[1] Alexandrof, P., Diskrete Raume, Mat. Sb. (N.S.) 2 (1937), 501-518.
[2] Banaschewski, B., Coherent frames, in: B. Banaschewski and R.-E. Hofmann (eds.), Continuous Lattices, Lecture Notes in Math. 871, Springer, Berlin, 1981, 1-11.
[3] Banaschewski, B., The power of the ultrafilter theorem, J. London Math. Soc. 27(2) (1983), 193-202.
[4] Banaschewski, B., Prime elements from prime ideals, Order 2 (1985), 211-213.
[5] Banaschewski, B. and Erne, M., On Krull's separation lemma, Order 10 (1993), 253-260.
[6] Banaschewski, B. and Harting, R., Lattice aspects of radical ideals and choice principles, Proc. London Math. Soc. 50 (1985), 385-404.
[7] Birkhof, G., Lattice Theory", Amer. Math. Soc. Coll. Publ. 25, Providence, R.I., 1st ed. 1948, 3d ed. 1973.
[8] Brunner, N., Sequential compactness and the axiom of choice, Notre Dame J. Form. Log. 24 (1983), 89-92.
[9] Erne, M., Einfuhrung in die Ordnungstheorie", B.I.-Wissenschaftsverlag, Bibliographisches Institut, Mannheim, 1982.
[10] Erne, M., Order, Topology and Closure", University of Hannover, 1982.
[11] Erne, M., On the existence of decompositions in lattices, Algebra Universalis 16 (1983), 338-343.
[12] Erne, M., A strong version of the Prime Element Theorem, Preprint, University of Hannover, 1986.
[13] Erne, M., Ordnungs- und Verbandstheorie", Fernuniversitat Hagen, 1987.
[14] Erne, M., The ABC of order and topology, in: H. Herrlich and H.-E. Porst (eds.), Category Theory at Work", Heldermann, Berlin, 1991, 57-83.
[15] Erne, M., Prime ideal theorems and systems of finite character, Comment. Math. Univ. Carolinae 38 (1997), 513-536.
[16] Erne, M., Prime ideal theory for general algebras, Appl. Categ. Structures 8 (2000), 115-144.
[17] Erne, M., Minimal bases, ideal extensions, and basic dualities, Topology Proc. 29 (2005), 445-489.
[18] Erne, M., Choiceless, pointless, but not useless: dualities for preframes, Appl. Categ. Structures 15 (2007), 541-572.
[19] Erne, M., Infinite distributive laws versus local connectedness and compactness properties, Topology Appl. 156 (2009) 2054-2069.
[20] Erne, M., The strength of prime ideal separation, sobriety, and compactness theorems, Preprint, Leibniz University Hannover, 2016. See also: Erne, M., Sober spaces, well-filtration and compactness principles, http://www.iazd.uni-hannover.de/ erne/preprints/sober.pdf (2007).
[21] Felscher, W., Naive Mengen und abstrakte Zahlen" III, B.I. Wissenschaftsverlag, Mannheim, 1979.
[22] Frasse, R., Theory of Relations", Studies in Logic 118, North-Holland, Amsterdam, 1986.
[23] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., and Scott, D.S., Continuous Lattices and Domains", Oxford University Press, 2003.
[24] Gierz, G., Lawson, J.D., Stralka, A.R., Quasicontinuous posets, Houston J. Math. 9 (1983), 191-208.
[25] Heckmann, R. and Keimel, K., Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor. Comput. Sci. 298 (2013), 215-232.
[26] Herrlich, H., Axiom of Choice", Lecture Notes in Math. 1876, Springer, Berlin Heidelberg, 2006.
[27] Hoft, H. and Howard, P., Well-ordered subsets of linearly ordered sets, Notre Dame J. Form. Log. 35 (1994), 413-425.
[28] Howard, P. and Rubin, J.E., Consequences of the Axiom of Choice", AMS Mathematical Surveys and Monographs 59, Providence, 1998.
[29] Isbell, J.R., Function spaces and adjoints, Math. Scand. 36 (1975), 317-339.
[30] Jech, T.J., The Axiom of Choice", North-Holland, Amsterdam, 1973.
[31] Johnstone, P.T., Scott is not always sober, in: B. Banaschewski and R.-E. Hofmann (eds.), Continuous Lattices", Lecture Notes in Math. 871, Springer, Berlin, 1981, 282-283.
[32] Johnstone, P.T., Stone Spaces", Cambridge University Press, 1982.
[33] Jung, A., Cartesian Closed Categories of Domains, CWI Tracts 66, Centrum voor Wiskunde en Informatica, Amsterdam (1989), 107 pp.
[34] Konig, D., Uber eine Schlussweise aus dem Endlichen ins Unendliche: Punktmengen. Kartenfarben. Verwandtschaftsbeziehungen. Schachspiel, Acta Lit. Sci. Reg. Univ. Hung. 3 (1927), 121-130.
[35] Krom, M., Equivalents of a weak axiom of choice, Notre Dame J. Form. Log. 22 (1981), 283-285.
[36] Moore, G.H., Zermelo's Axiom of Choice", Springer, Berlin Heidelberg NewYork, 1982.
[37] Picado, J. and Pultr, A., Frames and Locales", Birkhauser, Basel, 2012.
[38] Rubin, H., and Scott, D.S., Some topological theorems equivalent to the prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389 (Abstract).
[39] Rudin, M., Directed sets which converge, in: McAuley, L.F., and Rao, M.M. (eds.), General Topology and Modern Analysis", University of California, Riverside, 1980, Academic Press, 1981, 305-307.
[40] Scott, D.S., Prime ideal theorems for rings, lattices and Boolean algebras, Bull. Amer. Math. Soc. 60 (1954), 390 (Abstract).
[41] Tarski, A., Prime ideal theorems for Boolean algebras and the axiom of choice, Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstract).
[42] Tarski, A., Algebraic and axiomatic aspects of two theorems on sums of cardinals, Fund. Math. 35 (1948), 79-104.
[43] Wyler, O., Dedekind complete posets and Scott topologies, in: B. Banaschewski and R.E. Hofmann (eds.), Continuous Lattices", Lecture Notes in Math. 871, pringer, Berlin, 1981, 384-389.