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Abstract. In this paper, the main results are: a study of the finitely
generated MV-algebras of continuous functions from the n-th power of the
unit real interval I to I; a study of Hopfian MV-algebras; and a category-
theoretic study of the map sending an MV-algebra as above to the range of
its generators (up to a suitable form of homeomorphism).

1 Introduction

MV-algebras are the structures corresponding to  Lukasiewicz many valued
logic, in the same sense in which Boolean algebras correspond to classical
logic. Usually MV-algebras (in particular the finitely presented ones) are
represented by McNaughton functions, which are continuous piecewise lin-
ear functions, but it could be interesting to represent MV-algebras with
non-linear functions, especially for applications. One could relax the lin-
earity requirement and consider piecewise polynomial functions, which are
important for several reasons, for instance they are the subject of the cel-
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ebrated Pierce-Birkhoff conjecture, see [2], and include, in one variable,
the spline functions, a kind of functions which have been deeply studied,
see [14] and [15]. Other examples are Lyapunov functions used in the study
of dynamical systems, see [8], and logistic functions, see [17].

We stick to continuous functions, despite that for certain applications
it could be reasonable to use discontinuous functions, for instance in order
to model arbitrary signals in Fourier analysis. Continuous functions are
preferable for technical reasons; for instance, they preserve compact sets.
So, our MV-algebras of interest will be the MV-algebras of all continuous
functions from [0, 1]n to [0, 1], which we will denote by Cn. We call also Mn

the MV-algebra of McNaughton functions from [0, 1]n to [0, 1], that is, Mn is
the set of all continuous piecewise affine functions with integer coefficients.
Mn is isomorphic to the free MV-algebra in n generators. Then the free MV-
algebras (over n generators) coincide with the isomorphic copies of Mn. In
this paper, as a rule, we prefer not to identify isomorphic MV-algebras of
functions, because they can consist of functions with very diverse geometric
properties, which may be relevant for applications.

The main results of this paper are:

1. A study of the finitely generated MV-subalgebras of Cn (Theorem
2.8).

2. A study of Hopfian MV-algebras (Section 3).

3. A category-theoretic study of the map sending a finitely generated
MV-subalgebra of Cn to the range of its generators, modulo definable
homeomorphisms (Theorem 4.6).

2 MV-algebras of non-linear functions

For definitions and preliminaries we refer to the standard references [4, 11].
Let H = (h1, . . . , hn) be an n-tuple of functions from [0, 1]n to [0, 1].

The corresponding set is ∼H = {h1, . . . , hn}. Assume that (h1, . . . , hn) is
a homeomorphism from [0, 1]n to [0, 1]n. Then the map aH from Cn to Cn
such that aH(g) = g(h1, . . . , hn) is an MV-algebra automorphism of Cn, and
it sends the i-th projection πi to hi, for every i = 1, . . . , n. Since π1, . . . , πn
generate Mn, it follows that h1, . . . , hn generate a copy of Mn.
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Note that the MV-algebra generated by ∼H consists of the functions
of the form f ◦ H with f ∈ Mn, that is, the piecewise linear functions
in the variables h1(x1, . . . , xn), . . . , hn(x1, . . . , xn). So these functions are
piecewise linear up to a change of coordinates.

Since there are continuum many homeomorphisms from [0, 1]n to [0, 1]n

whereas each copy of Mn is countable, we obtain:

Proposition 2.1. Cn contains continuum many copies of Mn.

Definition 2.2. (see [9]) Let C ⊆ [0, 1]n and D ⊆ [0, 1]m. We call definable
map from C to D any m-tuple of McNaughton functions in Mn which sends
C to D. We call definable homeomorphism between C and D an invertible
definable map from C to D whose inverse is a definable map from D to C.

Given a subset C of [0, 1]n, it is useful to denote by Mn|C the MV-algebra
of McNaughton functions restricted to C.

In the rest of this paper we will treat several kinds of subsets of the
n-cube. To this aim we find it useful to introduce the following, quite ad
hoc, terminology:

Definition 2.3. Let C be a closed subset of [0, 1]m. We say that C is n-fat
if there is a definable map F from C to [0, 1]n such that F (C) contains a
nonempty open subset of [0, 1]n. We say that C is n-slim if C is not n-fat.

Lemma 2.4. Let a, b be two different real numbers. Them, there is a func-
tion g ∈M1 such that g(a) = 0 and g(b) = 1.

Proof. Suppose a < b (the case b < a is analogous). There is a rational i/n
such that a < i/n < (i+1)/n < b. Consider the unique function g such that
g(x) = 0 for 0 ≤ x ≤ i/n, g(x) = 1 for (i+ 1)/n ≤ x ≤ 1, and g is affine in
the interval [i/n, (i+ 1)/n]. This function has the required properties.

Lemma 2.5. A closed subset C of [0, 1]m is n-fat if and only if there is a
surjective definable map from C to [0, 1]n.

Proof. If the definable map from C onto [0, 1]n exists, then clearly, C is
n-fat. Conversely, suppose F (C) has nonempty interior in [0, 1]n. Then
F (C) contains a product of n rational intervals [a1, b1] × . . . × [an, bn]. By
Lemma 2.4, let gi ∈M1 be a McNaughton function such that gi(ai) = 0 and
gi(bi) = 1. Let g′i(x1, . . . , xn) = gi(xi) and G = (g′1, . . . , g

′
n). Then (G◦F )|C

is a surjective definable map from C to [0, 1]n.
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By the previous lemma, fatness is not really a new concept; however,
the fatness versus slimness terminology turns out to be useful. In fact we
observe that:

Lemma 2.6.
(1) The union of two n-slim closed subsets of [0, 1]m is n-slim.
(2) The image of an n-slim closed subset of [0, 1]m under a definable

map is n-slim.
(3) If m < n, then [0, 1]m is n-slim.

Proof. For the first point, let C,D be two n-slim closed subsets. Suppose
for an absurdity C ∪ D is n-fat. Then there is a definable map F such
that F (C ∪ D) contains an open subset O of [0, 1]n. Note F (C ∪ D) =
F (C) ∪ F (D). Hence we have O ⊆ F (C) ∪ F (D). Since F (C) is closed,
O \F (C) is an open subset of [0, 1]n, and it is nonempty, otherwise O would
be included in F (D) and D would be n-fat. So C is n-fat, contrary to the
n-slimness of C. Thus C ∪D is n-slim.

For the second point, let C be closed in [0, 1]m and be n-slim. Let F be
a definable map and D = F (C). Suppose for an absurdity that D is n-fat.
Then there is a definable map F ′ such that F ′(D) contains an open set in
[0, 1]n. So, the image of C under the definable map F ′ ◦F contains an open
set in [0, 1]n, contrary to the slimness of C. Thus, D is also n-slim.

For the third point, suppose for an absurdity that [0, 1]m is n-fat. Then
there is a definable map F = (f1, . . . , fn) such that F ([0, 1]m) has nonempty
interior in [0, 1]n and is a rational polyhedron. Now the set T of tuples
t = (g1, . . . , gn), such that gi is an affine constituent of fi, is finite. For
some t ∈ T , t([0, 1]m) must have nonempty interior, because the union of a
finite set of polyhedra with empty interior has empty interior. So, we have
a tuple of affine functions t ∈ T such that t([0, 1]m) has nonempty interior
in [0, 1]n. Since m < n, this is impossible by elementary linear algebra
considerations.

As a main result of the paper, we give a characterization of the n-tuples
of Cn which generate a copy of Mn. We will use the following lemma.

Lemma 2.7. Let H = (h1, . . . , hm) be a m-tuple of functions from [0, 1]n

to [0, 1]. The subalgebra of [0, 1][0,1]n generated by ∼H is isomorphic to
Mm|Range(H).
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Proof. The subalgebra 〈∼H〉 generated by ∼H is the set {g(h1, . . . , hm)|g ∈
Mm}. Consider the map φ sending g ∈ Mm to g(h1, . . . , hm). Indeed, φ is
clearly surjective, and φ(g) = φ(g′) occurs if and only if g and g′ coincide on
the range of H. So, φ gives an isomorphism from Mm|Range(H) to 〈∼H〉.

Theorem 2.8. Given an n-tuple H of elements of Cn, ∼H generates a
copy of Mn if and only if H, considered as a function from [0, 1]n to itself,
is surjective.

Proof. SupposeH is surjective. ThenRange(H) = [0, 1]n andMn|Range(H) =
Mn. By Lemma 2.7, the MV-algebra generated by ∼H is isomorphic to Mn.

(We acknowledge [10] for the implication from left to right). We suppose
that H is not surjective. Since H is continuous, Range(H) is a proper closed
subset of [0, 1]n. For some natural number p, the number of rationals in
Range(H) with denominator p is less than the number of rationals in [0, 1]n

with denominator p. So, the number of maximal ideals in Mn|Range(H) with
rank p is less than the number of maximal ideals of Mn with rank p. Thus,
the two MV-algebras cannot be isomorphic (recall that a maximal ideal M
in an MV-algebra A has rank p if A/M has p+ 1 elements).

Proposition 2.9. If m < n, then no m-tuple of functions of Cn can gen-
erate an MV-algebra containing a copy of Mn.

Proof. Let A be an MV-algebra generated by m functions f1, . . . , fm. Then
the range of (f1, . . . , fm) is n-slim, and also the range of any tuple of elements
of A is n-slim, by Lemma 2.6. Suppose there is an isomorphism φ from Mn

to a subalgebra of A. Let li = φ(πi). Then the range of (l1, . . . , ln) is n-slim
whereas the range of (π1, . . . , πn) is n-fat. So the range of (π1, . . . , πn) is
not contained in the range of (l1, . . . , ln). By Lemma 3.4, there is a function
f ∈ Mn such that f ◦ (l1, . . . , ln) is identically zero but f ◦ (π1, . . . , πn) is
not identically zero. So φ cannot exist.

Corollary 2.10. For every m < n, Mm does not contain any isomorphic
copy of Mn.

Proof. This is because for m < n, every n-tuple in Mm has an n-slim image.

Note that Mn, instead, may contain proper copies of itself. For example,
consider the subalgebra of M1 generated by x⊕ x. Moreover,
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Proposition 2.11. Cn contains a copy of Mm for every m,n.

Proof. We can suppose m > n. Peano in [13] constructed a continuous sur-
jective function from [0, 1] to [0, 1]2. Adding dummy variables, one obtains
a continuous surjective function from [0, 1]n to [0, 1]n+1 for every n. By
composition, we obtain a continuous surjective function F from [0, 1]n to
[0, 1]m for every m > n. Write F = (f1, . . . , fm). The range of F is [0, 1]m.
Let A be the subalgebra of Cn generated by F , and φ : Mm → A be the
function such that φ(f) = f ◦ F . Then φ is an injective homomorphism.
Hence, Cn contains a copy of Mm.

Note that, the construction above provides a canonical copy of Mm in
Cn for every m,n. For instance, consider m = 2 and n = 1. Let S be
the continuous surjective function from [0, 1] to [0, 1]2 given in [13]. Write
S = (S1, S2). Then S1 and S2 generate a copy of M2 in C1.

3 Hopfian MV-algebras

In this section we give another proof of the implication from left to right of
Theorem 2.8. The proof, albeit lengthy, has the advantage of introducing
a notion of universal algebra which is not yet sufficiently exploited in the
MV-algebra literature, but it seems promising. This notion is Hopfianity.

Definition 3.1. An algebraic structure A is called Hopfian if every surjec-
tive endomorphism of A is an automorphism.

Hopfianity was born in group theory, in relation with the fundamental
groups of surfaces studied by Hopf, see [6], but it makes perfect sense in
universal algebra.

Now we continue with the following lemma of universal algebra, for
which we acknowledge [16]:

Lemma 3.2. Let V be a variety with finitary operations generated by finite
algebras. Let F be a free finitely generated object of V . Then F is Hopfian.
Moreover, let X be a minimal cardinality generating set of F . Then X is a
free basis of F .
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Proof. Since V is generated by finite algebras, the relatively free algebras
in V are residually finite (the homomorphisms into the finite algebras gen-
erating V separate points). Any finitely generated, residually finite univer-
sal algebra (with finitary operations) is Hopfian by a theorem of Malcev
(see [5]). So F is Hopfian.

Now suppose X is a minimal cardinality finite generating set for F . Let
Y be a free basis. It must have at least as many elements as X, so we
can choose an onto map from Y to X. This must extend to a surjective
endomorphism from F to F , which must be an automorphism since F is
Hopfian. But then our onto map from Y to X is one-one, so X is a free
basis.

Note that the variety of MV-algebras is generated by finite algebras, so
the proof of the previous lemma implies that Mn is Hopfian for every n.
This was also proven in [12], where more generally we find that

Theorem 3.3. (see [12]) Every finitely presented MV-algebra is Hopfian.

We continue with a lemma:

Lemma 3.4. Let C,D be two closed subsets of [0, 1]n such that C is not
included in D. Then there is a function f ∈ Mn which is identically zero
on D but not identically zero on C.

Proposition 3.5. Every n-tuple of elements of Mn which generates Mn is
surjective.

Proof. First, we show that no n−1-tuple of functions h1, . . . , hn−1 (possibly
with repetitions) generates Mn. In fact, otherwise every n-tuple of elements
of Mn would have the form g1(h1, . . . , hn−1), . . . , gn(h1, . . . , hn−1), where
gi ∈Mn. By Lemma 2.6, the image of any such tuple is n-slim, whereas the
image of π1, . . . , πn is n-fat (it is the whole [0, 1]n).

Hence, every n-tuple H = (h1, . . . , hn) of elements which generate Mn is
a minimal cardinality generating set. The variety of MV-algebras is gener-
ated by finite MV-algebras. Then by the previous lemma, ∼H is a free basis
of Mn. So there is an automorphism α of Mn sending hi to πi. If H were
not surjective, then by Lemma 3.4 there would be a function f ∈ Mn such
that f(h1, . . . , hn) is the identically zero function, whereas f(π1, . . . , πn) is
not the identically zero function. So α could not exist. Hence, H is surjec-
tive.
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From Proposition 3.5 follows the implication from left to right of the
Theorem 2.8, that is a non-surjective n-tuple H of functions in Cn can-
not generate a copy of Mn. In fact, suppose for an absurdity that H =
(h1, . . . , hn) is non-surjective. If the subalgebra of H is isomorphic to Mn

via an isomorphism φ, then φ sends H, which is not surjective, to a gener-
ating n-tuple G of Mn, which is surjective by the previous proposition. By
Lemma 3.4, there is a function f ∈Mn such that f(h1, . . . , hn) is identically
zero but f(g1, . . . , gn) is not identically zero. So, φ cannot exist.

Lemma 3.6. Let C be a closed subset of [0, 1]n. Suppose Mn|C is isomor-
phic to Mn. Then C = [0, 1]n.

Proof. Suppose there is an isomorphism ι : Mn|C → Mn. Let r : Mn →
Mn|C be the restriction map. The kernel of r is the ideal I(C) = {f ∈
Mn|f(x) = 0 for every x ∈ C}. Then ι ◦ r is a surjective endomorphism of
Mn. Since Mn is Hopfian, ι ◦ r is an isomorphism, so r is an isomorphism,
and its kernel is I(C) = 0, and this implies C = [0, 1]n.

[10] poses also the problem whether Theorem 2.8 still holds if H is any
n-tuple of functions from [0, 1]n to [0, 1], not necessarily continuous. The
answer is given in the following corollary.

Corollary 3.7. Let H be an n-tuple of functions from [0, 1]n to [0, 1], not
necessarily continuous. Then ∼H generates a copy of Mn (in the MV-algebra
[0, 1][0,1]n) if and only if Range(H) is dense in [0, 1]n.

Proof. If Range(H) is dense then Mn|Range(H) is isomorphic to Mn|[0,1]n

which is Mn.
Conversely, if Range(H) is not dense, then it has a closure C, and

Mn|Range(H) is isomorphic to Mn|C . So, the MV-algebra generated by ∼H
is isomorphic to Mn|C . If this last MV-algebra is isomorphic to Mn, then
by the previous lemma, this implies C = [0, 1]n, so Range(H) is dense,
contrary to the hypothesis.

We have several examples of Hopfian MV-algebras. First, every simple
MV-algebra is Hopfian. More interestingly, by [12], every finitely presented
MV-algebra is Hopfian, and there is a proper class of Hopfian Boolean al-
gebras by [7].

We add to the collection a seemingly new family of examples in:
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Theorem 3.8. Let us denote with Sm the finite MV-chain with m + 1
elements. Every MV-algebra A which is an infinite product of finite different
MV-chains of the form S2i is Hopfian.

Proof. It is enough to prove that the only surjective homomorphism h from
a product A of finite different MV-chains S2i (where i ∈ I and I ⊆ ω) to a
finite MV-chain Sk is the i − th projection, assuming that k = 2i for some
i ∈ I.

In order to prove the claim above, note that A contains at least one
sequence

s = (0, 0, 0, . . . , 0, 1/2k, 1/2k . . .),

where the first m components are zero and all the others are 1/2k.

If h(s) = 0, then

h(2ks) = h(0, 0, 0, . . . , 1, 1, 1, . . .) = 0,

hence h depends only on the first m components. That is, h(x1, x2, . . .) =
k(x1, x2, . . . , xm), where k is a surjective function from a finite MV-algebra
of the form Sn1 × . . . × Snm to Sk. But every surjective function from a
finite MV-algebra to a finite MV-chain is a projection.

If instead h(s) 6= 0 then h(s) = a/b, where b ≤ k ≤ 2k − 1, and hence
h((2k − 1)s) = 1. By complementation we have

h(¬(2k − 1)s) = h(1, 1, 1, . . . , 1/2k, 1/2k . . .) = 0,

and, since s ≤ ¬((2k − 1)s), we have h(s) = 0. But this is absurd, since
h(s) 6= 0.

We note also that:

Theorem 3.9. The class of all Hopfian MV-algebras cannot be axiomatized
in first order logic.

Proof. Suppose Hopfianity is axiomatized by a first order theory T . Since
T is valid on finite structures, it should be valid also on pseudofinite MV-
algebras. Now {0, 1}ω is pseudofinite by [1], but it is not Hopfian, because
of the Bernoulli shift sending x0, x1, x2, x3 . . . to x1, x2, x3, . . . (in [1], pseud-
ofinite MV-algebras are erroneously called hyperfinite).
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By using the Bernoulli shift we also can prove that:

Theorem 3.10. For every infinite MV-algebra A there is a non-Hopfian
MV-algebra B such that A is a subalgebra of B and B has the same cardi-
nality as A.

Proof. Let B be the set of all countable sequences of elements of A which
are constant except for a finite number of components.

4 A categorial theorem

In this section we prove a category theoretic theorem which generalizes
Theorem 2.8.

Lemma 4.1. (see [11]) The image of a rational polyhedron P under a de-
finable map F is a rational polyhedron.

Lemma 4.2. Let C ⊆ [0, 1]m, D ⊆ [0, 1]n be two closed sets. Then Mm|C
embeds in Mn|D if and only if there is a surjective definable map from D to
C.

Proof. Let F be a definable map from D onto C. Then the function from
f to f ◦ F is an injective homomorphism from Mm|C to Mn|D.

Conversely, suppose that Mm|C embeds in Mn|D. Call j the embedding.
Let us consider the definable map g from D to C given simply by the

counterimage map j−1 between the maximal spaces of the two MV-algebras.
This map is surjective. In fact, let I be a maximal ideal of Mm|C . Since
j is injective, j(I) is a proper ideal of Mn|D. By Zorn’s Lemma there is a
maximal ideal M in Mn|D such that j(I) ⊆ M . Then I ⊆ j−1(M) and,
since I is maximal, I = j−1(M). So, g is a surjective definable map from D
to C.

Lemma 4.3. Let A,B be two finitely generated, semisimple MV-algebras.
Then there is a surjection from A to B if and only if there is a definable
homeomorphism from Max(B) to a subset of Max(A).

Proof. Suppose that A and B are semisimple, A is generated by n elements,
and B is generated by m elements. Then A is isomorphic to Mn|Max(A) and
B is isomorphic to Mm|Max(B).
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Suppose there is a surjection from A to B. Then by [11, Lemma 3.12]
there is a definable homeomorphism from Max(B) to a subset of Max(A).

Conversely, suppose that j is a definable homeomorphism from Max(B)
to a subset of Max(A). Then B is isomorphic to Mn|j(Max(B)). Consider
the map s sending f ∈ Mn|Max(A) to f |j(Max(B)) ∈ Mn|j(Max(B)). Every
function g ∈ Mn|j(Max(B)) is a definable map, so it can be extended to a
definable map on Max(A). This means that the map s is surjective. So
there is a surjection from A to B.

Lemma 4.4. (see [9]) Let C be a closed subset of [0, 1]m and D be a closed
subset of [0, 1]m

′
. Then Mm|C is isomorphic to Mm′ |D if and only if C and

D are definably homeomorphic.

Lemma 4.5. Let H be an m-tuple in Cn and let K be an m′-tuple in Cn′.
The subalgebras generated by ∼H and ∼K are isomorphic if and only if their
ranges are definably homeomorphic.

Proof. Let C be a closed subset of [0, 1]m and let K be a closed subset of
[0, 1]m

′
. By Lemma 4.4, Mm|C is isomorphic to Mm′ |D if and only if C and

D are definably homeomorphic.
Then Mm|Range(H) is isomorphic to Mm′ |Range(K) if and only if the two

ranges are definably homeomorphic. So, by Lemma 2.7, the algebras gener-
ated by ∼H and ∼K are isomorphic if and only if the ranges are definably
homeomorphic.

In particular, if H,K are two m-tuples in Cn with the same range,
then the subalgebras generated by ∼H and ∼K are isomorphic, so these
subalgebras share every property invariant under MV-algebra isomorphism.
Note however that H and K could have very different geometric properties,
despite having the same range. For instance, H could be differentiable and
K could not.

Theorem 4.6. Consider the map ρ sending the MV-algebra generated by
the set ∼H associated to an m-tuple H of functions in Cn to the range
of H. Then ρ is well defined up to definable homeomorphism. Moreover, ρ
can be extended to a functorial duality between the following subcategories of
finitely generated MV-subalgebras of Cn (with MV-algebra homomorphisms
as morphisms) and closed subsets of [0, 1]n up to definable homeomorphism
(with definable maps as morphisms), respectively:
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(1) The copies of Mk and the sets definably homeomorphic to [0, 1]k.

(2) The MV-algebras containing a copy of Mk and the k-fat sets.

(3) the MV-algebras embeddable in Mk and the sets S such that there is
a surjective definable map from [0, 1]k to S.

(4) The homomorphic images of Mk and the sets S such that there is an
injective definable map from S to [0, 1]k.

(5) The finitely presented MV-algebras and the rational polyhedra.

(6) The projective MV-algebras and the Z-retracts of [0, 1]h for some h
(for the definition of Z-retract see [11]).

Proof. Since the maximal space of Mm|Range(H) is Range(H) and the max-

imal space of Mk is [0, 1]k, the first point follows from Lemma 4.5.

By Lemma 4.2, Mk embeds in Mm|Range(H) if and only if there is a

surjective definable map from Range(H) to [0, 1]k, that is, Range(H) is
k-fat. This proves the second point.

The third point again follows from Lemma 4.2, and similarly, the fourth
point follows from Lemma 4.3.

For the fifth point, if ∼H generates a finitely presented subalgebra A
of Cn then, by [11], A is isomorphic to the restriction of Mm to a rational
polyhedron P . But A is also isomorphic to the restriction of Mm to the
range of H. By Lemma 2.7, the range of H is definably homeomorphic to
P , and by Lemma 4.1, the range of H is itself a rational polyhedron. The
converse is analogous.

For the last point, if ∼H generates a projective subalgebra A of Cn,
by [3], A is isomorphic to the restriction of Mm to a Z-retract P of [0, 1]k

for some k. But A is also isomorphic to the restriction of Mm to the range
of H. By Lemma 2.7, the range of H is definably homeomorphic to P , so
the range of H is itself a Z-retract of [0, 1]k. The converse is analogous.

5 Conclusions

We have seen that Cn contains many copies of Mn, besides the standard Mc-
Naughton model. It remains to understand, more generally, the structure
of the isomorphic copies of finitely generated, or at least finitely presented,
MV-algebras. In fact, the theorem of [11] mentioned above says that ev-
ery finitely presented MV-algebra is isomorphic to the MV-algebra of the
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restrictions of the McNaughton functions to a rational polyhedron. This
gives linear, standard models for finitely presented MV-algebras, but surely
there are many other nonlinear models of these MV-algebras, and they de-
serve to be studied. Likewise for projective MV-algebras, etc.

As shown in Section 3, the notion of Hopfianity could be an interest-
ing approach and a useful tool to study MV-algebras. We believe that
Hopfianity is a property which deserves to be studied, inside and outside
MV-algebras.

To conclude, the idea of finding nonlinear models of algebras can be
used in other contexts than MV-algebras, for instance Riesz MV-algebras,
`-groups, etc., stressing the strong suitability with many applications, for
instance, Artificial Neural Networks.
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