

Categories and General Algebraic Structures with Applications

Volume 1, Number 1, December 2013 ISSN Print: 2345-5853 Online: 2345-5861

Shahid Beheshti University http://www.cgasa.ir

Volume 1, Number 1, December 2013, 11-26 ISSN Print: 2345-5853 Online: 2345-5861

Concerning the frame of minimal prime ideals of pointfree function rings

Themba Dube

Abstract. Let *L* be a completely regular frame and $\mathcal{R}L$ be the ring of continuous real-valued functions on *L*. We study the frame $\mathfrak{O}(\operatorname{Min}(\mathcal{R}L))$ of minimal prime ideals of $\mathcal{R}L$ in relation to βL . For $I \in \beta L$, denote by O^{I} the ideal { $\alpha \in \mathcal{R}L \mid \operatorname{coz} \alpha \in I$ } of $\mathcal{R}L$. We show that sending *I* to the set of minimal prime ideals not containing O^{I} produces a *-dense one-one frame homomorphism $\beta L \to \mathfrak{O}(\operatorname{Min}(\mathcal{R}L))$ which is an isomorphism if and only if *L* is basically disconnected.

1 Introduction

The study of the space of minimal prime ideals of a commutative ring was initiated by Henriksen and Jerison [13]. In that article they relate the space $\operatorname{Min}(C(X))$ to βX by constructing a continuous function $\operatorname{Min}(C(X)) \to \beta X$ which maps no proper closed subset of $\operatorname{Min}(C(X))$

Keywords: frame, ring of real-valued continuous functions on a frame, minimal prime ideal, basically disconnected.

Subject Classification[2000]: 06D22, 54E17, 18A40.

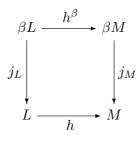
The author acknowledges financial assistance from the National Research Foundation of South Africa.

onto βX , and is a homeomorphism precisely when X is basically connected. Our intent in this article is to study the frame $\mathfrak{O}(\operatorname{Min}(\mathcal{R}L))$ in relation to βL and investigate if there are results that parallel the spatial ones we have just mentioned.

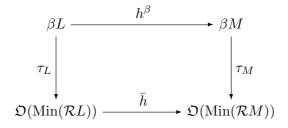
We define a map $\tau_L \colon \beta L \to \mathfrak{O}(\operatorname{Min}(\mathcal{R}L))$ by sending an element of βL to the set of all minimal prime ideals of $\mathcal{R}L$ which do not contain the ideal $\{\alpha \in \mathcal{R}L \mid \operatorname{coz} \alpha \in I\}$ of $\mathcal{R}L$. This turns out to be a one-one frame homomorphism (Proposition 3.1), which is an isomorphism if and only if L is basically disconnected (Proposition 3.2). This accords with the spatial result of Henriksen and Jerison because a topological space is basically disconnected precisely if its frame of open sets is basically disconnected.

A frame homomorphism is called *-dense if whenever its right adjoint sends an element to the bottom, then that element is the bottom of the codomain of the homomorphism. This notion generalises the property of a continuous map sending no proper closed subset of its domain onto its codomain. We show in Proposition 3.3 that τ_L is *-dense, so that, once again, we have a result which is in agreement with its spatial counterpart.

Every frame homomorphism $h: L \to M$ between completely regular frames has a *Stone extension* $h^{\beta}: \beta L \to \beta M$, which is a unique frame homomorphism making the square below commute.



For those h for which the ring homomorphism $\mathcal{R}h: \mathcal{R}L \to \mathcal{R}M$ contracts minimal prime ideals to minimal prime ideals (for instance whenever Lis a P-frame), we construct a frame homomorphism $\bar{h}: \mathfrak{O}(\operatorname{Min}(\mathcal{R}L)) \to$ $\mathfrak{O}(\operatorname{Min}(\mathcal{R}M))$ which makes the square



commute. If L is basically disconnected, then h is unique with this property.

2 Preliminaries

All our frames are completely regular, and our main reference for frames is [14]. For a detailed discussion on the ring of continuous real-valued functions on a frame, the reader should also consult [1] and [2]. We denote the right adjoint of a homomorphism $h: L \to M$ by h_* . A homomorphism is called *dense* if it maps only the bottom element to the bottom element; and it is *codense* if the top is the only element it sends to the top. An element p of a frame is called a *point* if $p \neq 1$ and $a \land b \leq p$ implies $a \leq p$ or $b \leq p$. We denote by Pt(L) the set of all points of L. The points of a regular frame are precisely those elements which are maximal strictly below the top. A *complemented* element in a frame is an element which joins its pseudocomplement at the top.

As in [2], we denote by $\mathcal{R}L$ the ring of all real-valued continuous functions on L. The reader will recall that the underlying set of this ring is the set of all frame homomorphisms $\mathfrak{L}(\mathbb{R}) \to L$, where $\mathfrak{L}(\mathbb{R})$ denotes the frame of reals. A cozero element of L is an element of the form $\varphi((-,0) \lor (0,-))$, for some $\varphi \in \mathcal{R}L$. An element a of L is a cozero element if and only if there is a sequence (a_n) in L such that $a_n \prec a$ for each n and $a = \bigvee a_n$. The set of all cozero elements of L is called the cozero part of L and is denoted by $\operatorname{Coz} L$. It is a sub- σ -frame of L which generates L if L is completely regular. General properties of cozero elements and cozero parts of frames can be found in [3]. A homomorphism $h: L \to M$ is *coz-onto* if for every $d \in \operatorname{Coz} M$ there is a $c \in \operatorname{Coz} L$ with h(c) = d. As usual, we denote by βL the Stone-Čech compactification of L, which we take to be the frame of regular ideals of $\operatorname{Coz} L$. For our purposes this is more convenient than viewing βL as the frame of completely regular ideals of L. The right adjoint of the join map $j_L: \beta L \to L$ will be denoted by r_L . Because of the way have chosen to view βL , the right adjoint r_L is given by $r_L(a) = \{c \in \operatorname{Coz} L \mid c \prec a\}$. For each $I \in \beta L$, the ideals O^I and M^I of $\mathcal{R}L$ are defined as follows:

$$\boldsymbol{O}^{I} = \{ \alpha \in \mathcal{R}L \mid r_{L}(\cos \alpha) \prec I \} \text{ and } \boldsymbol{M}^{I} = \{ \alpha \in \mathcal{R}L \mid r_{L}(\cos \alpha) \leq I \}.$$

Since for any $I, J \in \beta L, I \prec J$ implies $\forall I \in J$, it follows that

$$\boldsymbol{O}^{I} = \{ \alpha \in \mathcal{R}L \mid \operatorname{coz} \alpha \in I \}.$$

For any $a \in L$ we abbreviate $M^{r_L(a)}$ as M_a , and remark that

$$\boldsymbol{M}_a = \{ \alpha \in \mathcal{R}L \mid \operatorname{coz} \alpha \leq a \}.$$

It is shown in [6, Lemma 3.1] that, for any $\alpha \in \mathcal{R}L$,

$$\operatorname{Ann}(\alpha) = M_{(\cos \alpha)^*}$$
 and $\operatorname{Ann}^2(\alpha) = M_{(\cos \alpha)^{**}}.$

Furthermore, the annihilator ideals of $\mathcal{R}L$ are exactly the ideals M_{a^*} , for $a \in L$. The maximal ideals of $\mathcal{R}L$ are precisely the ideals M^I , for $I \in Pt(\beta L)$; and for any prime ideal P of $\mathcal{R}L$, there is a unique $I \in Pt(\beta L)$ such that $O^I \subseteq P \subseteq M^I$. See [5] for the proofs of these assertions.

3 The main results

Let us recall what the frame $\mathfrak{O}(\operatorname{Min}(\mathcal{R}L))$ looks like. For any ideal Q in $\mathcal{R}L$, let $\mathcal{U}(Q)$ be the set

$$\mathcal{U}(Q) = \{ P \in \operatorname{Min}(\mathcal{R}L) \mid P \not\supseteq Q \}.$$

For the principal ideal $\langle \alpha \rangle$, we abbreviate $\mathcal{U}(\langle \alpha \rangle)$ as $\mathcal{U}(\alpha)$. Then

$$\mathfrak{O}(\operatorname{Min}(\mathcal{R}L)) = \{\mathcal{U}(Q) \mid Q \text{ is an ideal of } \mathcal{R}L\},\$$

and the set $\{\mathcal{U}(\alpha) \mid \alpha \in \mathcal{R}L\}$ is a base for this frame consisting of complemented elements, thus making the frame zero-dimensional, and hence completely regular. We shall denote the bottom of this frame by \perp , which of course is the empty set, and its top by \top . An ideal Q of $\mathcal{R}L$ is called a *z*-*ideal* if for any $\alpha, \gamma \in \mathcal{R}L$, $\cos \alpha = \cos \gamma$ and $\alpha \in Q$ imply $\gamma \in Q$. The equal sign can be replaced with \leq . Minimal prime ideals are *z*-ideals. Define the map

$$\tau_L \colon \beta L \to \mathfrak{O}(\operatorname{Min}(\mathcal{R}L)) \quad \text{by} \quad \tau_L(I) = \mathcal{U}(O^I).$$

Proposition 3.1. For any completely regular frame L, the map τ_L is a one-one frame homomorphism.

Proof. Clearly, τ_L preserves the bottom and the top. It also preserves binary meets because, for any $I, J \in \beta L$, $O^{I \wedge J} = O^I \cap O^J$. Let $\{I_\lambda\}_{\lambda \in \Lambda}$ be a collection of elements of βL , and, for brevity, write $I = \bigvee_{\lambda} I_{\lambda}$. We show that $\tau_L(I) \subseteq \bigcup_{\lambda} \tau_L(I_{\lambda})$, which will prove that τ_L preserves joins since it preserves order. Let P be in $\tau_L(I)$. Then $O^I \nsubseteq P$, and so there is an $\alpha \in O^I$ such that $\alpha \notin P$. By the way joins are calculated in βL , there are indices $\lambda_1, \ldots, \lambda_n$ in Λ , and elements $c_i \in I_{\lambda_i}$, for $i = 1, \ldots, n$, such that

$$\cos \alpha = c_1 \vee \cdots \vee c_m.$$

For each *i*, take a positive $\gamma_i \in \mathcal{R}L$ such that $c_i = \operatorname{coz}(\gamma_i)$. Suppose, by way of contradiction, that $P \notin \bigcup_{\lambda} \tau_L(I_{\lambda})$. Then $\mathbf{O}^{I_{\lambda}} \subseteq P$ for every $\lambda \in \Lambda$. In particular, $\mathbf{O}^{I_{\lambda_i}} \subseteq P$ for each $i = 1, \ldots, n$, which implies $\gamma_i \in P$ for each *i*, and hence $\gamma_1 + \cdots + \gamma_n \in P$. Since $\cos \alpha = \cos(\gamma_1 + \cdots + \gamma_n)$ and *P* is a *z*-ideal, we have that $\alpha \in P$, and thus we have reached a contradiction. Therefore τ_L is a frame homomorphism.

Since the frames βL and $\mathfrak{O}(\operatorname{Min}(\mathcal{R}L))$ are regular, to prove that τ_L is one-one it suffices to show that τ_L is codense. Consider therefore any $I \in \beta L$ with $\tau_L(I) = \top$. This implies $\mathcal{U}(\mathbf{O}^I) = \top$, so that $\mathbf{O}^I \notin P$, for any minimal prime ideal P of $\mathcal{R}L$. Suppose, for contradiction, that $I \neq 1_{\beta L}$. Since βL has enough points, take a point $J \in \operatorname{Pt}(\beta L)$ with $I \leq J$. The maximal ideal \mathbf{M}^J contains a minimal prime ideal, say P. Then $\mathbf{O}^J \subseteq P$. Since $I \leq J$, we have $\mathbf{O}^I \subseteq \mathbf{O}^J \subseteq P$; and hence a contradiction. Therefore $I = 1_{\beta L}$, as required. \Box

Recall that a frame L is basically disconnected if $c^* \vee c^{**} = 1$ for every $c \in \operatorname{Coz} L$. Observe that if $a \in L$ is complemented, then $\mathbf{O}^{r_L(a)} = \mathbf{M}_a$. This is so because if $\alpha \in \mathbf{M}_a$ then $\operatorname{coz} \alpha \leq a \prec a$, so that $\operatorname{coz} \alpha \in r_L(a)$, hence $\alpha \in \mathbf{O}^{r_L(a)}$. We will need some results from elsewhere.

For a commutative ring A with identity, let Max(A) denote the space of maximal ideals of A with the hull-kernel topology. Recall that the topology of Max(A) is precisely the frame

$$\mathfrak{O}(\operatorname{Max}(A)) = \{ \mathcal{M}(Q) \mid Q \text{ is an ideal of } A \},\$$

where, for any ideal Q of A,

$$\mathcal{M}(Q) = \{ M \in \operatorname{Max}(A) \mid M \not\supseteq Q \}$$

As before we write $\mathcal{M}(a)$ for $\mathcal{M}(\langle a \rangle)$. Scott Woodward proved in his PhD thesis [15] that if A is an f-ring with zero Jacobson radical, then a subset of Max(A) is clopen precisely if it is of the form $\mathcal{M}(e)$, for some idempotent $e \in A$.

It can be deduced from results in [4] that, for any completely regular

frame L,

$$\mathfrak{O}(\operatorname{Max}(\mathcal{R}L)) \cong \beta L,$$

in perfect analogy with the spatial result that Max(C(X)) is homeomorphic to βX , for any Tychonoff space X. For each ideal Q of $\mathcal{R}L$, denote by I_Q the element of βL given by

$$I_Q = \bigvee \{ r_L(\cos \alpha) \mid \alpha \in Q \}.$$

A careful analysis reveals that the map

$$\varrho_L \colon \mathfrak{O}(\operatorname{Max}(\mathcal{R}L)) \to \beta L$$
 defined by $\varrho_L(\mathcal{M}(Q)) = I_Q$

is well defined, and is a frame isomorphism. We shall demonstrate only that it is well defined. For this we need only show that if P and Q are ideals of $\mathcal{R}L$ with $\mathcal{M}(P) = \mathcal{M}(Q)$, then $I_P = I_Q$. Observe that, for any $J \in Pt(\beta L)$,

$$Q \subseteq \mathbf{M}^J \iff r_L(\cos \alpha) \le J \text{ for every } \alpha \in Q$$
$$\iff I_Q \le J.$$

Since I_Q is the meet of points of βL above it, and since $\mathcal{M}(P) = \mathcal{M}(Q)$ if and only if P and Q are contained in exactly the same maximal ideals, it follows that $I_P = I_Q$.

We remind the reader that an ideal I of a commutative ring is called a *d-ideal* if, for every $a \in I$, $Ann^2(a) \subseteq I$. Minimal prime ideals are *d*-ideals.

Proposition 3.2. τ_L is an isomorphism iff L is basically disconnected.

Proof. (\Rightarrow) Assume τ_L is an isomorphism. By [7, Proposition 3.3], it suffices to show that the annihilator of every element of $\mathcal{R}L$ is a principal ideal generated by an idempotent. By the current hypothesis, the

composite

$$\mathfrak{O}(\operatorname{Max}(\mathcal{R}L)) \xrightarrow{\varrho_L} \beta L \xrightarrow{\tau_L} \mathfrak{O}(\operatorname{Min}(\mathcal{R}L))$$

is an isomorphism. Let $\alpha \in \mathcal{R}L$. Since $\mathcal{U}(\alpha)$ is complemented, the element of $\mathfrak{O}(\operatorname{Max}(\mathcal{R}L))$ mapped to it by the isomorphism $\tau_L \cdot \varrho_L$ is complemented, and so, by the result of Woodward cited above, there is an idempotent $\eta \in \mathcal{R}L$ such that $\tau_L \varrho_L(\mathcal{M}(\eta)) = \mathcal{U}(\alpha)$. It is clear that $I_{\langle \eta \rangle} =$ $r_L(\operatorname{coz} \eta)$, so that $\mathcal{U}(\alpha) = \mathcal{U}(\mathbf{O}^{r_L(\operatorname{coz} \eta)})$. Since $\operatorname{coz} \eta$ is complemented (as η is an idempotent), $\eta \in r_L(\operatorname{coz} \eta)$, and hence, for any $P \in \operatorname{Min}(\mathcal{R}L)$,

$$\eta \notin P \iff \boldsymbol{O}^{r_L(\operatorname{coz} \eta)} \notin P$$

Thus, $\mathcal{U}(\alpha) = \mathcal{U}(\eta)$, and hence, by [13, Theorem 2.7],

Ann
$$(\alpha) = \bigcap \mathcal{U}(\alpha) = \bigcap \mathcal{U}(\eta) = \operatorname{Ann}(\eta) = \langle \mathbf{1} - \eta \rangle.$$

Since $1 - \eta$ is an idempotent, we are done.

(\Leftarrow) We need only show that τ_L is surjective. Because the elements $\mathcal{U}(\alpha)$ form a base for $\mathcal{O}(\operatorname{Min}(\mathcal{R}L))$, we shall be done if we show that each such element has something mapped to it. Now, since minimal prime ideals are *d*-ideals, for any $\alpha \in \mathcal{R}L$ and minimal prime ideal *P* of $\mathcal{R}L$, we have

$$\alpha \notin P \iff \operatorname{Ann}^2(\alpha) \nsubseteq P,$$

so that, in light of $\operatorname{Ann}^2(\alpha) = M_{(\cos \alpha)^{**}} = O^{r_L((\cos \alpha)^{**})}$, as $(\cos \alpha)^{**}$ is

complemented since L is basically connected,

$$\alpha \notin P \iff \boldsymbol{O}^{r_L((\cos \alpha)^{**})} \notin P.$$

This implies $\tau_L(\mathbf{O}^{r_L((\cos \alpha)^{**})}) = \mathcal{U}(\alpha)$, which shows that τ_L is onto, and is therefore an isomorphism.

Recall that a homomorphism $h: L \to M$ is said to be *-dense [12] if, for any $b \in M$, $h_*(b) = 0$ implies b = 0. This captures, in a slightly more general form, the notion of a surjective continuous function $f: X \to Y$ being irreducible, in the sense that f[K] = Y for any closed $K \subseteq X$ implies K = X.

Proposition 3.3. τ_L is *-dense.

Proof. We first calculate the right adjoint of τ_L . With the notation as above, note that, for any ideal P of $\mathcal{R}L$,

$$I_P = \bigcup \{ r_L(\operatorname{coz} \alpha) \mid \alpha \in P \}$$

because the join defining I_P is directed. We show that $\tau_L(I_P) \subseteq \mathcal{U}(P)$. To start, observe that $\mathbf{O}^{I_P} \subseteq P$. Indeed, let $\alpha \in \mathbf{O}^{I_P}$. Then $\cos \alpha \in I_P$, implying $\cos \alpha \prec \cos \beta$ for some $\beta \in P$. By [5, Lemma 4.4], this implies α is a multiple of β , whence $\alpha \in P$. Therefore

$$\tau_L(I_P) = \mathcal{U}(\mathbf{O}^{I_P}) \subseteq \mathcal{U}(P).$$

Now, given any ideal Q of $\mathcal{R}L$, let \overline{Q} be the subset of $\mathcal{R}L$ defined by

$$\bar{Q} = \bigcup \{T \mid T \text{ is an ideal of } \mathcal{R}L \text{ with } \mathcal{U}(T) = \mathcal{U}(Q)\}$$

The collection whose union is computed is directed because $\mathcal{U}(T_1) = \mathcal{U}(T_2) = \mathcal{U}(Q)$ implies $\mathcal{U}(T_1 + T_2) = \mathcal{U}(Q)$. Thus, \bar{Q} is an ideal, and, in fact, the largest ideal of $\mathcal{R}L$ with $\mathcal{U}(\bar{Q}) = \mathcal{U}(Q)$. We claim that

$$(\tau_L)_*(\mathcal{U}(Q)) = I_{\bar{Q}}.$$

As observed above, $\tau_L(I_{\bar{Q}}) \subseteq \mathcal{U}(\bar{Q}) = \mathcal{U}(Q)$. Consider any $J \in \beta L$ with $\tau_L(J) \subseteq \mathcal{U}(Q)$. Then $\mathcal{U}(\mathbf{O}^J) \subseteq \mathcal{U}(Q)$, which implies

$$\boldsymbol{O}^{J} \subseteq \boldsymbol{O}^{J} + Q \subseteq \bar{Q}.$$

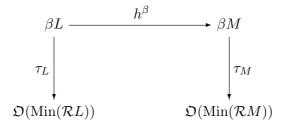
Now let $a \in J$ and take a $\gamma \in \mathcal{R}L$ such that $a \prec \cos \gamma \in J$. Then $\gamma \in \mathbf{O}^J \subseteq \overline{Q}$, which shows that $a \in I_{\overline{Q}}$. Therefore $J \subseteq I_{\overline{Q}}$, and hence $(\tau_L)_*(\mathcal{U}(Q)) = I_{\overline{Q}}$, as claimed.

Suppose now that $\mathcal{U}(Q)$ is such that $(\tau_L)_*(\mathcal{U}(Q)) = 0_{\beta L}$. Then $I_{\bar{Q}} = 0_{\beta L}$, which, by complete regularity, implies $\bar{Q} = \{\mathbf{0}\}$, and hence $\mathcal{U}(Q) = \mathcal{U}(\bar{Q}) = \bot$. So τ_L is *-dense.

In the introduction we recalled the Stone extension $h^{\beta} \colon \beta L \to \beta M$ of a frame homomorphism $h \colon L \to M$. We remind the reader that, because of the way we view βL , the map h^{β} is given by

$$h^{\beta}(I) = \{ c \in \operatorname{Coz} M \mid c \le h(d) \text{ for some } d \in I \}.$$

In light of the above, we have the wedge



which we would like to complete into a commutative square by filling in a homomorphism, say $\bar{h}: \mathfrak{O}(\operatorname{Min}(\mathcal{R}L)) \to \mathfrak{O}(\operatorname{Min}(\mathcal{R}M))$, induced by h. We shall need to restrict the map h by requiring that the inverse image of any minimal prime ideal of $\mathcal{R}M$ under the ring homomorphism $\mathcal{R}h: \mathcal{R}L \to \mathcal{R}M$ be minimal prime. This might sound too stringent, but observe that any homomorphism out of a P-frame has this property because L is a P-frame if and only if every prime ideal of $\mathcal{R}L$ is minimal prime [5, Proposition 4.9].

Let us introduce the following notation. Given a homomorphism $h: L \to M$ and an ideal Q of $\mathcal{R}L$, we set

$$Q_{(h)} = \{ \gamma \in \mathcal{R}M \mid \cos \gamma \le h(\cos \alpha) \text{ for some } \alpha \in Q \}.$$

A routine calculation, using properties of the cozero map, shows that $Q_{(h)}$ is an ideal of $\mathcal{R}M$, which is proper if and only if h is *coz-codense*, meaning that the only cozero it takes to the top is the top. Saying " $(\mathcal{R}h)^{-1}[P]$ is a minimal prime ideal for very minimal prime ideal P of $\mathcal{R}M$ " is quite a mouthful, so we shall say h is *balanced* if it has this property.

Lemma 3.4. Let $h: L \to M$ be a balanced homomorphism. For any ideal Q of $\mathcal{R}L$, and any $T \in Min(\mathcal{R}M)$, $Q_{(h)} \notin T$ iff $Q \notin (\mathcal{R}h)^{-1}[T]$.

Proof. Suppose $Q_{(h)} \nsubseteq T$, and take $\beta \in Q_{(h)}$ with $\beta \notin T$. Pick $\alpha \in Q$ such that

$$\cos \beta \le h(\cos \alpha) = \cos(\mathcal{R}h(\alpha)).$$

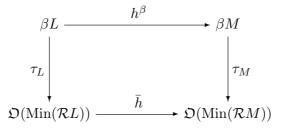
Since T is a z-ideal and $\beta \notin T$, we must have $\mathcal{R}h(\alpha) \notin T$, whence $\alpha \notin (\mathcal{R}h)^{-1}[T]$. Therefore $Q \nsubseteq (\mathcal{R}h)^{-1}[T]$. Conversely, if γ is in Q but not in $(\mathcal{R}h)^{-1}[T]$, then $\mathcal{R}h(\gamma)$ is in $Q_{(h)}$ but not in T, showing that $Q_{(h)} \nsubseteq T$.

In what follows we use subscripts on \mathcal{U} to indicate the frame with reference to which the collection of minimal prime ideals is being contemplated. Let $h: L \to M$ be a balanced homomorphism. Define

$$\bar{h}: \mathfrak{O}(\operatorname{Min}(\mathcal{R}L)) \to \mathfrak{O}(\operatorname{Min}(\mathcal{R}M)) \quad \text{by} \quad \bar{h}(\mathcal{U}_L(Q)) = \mathcal{U}_M(Q_{(h)}).$$

Since $\mathcal{U}_L(Q)$ is not uniquely determined by Q, we must check that \overline{h} is a well-defined function. Suppose $\mathcal{U}_L(Q) = \mathcal{U}_L(R)$ for some ideals Q and R in $\mathcal{R}L$. Let $T \in \mathcal{U}_M(Q_{(h)})$. Then $Q_{(h)} \notin T$, so that, by the lemma above, $Q \notin (\mathcal{R}h)^{-1}[T]$, whence $R \notin (\mathcal{R}h)^{-1}[T]$, thence $R_{(h)} \notin T$. Therefore $\mathcal{U}_M(Q_{(h)}) \subseteq \mathcal{U}_M(R_{(h)})$, and hence equality by symmetry.

Proposition 3.5. Let $h: L \to M$ be a balanced homomorphism. The map \bar{h} is a frame homomorphism making the square



commute. If L is basically disconnected, then h is unique with this property.

Proof. It is immediate that \bar{h} preserves the bottom and the top. An easy application of Lemma 3.4 shows that \bar{h} preserves order. We show that \bar{h} preserves binary meets. Consider any two ideals P and Q in \mathcal{RL} . It

suffices to show that

$$\bar{h}(\mathcal{U}_L(P)) \cap \bar{h}(\mathcal{U}_L(Q)) \subseteq \bar{h}(\mathcal{U}_L(P) \cap \mathcal{U}_L(Q)) = \bar{h}(\mathcal{U}_L(PQ)).$$

Let $T \in \bar{h}(\mathcal{U}_L(P)) \cap \bar{h}(\mathcal{U}_L(Q))$. Then $P_{(h)} \nsubseteq T$ and $Q_{(h)} \nsubseteq T$, which, by Lemma 3.4, implies $P \nsubseteq (\mathcal{R}h)^{-1}[T]$ and $Q \nsubseteq (\mathcal{R}h)^{-1}[T]$, so that $PQ \nsubseteq (\mathcal{R}h)^{-1}[T]$, since $(\mathcal{R}h)^{-1}[T]$ is a prime ideal. Consequently, $(PQ)_{(h)} \nsubseteq T$, and hence $T \in \bar{h}(\mathcal{U}_L(PQ))$. Therefore \bar{h} preserves binary meets.

Next, let $\{\mathcal{U}_L(Q_i) \mid i \in I\}$ be a collection of elements of $\mathfrak{O}(\operatorname{Min}(\mathcal{R}L))$. We aim to show that $\bar{h}(\bigvee_i \mathcal{U}_L(Q_i)) \leq \bigvee_i \bar{h}(\mathcal{U}_L(Q_i))$. Put $P = \sum Q_i$. Then

$$\bar{h}\Big(\bigvee_{i} \mathcal{U}_{L}(Q_{i})\Big) = \bar{h}\Big(\bigcup_{i} \mathcal{U}_{L}(Q_{i})\Big) = \bar{h}\Big(\mathcal{U}_{L}(P)\Big) = \mathcal{U}_{M}(P_{(h)}).$$

Let $T \in \mathcal{U}_M(P_{(h)})$. Then, by Lemma 3.4, $\sum Q_i \not\subseteq (\mathcal{R}h)^{-1}[T]$, which implies that there is an index $i_0 \in I$ for which $Q_{i_0} \not\subseteq (\mathcal{R}h)^{-1}[T]$, so that $(Q_{i_0})_{(h)} \not\subseteq T$. Consequently,

$$T \in \mathcal{U}_M((Q_{i_0})_{(h)}) \subseteq \bigcup_i \mathcal{U}_M((Q_i)_{(h)}) = \bigvee_i \bar{h}\Big(\mathcal{U}_L(Q_i)\Big).$$

Therefore \bar{h} is a frame homomorphism.

To show that the square commutes, let $I \in \beta L$. Then

$$\bar{h}\tau_L(I) = \bar{h}(\mathcal{U}_L(\mathbf{O}^I)) = \mathcal{U}_M(\mathbf{O}^I_{(h)}),$$

and

$$au_M h^{\beta}(I) = \mathcal{U}_M(\mathbf{O}^{h^{\beta}(I)}).$$

We finish the proof by showing that $O_{(h)}^{I} = O^{h^{\beta}(I)}$. Let $\gamma \in O_{(h)}^{I}$. Then $\cos \gamma \leq h(\cos \alpha)$ for some $\alpha \in O^{I}$. But $\alpha \in O^{I}$ implies $\cos \alpha \in I$, so that $\cos \gamma \in h^{\beta}(I)$, whence $\gamma \in O^{h^{\beta}(I)}$. Therefore $O_{(h)}^{I} \subseteq O^{h^{\beta}(I)}$. On the other hand, let $\sigma \in O^{h^{\beta}(I)}$. Then $\cos \sigma \in h^{\beta}(I)$, which implies $\cos \sigma \leq h(\cos \mu)$ for some μ with $\cos \mu \in I$. Thus $\mu \in O^{I}$, and therefore $\sigma \in O_{(h)}^{I}$.

Now suppose L is basically disconnected and that $g: \mathfrak{O}(\operatorname{Min}(\mathcal{R}L)) \to \mathfrak{O}(\operatorname{Min}(\mathcal{R}M))$ satisfies $g \cdot \tau_L = \tau_M \cdot h^{\beta}$. Then $g \cdot \tau_L = \bar{h} \cdot \tau_L$, and hence $g = \bar{h}$ because τ_L is an isomorphism by Proposition 3.2.

Remark 1. In [8] it is shown that, for a surjective frame homomorphism $h: L \to M$, the ring homomorphism $\mathcal{R}h: \mathcal{R}L \to \mathcal{R}M$ contracts maximal ideals to maximal ideals if and only if, for every $c \in \operatorname{Coz} L$ and $d \in \operatorname{Coz} M$ with $h(c) \lor d = 1$, there is a $u \in \operatorname{Coz} L$ such that $u \lor c = 1$, and $h(u) \leq d$. We have not determined if there is such an element-wise characterisation for balanced maps.

4 Concluding observations regarding $Min(\mathcal{R}L)$

It is shown in [13] that, for any Tychonoff space X, Min(C(X)) is countably compact, and it is compact and basically disconnected precisely when every open set is dense in some cozero-set. We conclude by demonstrating that the same results hold for frames.

A ring A is said to satisfy the countable annihilator condition [13], or is called a *c.a.c.* ring, if for any sequence (a_n) in A, there is an $x \in A$ such that $\operatorname{Ann}(x) = \bigcap_{n=1}^{\infty} \operatorname{Ann}(a_n)$. It is observed in [6] that $\mathcal{R}L$ is a c.a.c. ring. Consequently, in view of [13, Theorem 4.9], we have the following result.

Proposition 4.1. $Min(\mathcal{R}L)$ is countably compact for any completely regular frame L.

Following [10], we say L is cozero approximated if, for every $x \in L$, there is an $a \in \operatorname{Coz} L$ such that $a^* = x^*$. In spaces this says for every open set $U \subseteq X$, there is a cozero set V of X such that $\overline{U} = \overline{V}$. In [11] a space with this property is called *fraction dense*. Theorem 4.4 of [13] states that if A is an a.c. ring (a weaker form of the c.a.c. property), then $\operatorname{Min}(A)$ is compact and extremally disconnected precisely when for every $B \subseteq A$ there is a $y \in A$ such that $\operatorname{Ann}(B) = \operatorname{Ann}(y)$. Now since annihilator ideals of $\mathcal{R}L$ are precisely the ideals M_{a^*} for $a \in L$, and element-annihilators are exactly the ideals M_{c^*} , for $c \in \operatorname{Coz} L$, we have the following.

Proposition 4.2. $Min(\mathcal{R}L)$ is compact and basically disconnected iff L is cozero approximated.

The ring $\mathcal{R}L$ is an *f*-ring with bounded inversion, which is to say every $\alpha \geq \mathbf{1}$ is invertible. The bounded part of $\mathcal{R}L$ is denoted by \mathcal{R}^*L . An easy algebraic calculation shows that $\frac{\alpha}{\mathbf{1}+|\alpha|} \in \mathcal{R}^*L$ for any $\alpha \in \mathcal{R}L$. Since $\alpha = \frac{\alpha}{\mathbf{1}+|\alpha|} \cdot (\mathbf{1}+|\alpha|)$, and $\operatorname{Ann}(\mathbf{1}+|\alpha|)$ is the zero ideal, it follows from [13, Theorem 5.1] that $\operatorname{Min}(\mathcal{R}(\beta L))$ is homeomorphic to $\operatorname{Min}(\mathcal{R}L)$. Consequently, βL is cozero approximated iff L is cozero approximated.

Remark 2. That βL is cozero approximated if and only if L is cozero approximated can also be deduced from these two results: (i) if $h: L \rightarrow M$ is dense onto and L is cozero approximated, then so is M. This is straightforward. (ii) If $h: L \rightarrow M$ is dense coz-onto and M is cozero approximated, then so is L. To see this, use the fact that if $g: N \rightarrow K$ is a dense frame homomorphism, then $x^* = g_*g(x^*)$ for every $x \in N$ (see [9, Lemma 3.1]).

Bibliography

- R.N. Ball and J. Walters-Wayland, C- and C*-quotients in pointfree topology, Dissertationes Mathematicae (Rozprawy Mat.), Vol. 412 (2002), 62pp.
- [2] B. Banaschewski, The real numbers in pointfree topology, Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 1997.
- [3] B. Banaschewski, C. Gilmour, Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37 (1996), 577-587.
- [4] B. Banaschewski and M. Sioen, Ring ideals and the Stone-Cech compactification in pointfree topology, J. Pure Appl. Algebra 214 (2010), 2159-2164.
- [5] T. Dube, Some ring-theoretic properties of almost P-frames, Alg. Univ., 60 (2009), 145-162.
- [6] T. Dube, Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ. Padova 123 (2010), 37-53.
- [7] T. Dube, Notes on pointfree disconnectivity with a ring-theoretic slant, Appl. Categor. Struct. 18 (2010), 55-72.
- [8] T. Dube and M. Matlabyane, Concerning some variants of C-embedding in pointfree topology, Top. Appl. 158 (2011), 2307-2321.
- [9] T. Dube and I. Naidoo, On openness and surjectivity of lifted frame homomorphisms, Top. Appl. 157 (2010), 2159-2171.
- [10] G. Gruenhage, Products of cozero complemented spaces, Houst. J. Math. 32 (2006), 757-773.
- [11] A.W. Hager and J. Martínez, Fraction-dense algebras and spaces, Canad. J. Math. 45 (1993), 977-996.
- [12] A.W. Hager and J. Martínez, Patch-generated frames and projectable hulls, Appl. Categor. Struct. 15 (2007), 49-80.
- [13] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130.
- [14] J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel (2012).
- [15] S. Woodward, On f-rings which are rich in idempotents, PhD thesis (1992), University of Florida.

Themba Dube, Department of Mathematical Sciences, University of South Africa, P.O. Box 392, 0003 Unisa, South Africa.

Email: dubeta@unisa.ac.za