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Abstract. We discuss the congruences θ that are connected as elements of
the (totally disconnected) congruence frame CL, and show that they are in a
one-to-one correspondence with the completely prime elements of L, giving an
explicit formula. Then we investigate those frames L with enough connected
congruences to cover the whole of CL. They are, among others, shown to be
TD-spatial; characteristics for some special cases (Boolean, linear, scattered
and Noetherian) are presented.

Introduction

The aim of this paper is a study of connectedness of frame congruences.
There is the standard representation of a frame congruence θ as the join

Support from the projects P202/12/G061 (Grant Agency of the Czech Republic) and MTM2015-

63608-P (Ministry of Economy and Competitiveness of Spain) is gratefully acknowledged. We

also gratefully acknowledge the grant (No. 93107) from the NRF (South Africa) under the Blue

Skies Research Programme.
∗Corresponding author

Keywords: Frame, frame congruence, congruence and sublocale lattice, connectedness, TD-

spatiality.

Mathematics Subject Classification [2010]: 06A06, 06B10, 06D20, 06D22.
Received: 1 June 2016, Accepted: 28 September 2016

ISSN Print: 2345-5853 Online: 2345-5861

© Shahid Beheshti University

51



52 D. Baboolal, P. Pillay, and A. Pultr

∨{∆a∩∇b | (a, b) ∈ θ} with open congruences ∆a = {(x, y) | a∧x = a∧ y}
and closed congruences ∇b = {(x, y) | b∨ x = b∨ y}. Since the congruences
∆a ∩∇b are complemented in the frame CL of congruences in L, this shows
that CL is zero-dimensional, in other words, totally disconnected. Hence
one can expect that an individual frame congruence θ (as an element of CL,
not to be confused with the connectedness of the resulting quotient frames
L/θ in Chen [6]) is seldom connected.

This is indeed the case, but such congruences seem to be of more interest
than meets the eye, particularly if one asks about the associated local C-
connectedness (short for local congruence connectedness), that is, about the
frames for which CL is covered by connected congruences.

The connected congruences are the ∆a∩∇b with a immediately preceding
b. Their geometric characteristics may be of interest: they are precisely the
congruences the associated sublocales of which are the complements of the
TD-points in the spectrum of L. This, and more detailed characteristics of
the connected θ, is presented in Section 3 (after preliminary Sections 1 and
2).

In Section 4 we present a general characterization of a locally C-connected
frame; in particular we show that such a frame is TD-spatial.

Section 5 is devoted to some special cases in which the characteristics of
local C-connectedness becomes fairly explicit. In the Boolean case we obtain
precisely the discrete locales, in the linear case we have precisely the well-
ordered complete posets, in the scattered case the local C-connectedness
is equivalent with TD-spatiality. Finally we show that a Noetherian frame
is locally C-connected if and only if for each a < b one has a sequence
a = a1, a2, . . . , an = b with ai immediately preceding ai+1.

1 Preliminaries I: Basics

1.1 For an element a of a poset (X,≤) we write, as usual, ↓a = {x | x ≤ a}
and ↑a = {x | x ≥ a}. The suprema (joins) of subsets A ⊆ X are denoted
by
∨
A, and a∨ b =

∨{a, b}; similarly we write
∧
A and a∧ b =

∧{a, b} for
infima (meets).

The opposite (dual) poset of (X,≤) (that is, (X,≤1) with the order
x ≤1 y if and only if y ≤ x) will be denoted by (X,≤)op.
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1.2 Recall that a frame is a complete lattice L satisfying the distributivity
rule

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A} (frm)

for all A ⊆ L and b ∈ L, and that a frame homomorphism h : L → M
preserves all joins and all finite meets. The resulting category is denoted by
Frm.

If Lop is a frame we say that L is a co-frame.

1.2.1. The equality (frm) states, in other words, that for every b ∈ L the
mapping − ∧ b = (x 7→ x ∧ b) : L→ L preserves all joins (suprema). Hence
every − ∧ b has a right Galois adjoint resulting in a Heyting operation→
with

a ∧ b ≤ c if and only if a ≤ b→c. (∗∗)
Thus, each frame is a Heyting algebra (note that, however, the frame homo-
morphisms do not coincide with the Heyting ones so that Frm differs from
the category of complete Heyting algebras). The operation→ and some of
its properties (for example, a→ b = 1 if and only if a ≤ b, 1→ a = a,
a→ (

∧
bi) =

∧
a→ bi, a ≤ b→a, a ∧ (a→ b) ≤ b, a→ (b→ c) = (a ∧ b) → c

that immediately follow from (∗∗)) will often be used in the sequel.

1.2.2. A standard, but perhaps less obvious Heyting identity. For
all a and x,

a = (a ∨ x) ∧ (x→a).

(Indeed, trivially ≤; on the other hand,

(a ∨ x) ∧ (x→a) = (a ∧ (x→a) ∨ (x ∧ (x→a)) ≤ a.)

1.3 Subobjects in Frm. Subobjects in the category of frames can be
represented in various equivalent ways.

Congruences θ (and surjective homomorphisms h : L→ L/θ): In
the inclusion order they constitute a complete lattice CL. It is an important
fact that

CL is a frame

and that the infima in CL are the intersections (see [10] or [11]; see also
Birkhoff [5] VI.4).
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Nuclei: A nucleus on a frame L is a monotone mapping ν : L→ L such
that x ≤ ν(x), ν(ν(x)) = ν(x) and ν(a ∧ b) = ν(a) ∧ ν(b).

Sublocales: A sublocale of a frame L is a subset S ⊆ L such that

1. M ⊆ S implies
∧
M ∈ S, and

2. if a ∈ L and s ∈ S then a→ s ∈ S.

Sublocales of L ordered by inclusion constitute a co-frame S(L). The infima
in S(L) are intersections, and the suprema are given by the formula

∨
Si = {

∧
M | M ⊆

⋃
Si}.

There are natural invertible correspondences between these representa-
tions: With a sublocale S we have the associated nucleus

ν(a) = νS(a) =
∧
{s | s ∈ S, a ≤ s}

and a nucleus ν yields a sublocale S = ν[L]. A congruence θ gener-
ates the nucleus ν(a) =

∨{x | xθa} and a nucleus ν yields a congruence
{(x, y) | ν(x) = ν(y)}. The resulting correspondence between congruences
and sublocales is contravariant, that is, the inclusion is inverted, and the
joins respectively meets in CL correspond to meets respectively joins in
S(L).

It should be noted that sublocales are subobjects in a particularly natu-
ral sense. When considering the category of locales dual to Frm (to obtain a
covariant generalization of spaces) with the localic maps represented as right
Galois adjoints of frame homomorphisms, then the sublocales are precisely
the subsets embedded by extremally monomorphic localic maps.

1.4 Open and closed congruences and sublocales. For an element
a ∈ L we have the following special (frame) congruences

∆a = {(x, y) | a ∧ x = a ∧ y} (the open congruences), and

∇a = {(x, y) | a ∨ x = a ∨ y} (the closed congruences).

They are complements of each other in the frame CL, and correspond to
the open respectively closed sublocales

o(a) = {x | a→x = x} = {a→x | x ∈ L} respectively c(a) = ↑a.
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Needless to say, they are complements of each other in S(L), they naturally
extend the concepts of open and closed subspace of a space, and correspond
to the open and closed parts of Isbell’s pioneering paper [9].

We have

o(0) = {1}, o(1) = L, o(a ∧ b) = o(a) ∩ o(b) and o(
∨
ai) =

∨
o(ai),

and if a 6= b then o(a) 6= o(b) (and c(a) 6= c(b)).

1.4.1. It is a well known fact that for every congruence θ

θ =
∨
{∆a ∩∇b | aθb} =

∨
{∆a ∩∇b | aθb, a < b}

and correspondingly for S ∈ S(L)

S =
∧
{o(a)∨c(b) | νS(a) = νS(b)} =

∧
{o(a)∨c(b) | νS(a) = νS(b), a < b}.

1.5 Pseudocomplements and complements. The pseudocomplement
of an a in a lattice L, that is the (unique, if it exists) b such that x ∧ a = 0
if and only if x ≤ b, will be denoted by a∗. In a frame, a∗ = a→0.

A complement of a is a b such that a ∨ b = 1 and a ∧ b = 0. In a
distributive lattice each complement is a pseudocomplement and hence it is
uniquely determined, and we can use the symbol a∗ again. A complement
of a does not have to exist; if it does we speak of a complemented element
a.

Provided all the symbols make sense we have the DeMorgan formula

(
∨
ai)
∗ =

∧
a∗i . (1.5.1)

In S(L) we will also use the symbol S∗ for the complement of (a com-
plemented) S. But we have to keep in mind that here it is not a special
case of a pseudocomplement (what we said above holds in a co-frame for
the supplement, the smallest b such that a ∨ b = 1). But a complement is
both a pseudocomplement and a supplement and hence for complemented
sublocales we have

(
⋂
Si)
∗ =

∨
S∗i (1.5.2)

while (
∨
Si)
∗ =

⋂
S∗i does not hold generally.

For more about frames see, for example, [10] or [11].
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2 Preliminaries II: Prime, completely prime, and spatialities

2.1 In a poset we write a / b if a < b and a ≤ x ≤ b implies that either
a = x or x = b.

In the sequel, the posets L will always be complete distributive lattices.

2.2 An element p of L is prime (or, meet-irreducible) if

a ∧ b = p ⇒ a = p or b = p.

It is completely prime if for any A ⊆ L,
∧
A = p ⇒ ∃a ∈ A, p = a.

It is maximal if p < 1 and if p < x only for x = 1.
Obviously,

maximal ⇒ completely prime ⇒ prime

and none of the implications can be reversed.

2.3 Proposition. The following statements are equivalent:
(1) p is completely prime,
(2) there is precisely one q such that p / q,
(3) p is prime and there exists q such that p / q.

Proof. (1)⇒(2): Consider q =
∧{x | p < x}. Then by the complete

primeness p < q.
(2)⇒(1): If a > p for all a ∈ A then

∧
A ≥ q > p.

Now evidently (1)≡(2) implies (3). Finally,
(3)⇒(2): If p / q1, q2 and p is prime then p ≤ q1 ∧ q2 ≤ qi and since by

primeness p 6= q1 ∧ q2 we have q1 ∧ q2 = qi. �
2.3.1. For a completely prime p, the uniquely determined q with p / q will
be denoted by

p+.

2.3.2. A completely prime p is not necessarily maximal, but we have the
following (certainly well known) observation.
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Fact. We have (p+)∗ = 0 (and hence (p+)∗∗ = 1).

Proof. p+ ≤ p ∨ (p+)∗ would make p+ = p+ ∧ p+ = (p ∧ p+) ∨ ((p+)∗ ∧
p+) = p. Hence necessarily p = p ∨ (p+)∗ so that (p+)∗ ≤ p < p+ and
(p+)∗ ∧ (p+)∗ ≤ p+ ∧ (p+)∗ = 0. �

2.4 One-point sublocales. Each sublocale contains 1 =
∧ ∅. Thus,

the empty subspace is modelled by the smallest sublocale O = {1} (“the
empty sublocale”) and the next smallest are the one-point sublocales (briefly,
points) {p, 1} with p 6= 1 (necessarily) prime.

If p is completely prime respectively maximal we speak of {p, 1} as of a
TD-point respectively T1-point.

2.4.1. Proposition. If a one-point sublocale {p, 1} is complemented then
p is completely prime.

Proof. Let S be the complement. We have S ∩ {p, 1} = {1} and hence
p /∈ S. Since S ∨ {p, 1} = L we have M = {x | x > p} ⊆ S (because no
x > p can be obtained as y ∧ p) and hence

∧
M ∈ S, so that

∧
M 6= p and

p+ exists. �

2.4.2. Note. The reverse implication also holds, that is, {p, 1} with com-
pletely prime p is always complemented. Recall the (somewhat surprising)
formula for supplement S# in S(L), the smallest T such that T ∨ S = L,

S# =
∨
{T | T ∩ S = O}

(see [11], VI,4.5.2). In general it is not (also) a pseudocomplement, because
in the co-frame S(L) the meet ∩ does not generally distribute over

∨
. But

in this concrete case it is:
∨{T | T ∩ {p, 1} = O} ∩ {p, 1} = O since if we

had p =
∧{xT | xT ∈ T} we would have to have p = xT for some T .

2.5 If X is a topological space then Ω(X) = {U | U ⊆ X, U open} is a
frame. A frame L is spatial if there is a space X such that L ∼= Ω(X).

X is a TD space if for each x ∈ X there is an open U 3 x such that
U r {x} is open ( [1]). A frame L is TD-spatial respectively T1-spatial if
L ∼= Ω(X) with a TD- respectively T1-space X.
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2.5.1. Proposition. A frame L is spatial respectively TD-spatial respec-
tively T1-spatial if and only if for all a ∈ L, a =

∧{p | a ≤ p, p prime} re-
spectively a =

∧{p | a ≤ p, p completely prime} respectively a =
∧{p | a ≤

p, p maximal}.
(See [4, 10, 12] and also [9].)

2.5.2. From the formula for the join in S(L) we now obtain

Corollary. L is spatial, TD-spatial, T1-spatial, respectively, if and only
if

L =
∨
{P | P a point, TD-point, T1-point, respectively, in L}.

2.6 Corollary. (see also [11] VI.3) Each complemented sublocale of a spa-
tial (TD-spatial, T1-spatial) frame L, is spatial (TD-spatial, T1-spatial).

Proof. Let L =
∨P for a set of points P, and let sublocales S, T ⊆ L

be complements of each other. Since S ∨T = L we have for each {p, 1} ∈ P
p = s∧t with s ∈ S and t ∈ T , and since p is prime, we have either p = s ∈ S
or p = t ∈ T . Set

PS = {{p, 1} ∈ P | p ∈ S}, PT = {{p, 1} ∈ P | p ∈ T}.

Then
∨PS ∨

∨PT =
∨P = L,

∨PS ⊆ S,
∨PT ⊆ T , and S ∩ T = {1}.

We conclude that
∨PS = S and

∨PT = T . �

3 C-connected congruences

3.1 A congruence θ on a a frame L is said to be connected (Chen [6]) if
the associated sublocale S of L is a connected frame. We will be, however,
interested in the connectedness of the congruences as elements of the con-
gruence frame CL. Thus, to avoid confusion with the terminology of [6],
we will speak of C-connected (short for “connected as an element of the
congruence lattice”) θ if

θ = θ1 ∨ θ2 and θ1 ∩ θ2 = O implies that either θ1 = O or θ2 = O.

The following result will be markedly refined in Theorem 3.6.
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3.2 Proposition. A non-trivial C-connected congruence θ is of the form

∆a ∩∇b with a < b.

Proof. We have (recall 1.4.1) θ =
∨{∆a∩∇b | (a, b) ∈ θ, a < b}. Suppose

that for some individual C = ∆a0 ∩∇b0 we have D =
∨{∆a∩∇b | (a0, b0) 6=

(a, b) ∈ θ, a < b} non-trivial. C is complemented and hence we obtain from
θ = C ∨D a disjoint θ = C ∨ (C∗ ∪D). �

3.3 Lemma. Let θ be C-connected. Then θ = ∆a ∩∇b for every (a, b) ∈ θ
such that a < b.

Proof. Consider an arbitrary pair (a, b) ∈ θ with a < b. We have
θ = ((∆a ∩ ∇b) ∩ θ) ∨ ((∆a ∩ ∇b)∗ ∩ θ) and since θ is C-connected and
∆a ∩ ∇b ⊆ θ we conclude that the second summand is trivial, and hence
∆a ∩∇b = θ. �

3.4 Proposition. A congruence class of a C-connected congruence θ con-
tains at most two elements.

Consequently, if a non-trivial C-connected θ is represented as ∆a ∩ ∇b
then a / b, and by Lemma 3.3 we have u / v for any (u, v) ∈ θ, u < v.

Proof. Let C be a θ-congruence class with at least three elements. Set
c =

∨
C. There exist a, b ∈ C, a 6= b, a, b < c. Hence we have (in the frame

CL) ∆c ⊆ ∆a,∆b and, by Lemma 3.3, θ = ∆a ∩∇c = ∆b ∩∇c. Then

∆a = ∆a ∩ (∆c ∨∇c) = (∆a ∩∆c) ∨ (∆a ∩∇c) = ∆c ∨ (∆b ∩∇c) =

= (∆b ∩∆c) ∨ (∆b ∩∇c) = ∆b ∩ (∆c ∨∇c) = ∆b

so that a = b, a contradiction.

As for the second statement: if a ≤ x, y ≤ b we have a ∧ x = a = a ∧ y
and b ∨ x = b = b ∨ y and hence xθy. �

From now on we will extensively use the sublocales associated with the
congruences in question.
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3.5 Proposition. Let a / b. Then the complement S∗ of S = o(a) ∨ c(b)
is the one-point sublocale

P = S∗ = {b→a, 1}.

In particular p = b→a is completely prime. Furthermore we have p+→p =
p and, since {p, 1} = S∗, a canonical representation

S = o(p) ∨ c(p+)

with a uniquely determined completely prime p.

Proof. S∗ = c(a) ∧ o(b) and hence x ∈ S∗ if and only if x ≥ a and
b→x = x. Consequently

- either x ≥ b and then x ∈ c(b) ∧ o(b) = O = {1}
- or x � b.

In the latter case, a ≤ x, b and a ≤ x ∧ b < b and hence a = x ∧ b. Thus,

b→a = b→(x ∧ b) = (b→x) ∧ (b→b) = x ∧ 1 = x

so that S∗ = {b→a, 1}, a one-point sublocale. Now (recall 2.4), one-point
sublocales are precisely the {p, 1} with p prime, and this one is comple-
mented and hence p is completely prime (see Proposition 2.4.1.).

For the last statement it suffices to prove that for p = b→a, p = p+→p.
But this is immediate:

x ≤ p+→p if and only if x ∧ p+ ≤ p if and only if x ≤ p

since p is prime. �

3.5.1. Remark. Note that the requirement that P = {p, 1} being com-
plemented is essential. The fact that p is prime and that p can be written
non-trivially as b→a does not make the point automatically complemented.
See the unit interval L = 〈0, 1〉. Here every p with 0 < p < 1 is prime, and
for any b with p < b < 1 we have p = b→ p, while none of such {p, 1} is
complemented.
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3.6 Theorem. The non-trivial C-connected congruences θ are precisely
the ∆a ∩∇b with a / b.

Proof. After Proposition 3.4 it remains to be proved that for any a / b
in L the congruence θ = ∆a ∩ ∇b is C-connected. Using the sublocale
reasoning: we have the sublocale S = o(a)∨ c(b) (with a/b) associated with
θ and want to prove that

if S = T ∩ U and T ∨ U = L then either T = S or U = S. (∗)
First realize that all the S, T, U are complemented (T ∨ (U ∩ S∗) = (T ∨
U) ∩ (T ∨ S∗) = L and T ∩ U ∩ S∗ = S ∩ S∗ = O, so that T ∗ = U ∩ S∗ and
similarly U∗ = T ∩ S∗) and hence the complement transforms the formulas
in (∗) to

S∗ = T ∗ ∨ U∗ and T ∗ ∩ U∗ = O = {1}.
By Proposition 3.5, S∗ = {p, 1}. Since S∗ ⊇ T ∗, U∗, and T ∗ ∩ U∗ = {1},
one of these sublocales, say T ∗, is {p, 1} and the other, say U∗, is O and
then U = L. �

3.7.1. Lemma. For every non-trivial C-connected congruence θ there is a
completely prime p such that

(a < b and a θ b) if and only if (a 6= b, a ≤ p, b ≤ p+ and a = b ∧ p).
Proof. By Theorem 3.6, θ = ∆a∩∇b for some a/ b, and by Proposition 3.5,
∆a ∩∇b = ∆p ∩∇p+ with p = b→a, and p is completely prime.

Let a < b and aθb. Then by Lemma 3.3 and Proposition 3.4 we can apply
Proposition 3.5 on ∆a ∩∇b for this particular pair a, b. Now a ≤ b→a = p
and since (a, b) ∈ ∆p∩∇p+ we have in particular p+ = p+∨a = p+∨ b, and
hence b ≤ p+, a = p ∧ a = p ∧ b.

On the other hand, let a ≤ p, b ≤ p+ and a = b ∧ p. Then a < b (since
a 6= b). We have p θ p+ and hence a = (b ∧ p) θ (b ∧ p+) = b. �
3.7.2. Theorem. The assignment

p 7→ ∆p ∩∇p+

constitutes a one-to-one correspondence between completely prime elements
in L and non-trivial C-connected congruences on L. The formula for the
congruence associated with p is explicitly given by

{(a, b) | a = b or (a 6= b, a, b ≤ p+ and either a = p ∧ b or b = p ∧ a)}.
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Proof. By Proposition 3.5 and Theorem 3.6 the correspondence is onto
and one-to-one.

The formula follows from Lemma 3.7.1 because if a 6= b are congruent
we have a, b and a ∧ b congruent and since a congruence class cannot have
three distinct elements we have either a < b or b < a. �

4 Locally C-connected frames

4.1 A frame is locally C-connected if each congruence on L is a join of
C-connected congruences. Using 1.4.1 and Proposition 3.5 we immediately
obtain, in the language of sublocales, the following translation.

Proposition. A frame L is locally C-connected if and only if for every
a < b in L

o(a) ∨ c(b) =
⋂

i∈J
o(pi) ∨ c(p+

i )

for some set (pi)i∈J of completely prime elements.

4.2 Note and Example. One might surmise, at the first sight, that the
factors on the right hand side cover the open and closed parts on the right
hand side separately, or, more generally, that if a < b and o(a) ∨ c(b) ⊆
o(u) ∨ c(v) with u / v then a ≤ u / v ≤ b. This is not the case, not even
in the Boolean L. Consider L the Boolean algebra of all the subsets of
{0, 1, 2, 3, 4, 5}. We can represent the open sublocales o(x) by the x ∈ L
(that is, x ⊆ {0, 1, 2, 3, 4, 5}) themselves, and the closed sublocales c(x) by
the complements Lr x. Consider

a = o(a) = {0, 1}, b = o(b) = {0, 1, 2, 3} so that c(b) = {4, 5}, and

u = o(u) = {1, 5}, v = o(v) = {1, 2, 5} so that c(v) = {0, 3, 4}
in which case o(a) ∨ c(b) ⊆ o(u) ∨ c(v) while neither a ≤ u nor v ≤ b.

4.3 Using the DeMorgan formula and 3.5 we obtain

Proposition. If a frame L is locally C-connected then for every a < b
in L

c(a) ∩ o(b) =
∨

i∈J
{pi, 1}

for some set (pi)i∈J of completely prime elements.
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4.4 Proposition. A locally C-connected frame L is TD-spatial.

Proof. This is an immediate consequence of 4.3 and the formula for the
join in S(L). Take an arbitrary a 6= 1 and set b = 1. Then a ∈ c(a) ∩ o(b)
and hence it can be obtained as

∧
i pi for some set (pi)i∈J of completely

prime elements. �

4.5 Note. The formula in 4.3 is not in general sufficient. Note that the
reverse DeMorgan formula does not hold. The reader may wonder whether
it is not, after all, true in this special case where we have the sublocales
in question complemented (having in mind the linearity of such elements,
see [9], [11] VI.4.4). But we do not know whether

⋂
i∈J o(pi) ∨ c(p+

i ) is
complemented, which is essential. See also 5.3 below.

5 Some special cases

5.1 Scattered frames. A frame L is scattered if S(L) is a frame (which
in fact makes S(L) a Boolean algebra) – see [2, 7, 13]. Thus we have here
both DeMorgan rules and immediately obtain from 4.1 the following.

5.1.1. Proposition. A scattered frame L is locally C-connected if and only
if for every a < b in L

c(a) ∩ o(b) =
∨

i∈J
{pi, 1}

for some set (pi)i∈J of completely prime elements.

Since c(a)∩o(b) are complemented we now obtain from 2.5.2 and Corol-
lary 2.6

5.1.2. Proposition. A scattered frame L is locally C-connected if and only
if it is TD-spatial.

5.2 One of the extremes: the Boolean case.

Proposition. A Boolean frame is locally C-connected if and only if it is
spatial (that is, if and only if it is atomic, or if and only if it is isomorphic
to the lattice of all subsets of a set, or if and only if it is T1-spatial).
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Here the T1-spatiality is automatic, but just in case this might be of use
in a slightly more general case, recall the observation 2.3.2.

5.3 The other extreme: the linear case. If L is linearly ordered then
we have

x→y =

{
1 if x ≤ y,
y if x > y.

Consequently,

o(a) = {a→x | x ∈ L} = {x | x < a} ∪ {1}
and hence for a < b

o(a) ∨ c(b) = {x | x < a or x ≥ b},
c(a) ∩ o(b) = {x | a ≤ x < b} ∪ {1} = [a, b)L ∪ {1}.

(∗)

Note that for the sublocales S from (∗) we have

S∗ = (Lr S) ∪ {1}
and hence

o(a) ∨ c(b) =
⋂

i∈J
o(ai) ∨ c(bi) if and only if [a, b)L =

⋃

i∈J
[ai, bi)L. (∗∗)

5.3.1. Proposition. A linearly ordered frame L is locally C-connected if
and only if it is well-ordered (which is to say, if and only if each a ∈ L,
a < 1, is completely prime).

Proof. (⇒): If L is locally C-connected then by 4.1, in particular {1} =
o(0) ∨ c(1) =

⋂{o(p) ∨ c(p+) | p ∈ P} for some set P of completely prime
elements, and hence by (∗∗),

Lr {1} = [0, 1)L =
⋃
{[p, p+)L | p ∈ P} = P

since [p, p+)L = {p}. Let M ⊆ L be non-empty. Set a =
∧
M . Then a ∈M :

if a = 1 then M = {1} (it is not empty), and if a < 1 it is completely prime.
Hence, a is the least element of M .

(⇐): On the other hand, if L is well-ordered then each a ∈ L, a < 1,
is completely prime by Proposition 2.3 (consider the smallest element of
{x | a < x}). Then [a, b)L =

⋃{{p} | p ∈ [a, b)L} =
⋃{[p, p+)L | p ∈ [a, b)L}

and L is locally C-connected by (∗∗) and 4.1. �
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5.4 The Noetherian case. An element c of a frame is compact if c ≤∨
i∈J xi implies that c ≤ ∨i∈K xi for a finite K ⊆ J . A frame is Noetherian

if each of its elements is compact.
In the special case that L is Noetherian, the structure of the congruence

frame CL is much simpler. By [3] one has in particular that the following
statements are equivalent:

(N1) L is Noetherian.

(N2) The congruence frame CL is compact.

(N3) Every lattice congruence on L is a frame congruence.

(N4) The complemented elements of CL are precisely the compact ones.

Proposition. If L is Noetherian then it is locally C-connected if and
only if for every a < b in L there is a finite sequence a = a1/a2/ · · ·/an = b.

Proof. Here it will be easier to work in the language of congruences than
in that of sublocales.

(⇒): Take a < b. By (N4), ∆a ∩ ∇b is compact and hence it is a finite
join

∨m
j=1 θj of C-connected congruences. Recall from [8] that if θ1, θ2 are

lattice congruences then for a < b, (a, b) ∈ θ1 ∨ θ2 if and only if there is
a sequence a = a1 < a2 < · · · < an = b with (ai, ai+1) ∈ θki for suitable
ki ∈ {1, 2}. Using (N3) we can extend this for our join

∨m
j=1 θj stating that

there is a sequence a = a1 < a2 < · · · < an = b with (ai, ai+1) ∈ θki for
suitable ki ∈ {1, , . . . ,m}. By Proposition 3.4, since ai < ai+1 and θj are
C-connected, we have ai / ai+1.

(⇐): Any θ ∈ CL is a join of congruences ∆a ∩ ∇b with a < b. For an
individual such ∆a ∩∇b take a sequence a = a1 / a2 / · · · / an = b.

It is easy to see that ∆u ∩ ∇v with u < v is the smallest congruence
containing (u, v). Consequently

∨n−1
i=1 ∆ai∩∇ai+1 is the smallest congruence

containing all (ai, ai+1), 1 ≤ i ≤ n− 1. Now if a congruence contains (a, b)
then it contains all the (x, y) with a ≤ x, y ≤ b; on the other hand, if θ
contains all the (ai, ai+1), 1 ≤ i ≤ n − 1, we have aθa2θ · · · θan−1θb. Thus,
∆a ∩∇b =

∨n−1
i=1 ∆ai ∩∇ai+1 . �
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