Now, M is dense in S, thus, for all W open in
S, clsW = clgW N M = clg(clyyW N M). Apply this to W = A~ (coz(g)),
for which W N M = cly A~ (coz(g)). O

Towards the minimality condition in Theorem 6.1, we have the following
topological/boolean algebraic theorem. (We need only (a) implies (b) but
we prove the equivalence.)

Theorem 6.3. Suppose (Z, f) € covY, Z is zero-dimensional, and U is an
open base for Y. The following two statements are equivalent.

(a) For allU €U, clzf~1(U) is open, and {clzf~H(U) : U € U} gener-
ates Clop Z (qua boolean algebra).

(b) (Z, f) is the minimum in covY among covers (W, h), with W zero-
dimensional and satisfying for all U € U, clywh~1(U) is open.

Proof. (a) = (b) Suppose (Z, f) € covY satisfies (a), and let (W,h) be
as in (b). Let Z be the sub-boolean algebra of Clop W generated by the
collection {clyh~1(U)}. Note that Z is dense in Clop W because U is a
basis for Y. This means that the embedding # < Clop W has its Stone dual
surjection S# & W irreducible (see [16]). We shall show that Clop Z = 4,
which means that s is, up to homeomorphism, a map Z « W, showing that
(Z,f) < (W,h) in covY.

Let R(-) denote the boolean algebra of regular closed sets of the space

(). By [15, §6], whenever I’ & K is irreducible between compact spaces,
then R(K) 3 E — t(F) € R(T), and this defines a boolean algebra isomor-
phism, again denoted by t : R(K)—R(T'), thence carries a generating set in
R(K) to a generating set in R(7T). Note, “generating” refers to the boolean
operations in the R(-)s.

Applying this to our construction, we have boolean algebra isomor-
phisms

RY) <L R(2)

|

R(W)
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with % =2 h[%)], the latter generated by {h(clywh~1(U)) : U € U}, and
Clop Z = f[Clop Z], the latter generated by {f(clzf~1(U)): U € U}. Note
that, for all U € U, h(clwh *(U)) = clyU = f(clzf~1(U)). Therefore,
Clop Z = f[Clop Z] = h|HB] = A, as desired.

(b) = (a) (This mimics the proof of 3.6 (c¢) in [8].)

We show this: suppose (Z, f) € covY with Z zero-dimensional and each
clzf~1(U) open (U € U). Let & be the sub-boolean algebra of Clop Z

generated by the set {clzf~1(U) : U € U}, and let S & Z be the Stone
dual of &/ < Clop Z. (This is irreducible because U is a basis.) Then, if
there is an s with soh = f as

it then follows that s is irreducible, since f and h are ([7, 2.6]). Thus, if (Z, f)
satisfies the minimality condition in (b), then h must be a homeomorphism,
which means that o/ = Clop Z, as desired.

Now, h is a quotient map (being a surjection of compact spaces). Thus,
the existence of the s is equivalent to: f(p1) # f(p2) implies h(p1) # h(p2).
So suppose f(p1) # f(p2). Since U is a basis, there are disjoint Uy, Us €
U with f(p;) € U; (i = 1,2). Then f~1(Uy) Neclgf~1(Us) = 0. Since
cly f~H(Us) is open, clz f~H(U1)Nelz f~1(Us) = ). Thus, p1, ps lie in disjoint
elements of &7, whence h(p1) # h(p2). O

Theorem 6.4. (S<7, ) is (YpG, o).

Proof. (S84, :\) is certainly a zero-dimensional cover of Y'G satisfying (7)
(Proposition 6.2). By Proposition 4.1, i = {coz(g) : g € G} is an open base
for YG. By design and Stone duality {cls»U(g)}4cc generates the boolean
algebra of clopen sets of S/. Thus, by Theorem 6.3, applied to Z = S/,
we conclude that (827, ) is (YpG, o). O

7 Representations of pG

We give three representations, each derived from Theorem 7.1. The follow-
ing notation from [8, §2] is convenient. Given skeletal YG < X we have
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G=Go1m<D(X) (Gor consists of all go 7, and g — g o 7 preserves the
W-operations.) Suppose X is zero-dimensional, and put

(GoT)x = {Z(gl o) - x(W;): Z is finite, {W;} is a clopen partition
of X, g; € G}
< D(X).

Theorem 7.1. [8, 3.5] Granted YG il YpG,

pG = (Goo)ypa.

(This result is also visible in [14, §2 and 5.11]. Also, a version for rings
is [9, 5.3].)

Lemma 7.2. (a) G =2 G oA < D(Min(G)).
(b) G=Go X< DSH(QR)).

Proof. (a) The map A has the property («) (Corollary 4.3), thus is skeletal
(Proposition 3.4), and so g o A € D(Min(G)). The resulting map g — go A
preserves the W-operations and is clearly a bijection.

(b) As (a), since X is skeletal (Theorem 5.2). O

(We note that Lemma 7.2(a) is the Johnson-Kist representation of G' on
Min(G); see [12] and [13]).

Since (S (G),\) is (YpG, o) (Section 6), we have immediately the fol-
lowing corollary.

Corollary 7.3. (a) pG = (G o S\)SM(G) < D(SH(Q)).
(b) pG = (G o Mmin(e) < D(Min(G).

(In [1], it is proved that for G € W* (note, W*, not W), a simpler
version of Corollary 7.3(a) holds; this is without a priori knowledge of YpG.
It then follows that for G € W*, YpG = S.o/. See the discussion in [9].)

Now we shall represent pG as continuous functions on “certain dense
subsets” of YG. It is clear that this can be done: G < pG is an essential
extension, and the maximum essential extension of G consists of all contin-
uous real-valued functions on dense Ggs in YG modulo f; = fo if f1 = fo
on dom(f1) Ndom(f2), the intersection of the respective domains. Also, pG
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embeds in the strongly projectable hull of G which consists of all “finitely
G-local” functions on dense open sets in Y'G, modulo . (See discussions
in [6], [9], and [17].)

The first issue for pG is to specify the “certain dense subsets.”

Let B be the family of open sets in Y'G generated by finite intersections
and unions from {coz(g) : g € G} U{intZ(g) : g € G}. Let L be the family
of continuous functions on certain subsets of Y'G as follows. The notation
f € L means: the domain of f has the form |JB; for pairwise disjoint
Bi,...,B, € B with | B; dense in YG; and there are ¢1,...,g9, € G for
which f|p, = g|p, for all i = ,n. Next, we define an equivalence
relation on the f € L as above: f1 f2 if they agree on the intersection of
their domains.

Theorem 7.4. The set of equivalence classes L] =~ is a W -object isomor-
phic to pG.

Proof. We outline the one-to-one correspondence, omitting many details.
This correspondence comes from that between Clop S.7(G) and B, and the
description in Theorem 6.3(a).

Notation for the nonce: In B, Uy = {coz(g) : ¢ € G} and Uy =
{intZ(g) : g € G}; in o = Clop S84 (G), U = {clszU(g) : g € G}
and Uz = {clssV(g) : g € G}. From §3, A(cl ;U(g)) = clygcoz(g) and
cl ;V(g) = clygintZ(g). By definition above, B is generated by Uy U Uy,
with finite intersections and unlons from [16, p.14], o is likewise generated
(qua boolean algebra) by Uy UUs.

For B = coz(g) (respectively, intZ(g)), put E: clszU(g) (respectively,
E_ clsrV(9)), and for B = UM By, with cach By € Uy U Uy, put
B= NU BU For the other direction, for W = cls(q)U(g) (respectively,
sV (g)) set W: coz(g) (respectively, intZ(g)), and for W = (|J W;;
with each Wj; € U, U U, put V_[} NU T/IZJ

Now consider f = S (gi o A - x(W;)) € pG, per Theorem 6.3(a). Here
{W} is disjoint in o with UWi = S#(G), so {W} is disjoint in B with
U W dense in YG. Therefore, we can define the element ?G_) L/ =~ to be

the equivalence class of the function which agrees with g; on W;.



178 A. W. Hager, and Warren Wm. McGovern

The reverse correspondence L—pG is clear. Vagaries in the above evap-
orate upon factoring L by =. O
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topological setup of p, A\, S<7, and the extension A have an appropriate
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