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Abstract. The concept of λ-super socle of C(X), denoted by Sλ(X) (that
is, the set of elements of C(X) such that the cardinality of their cozerosets
are less than λ, where λ is a regular cardinal number with λ ≤ |X|) is
introduced and studied. Using this concept we extend some of the basic
results concerning SCF (X), the super socle of C(X) to Sλ(X), where λ ≥
ℵ0. In particular, we determine spaces X for which SCF (X) and Sλ(X)
coincide. The one-point λ-compactification of a discrete space is algebraically
characterized via the concept of λ-super socle. In fact we show that X is the
one-point λ-compactification of a discrete space Y if and only if Sλ(X) is a
regular ideal and Sλ(X) = Ox, for some x ∈ X.

1 Introduction

The reader is referred to [7], [9], and [14] for the necessary notations, defini-
tions, and background concerning the topological spaces X and C(X), the
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ring of real valued continuous functions on a space X. All topological spaces
X in this paper are Tychonoff, unless otherwise mentioned. We remind the
reader that CF (X) is the socle of C(X), (that is, the sum of all minimal
ideals of C(X) which is also the intersection of all essential ideals in C(X)).
We should also recall that an ideal in a commutative ring is essential if it
intersects every nonzero ideal of the ring nontrivially. CF (X) is introduced
and topologically characterized in [19]. Recently in [13], SCF (X), the super
socle of C(X) has also been introduced and studied.

We know that one of the main objectives of working in the context of
C(X) is to characterize topological properties of a given space X in terms of
a suitable algebraic properties of C(X). It turns out, CF (X) and SCF (X)
play an appropriate role, with respect to this objective, in the literature,
see [1], [2], [10], [13], [17], and [18]. The importance of the role of CF (X)
and SCF (X) in the context of C(X), motivated us to define and study a
general concept of the socle of C(X), called λ-super socle, which includes
the latter two socles.

An outline of this article is as follows: In Section 2, the concept of the
λ-super socle and some preliminary results concerning this ideal, which are
frequently used in the subsequent sections, are given. In particular, we
characterize topological spaces X such that λ-super socle and CF (X) or
SCF (X) coincide. We also present a characterization of the one-point λ-
compactification of discrete spaces in terms of the λ-super socle. In the final
section, the λ-pseudo minimal ideals and λ-disjoint spaces are introduced
and it is shown that for these spaces, Sλ(X) can be written in a form of
direct sum (called λ-strong direct sum) of certain subideals.

2 The λ-super socle of C(X)

Let us, without further ado, begin by formally defining the λ-super socle
of C(X), the extension of super socle of C(X) (that is, the set SCF (X) =
{f ∈ C(X) : X \ Z(f) is countable}) which is introduced in [13].

Definition 2.1. The set Sλ(X) = {f ∈ C(X) : |Coz(f)| < λ}, where
|Coz(f)| = |X \ Z(f)| and λ is a regular cardinal number with λ ≤ |X|, is
called the λ-super socle of C(X).

By convention, we put Sµ(X) = C(X), where µ is a regular cardinal
number greater than |X|. One can easily show that Sλ(X) is a z-ideal
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in C(X) and SCF (X) ⊆ Sλ(X), where λ ≥ ℵ1. Manifestly SCF (X) =
Sℵ1(X) and Sℵ1(X) = C(X) if and only if X is a countable space, see [13].
Clearly CF (X) ⊆ Sλ(X), where λ ≥ ℵ0. In view of [18, Proposition 3.3],
or by using some other well-known algebraic methods, one can easily see
that CF (X)= C(X) if and only if X is a finite space. It is also easy to
observe that if X is an infinite discrete space, then C(X) ∼=

∏
x∈X Rx,

where Rx = R. Moreover, CF (X) ∼=
∑

x∈X
⊕
Rx, by [18, Proposition 3.3].

Let us recall that if a =< ai > is an element of
∏
i∈I Ri, where each Ri

is an arbitrary ring, then the support of a, which is denoted by supp(a),
is defined by supp(a) = {i ∈ I : ai 6= 0}. Consequently, Sλ(X) is in one
to one correspondence with the set of the elements of λ-support (that is,
|supp(a)| < λ), in

∏
x∈X Rx, where Rx = R. It is trivial to see that a point

in a space X is isolated if and only if it has a finite neighborhood. If |X| = λ
and ℵ0 = λ0 < ℵ1 = λ1 < . . . < λ+ is a chain of regular cardinal numbers
then we have

CF (X) = Sλ0(X) ⊆ SCF (X) = Sλ1(X) ⊆ . . . ⊆ Sλ+(X) = C(X).

It is also manifest that if |X| = λ, where λ is regular then Sλ(X) is the
largest proper ideal among all µ-supersocles (note, we may have Sλ(X) = 0).

Motivated by this, the next two definitions are natural and are also
needed.

Definition 2.2. An element x ∈ X is called a λ-isolated point if x has a
neighborhood with cardinality less than λ. The set of λ-isolated points of
X is denoted by Iλ(X).

Definition 2.3. A space X is called λ-discrete if Iλ(X) = X.

We note that W (λ), the space of all ordinals less than λ, where λ is
a cardinal number, is a λ-discrete space, see [14, 5.11]. Clearly, a point is
isolated if and only if it is ℵ0-isolated, and the set of all isolated points of
X is denoted by I(X). We should also remind the reader that Iℵ1(X) is
denoted by Ic(X). We should also recall here that a subspace of an ℵ1-
discrete space is countable if and only if it is Lindelöf, see [10]. Similarly,
a subspace of a λ+-discrete space has the cardinality λ if and only if it is
λ-compact.

Evidently, every space with the cardinality λ is a λ+-discrete space,
and any finite direct product of λ-discrete spaces is λ-discrete. It also goes
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without saying that a subspace of a λ-discrete space is λ-discrete. Clearly, if
X =

∏
s∈S Xs is λ-discrete, then each Xi is λ-discrete too, but the converse

is not necessarily true. It is also manifest that the free union X =
⊕

s∈S Xs

is λ-discrete if and only if each Xs is λ-discrete for each s ∈ S.

Let us recall the concept of λ-compactness in [17].

Definition 2.4. A topological space X is called λ-compact if each open
cover of X can be reduced to an open cover whose cardinality is less than
λ, where λ is the least infinite cardinal number with this property.

The following result is evident.

Proposition 2.5. In a λ-discrete space, every λ-compact subspace has car-
dinality less than λ.

The following lemma whose proof can be given using the proof of [13,
Proposition 2.4], word for word, is needed.

Lemma 2.6. For any space X, Iλ(X) =
⋃{coz(f) : f ∈ Sλ(X)}.

We recall that the ideal I of C(X) is free if
⋂
f∈I Z(f) = ∅, that is,⋃{coz(f) : f ∈ I} = X.

The following result is now immediate.

Corollary 2.7. For any space X, the following statements hold:

(1) The ideal Sλ(X) is not a zero ideal if and only if X has a λ-isolated
point.

(2) The space X is a λ-discrete space if and only if Sλ(X) is free.

(3) For each x ∈ X, Mx = {f ∈ C(X) : f(x) = 0} is a maximal ideal.

Corollary 2.8. For any space X we have the following:

(1) An element x is a λ-isolated point if and only if Mx+Sλ(X) = C(X).

(2) X is a λ-discrete space if and only if for all x ∈ X, Mx + Sλ(X) =
C(X).

(3) The ideal Sλ(X) is a free ideal in C(X) if and only if for all x ∈ X,
Mx + Sλ(X) = C(X).

(4) An element x is non λ-isolated point if and only if Sλ(X) ⊆Mx.

(5) Let X be a topological space with |X| ≥ λ and |Iλ(X)| < λ. Then
Sλ(X) =

⋂
x∈X\Iλ(X)Mx.
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Proof. We only give the proofs of parts (1) and (5).
(1) Let x ∈ X be a λ-isolated point. Then by Lemma 2.6, there exists

f ∈ Sλ(X) such that f(x) = 1. So (1−f) ∈Mx, hence Sλ(X)+Mx = C(X).
Now let Mx + Sλ(X) = C(X). Then there exists h ∈ Sλ(X) such that
(1 − h) ∈ Mx. This implies that x ∈ X \ Z(h), where |X \ Z(h)| < λ.
Consequently, x is a λ-isolated point.

(5) By part (4) and our assumption, Sλ(X) ⊆ ⋂x 6∈Iλ(X)Mx. Now we
may assume that 0 6= f ∈ ⋂x 6∈Iλ(X)Mx. Hence x ∈ X \ Iλ(X) ⊆ Z(f), and
since |Iλ(X)| < λ, we infer that f ∈ Sλ(X) and we are done.

The following is an extension of [13, Theorem 2.7].

Theorem 2.9. Iλ(X) is finite if and only if Sλ(X) = CF (X), where λ ≥ ℵ1.
In particular, in this case, SCF (X) = CF (X).

Proof. (⇒) If Iλ(X) is finite then x is isolated for each x ∈ Iλ(X). So
Iλ(X) = I(X), and consequently Sλ(X) = CF (X), see also [19].

(⇐) Suppose Sλ(X) = CF (X) and Iλ(X) is an infinite set, and seek a
contradiction. Let C = {x1, x2, ...} ⊆ Iλ(X) be a countable subset. Hence
for each xn ∈ C, there exists an open set Gn, with the cardinality less than
λ. By completely regularity of X, for each n ≥ 1 there exists fn ∈ C(X),

such that fn(xn) = 1 and fn(X \Gn) = (0). Now put f =
∑∞

n=1
f2
n

f2
n+1

2−n,

and note that for each n ≥ 1, f(xn) 6= 0, and consequently f 6∈ CF (X),
see [19]. But we claim that f ∈ Sλ(X). To see this, it is enough to show
that |X \ Z(f)| < λ. Hence it suffices to show that X \ Z(f) ⊆ ⋃∞n=1Gn.
Let x ∈ X \Z(f) and x 6∈ ⋃∞n=1Gn. Thus x ∈ ⋂∞n=1(X \Gn) and f(x) = 0,
which is the desired contradiction.

The following proposition is evident (note that, if λ > ℵ0 then Ic(X) =
Iℵ1(X) ⊆ Iλ(X)).

Proposition 2.10. Let λ > ℵ0 and |Iλ(X)| ≤ ℵ0. Then Sλ(X) = SCF (X).

We recite the following definition from [15].

Definition 2.11. Let (Y, τ) be an uncountable discrete space with cardinal-
ity greater than or equal to λ such that λ is regular cardinal number. Similar
to the one-point compactification construction of Y , put X = Y ∪{x}, where
x is not a point in Y . Let τ∗ = τ ∪ {G ⊆ X : x ∈ G, |X \ G| < λ}. It is
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clear that (X, τ∗) is a Hausdorff and λ-compact space. This space is called
the one-point λ-compactification of the discrete space Y .

It is easy to check that the space X above, is completely regular. To this
end, we just recall that a Hausdorff space whose set of nonisolated points
is finite, is normal, see [9]. Moreover, since λ is a regular cardinal number,
one can show that for any cardinal number γ < λ,

⋂
i∈I Gi is open, where

every Gi is open in X and |I| ≤ γ, that is, X is a Pλ-space (note, X is
Pλ-space if every intersection with cardinality less than λ of open sets (that
is, Gλ-set) is open). (X, τ∗) with this structure is a non λ-discrete space
and Iλ(X) = Y .

The next remark gives an example of a non λ-discrete space X for which
Sλ(X) 6= SCF (X), where λ is an infinite cardinal number.

Remark 2.12. Let X = Y ∪ {x} be the one-point λ-compactification of a
discrete space Y , with |Y | ≥ λ ≥ ℵ1. Let us define the map f as follows,

f(x) =

{
0, x ∈ G
1, x ∈ X \G

where G is an open set containing x with ℵ◦ < |X \ G| < λ. Hence f ∈
Sλ(X)\SCF (X). This shows that X is a non λ-discrete space with Sλ(X) 6=
SCF (X).

Let us recall that every λ-discrete space X is a locally λ-compact (a
Hausdorff space X is called locally λ-compact if every x ∈ X has a neigh-
borhood which is λ-compact). An ideal I in a commutative ring R is called
regular if for each a ∈ I there exists b ∈ I such that a = a2b. It is well-
known and easy to prove that a ring R is regular if and only if there is a
regular ideal I in R such that R

I is regular, too, see [15, Lemma 1.3].

We conclude this section with the following theorem, which is our main
result.

Let us recall that Ox = {f ∈ C(X) : Z(f) is a neighborhood of x},
which is a fixed ideal in C(X).

The following lemma, which is needed for the proof of our main theorem,
generalizes the well-known fact that every countable subset of a Pλ-space is
closed discrete, see [14].
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Lemma 2.13. If X is a Pλ-space, then every subset of cardinality less than
λ is a closed discrete subspace.

Proof. Let Y ⊆ X with |Y | < λ and x ∈ Y . Clearly, for each y ∈ Y \ {x},
there exists fy ∈ C(X) such that fy(x) = 0, fy(y) = 1. Therefore x ∈⋂
y∈Y \{x} Z(fy) = G. Since |Y \{x}| < λ and X is a Pλ-space, we infer that

G is an open subset of X. It goes without saying that {x} = G ∩ Y which
means that {x} is open in Y , and consequently Y is discrete. Moreover, Y
is closed, by [17, Remark 1.12].

Theorem 2.14. The following statements are equivalent for a space X with
|X| ≥ λ, where λ ≥ ℵ1 is a regular cardinal.

(1) X is the one-point λ-compactification of a discrete space.
(2) X is a Pλ-space and Sλ(X) = Ox, for some x ∈ X.

Proof. (1) ⇒ (2) Let X = Y ∪ {x} be the one-point λ-compactification of
Y , where Y is discrete. By [17, Example 1.8], X is a Pλ-space (note, X is
a Pλ-space if for any γ < λ,

⋂
i∈I Gi is open, where each Gi is open and

|I| ≤ γ), (we should emphasize that X is a Pλ-space too). Thus it remains
to be shown that Sλ(X) = Ox. First, we prove that Sλ(X) ⊆ Ox. To see
this, let f ∈ Sλ(X) and note that |X \ Z(f)| < λ. Hence x /∈ X \ Z(f),
for |Z(f)| ≥ λ. Since X is a Pλ-space, we infer that Z(f) is open, therefore
f ∈ Ox. Now let f ∈ Ox. Then Z(f) is a neighborhood of x, and therefore
by definition |X \ Z(f)| < λ, that is, f ∈ Sλ(X), and we are done.

(2) ⇒ (1) Let Ox = Sλ(X), for some x ∈ X, where X is a Pλ-space.
Put Y = X \ {x}. First, we show that x is a non λ-isolated point, a fortiori
nonisolated point. To see this, let G be an open set containing x whose
cardinality is less than λ and get a contradiction. By complete regularity
of X, there exist f, g ∈ C(X) such that Z(f) ∩Z(g) = ∅, x ∈ intZ(f), and
X \ G ⊆ intZ(g), see [14, Theorem 1.15]. Since f ∈ Ox = Sλ(X), we infer
that |X\Z(f)| < λ. We notice that X\G ⊆ Z(g) and Z(f) ⊆ X\Z(g) ⊆ G.
Consequently, |Z(f)| < λ which shows that |X| < λ, that is absurd. Now
we claim that x is the only non λ-isolated point of X. If not, let y 6= x
be another non λ-isolated point in X and seek a contradiction. Again by
complete regularity of X, there exist f, g ∈ C(X) such that Z(f)∩Z(g) = ∅,
x ∈ intZ(f), and y ∈ intZ(g). This implies that f ∈ Ox = Sλ(X) and
|X \ Z(f)| < λ. But Z(g) ⊆ X \ Z(f) implies that |Z(g)| < λ. So y is a λ-
isolated point, which is a contradiction. Now we prove that the cardinality
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of the complement of each open set containing x is less than λ. To see this,
let G be an open set containing x. Then there exists f ∈ C(X) such that
x ∈ Z(f) ⊆ G (note, Z(f) is open, since X is a Pλ-space). This implies
that f ∈ Ox = Sλ(X), hence |X \G| ≤ |X \ Z(f)| < λ and we are done. It
remains to show that each y ∈ Y is an isolated point, and every subset G
containing x with |X \G| < λ is an open neighborhood of x. First, we show
that each y ∈ Y is an isolated point of X. We have already shown that y is
a λ-isolated point in X which means that there is an open set H containing
y such that |H| < λ. In view of the previous lemma, H is a discrete closed
subspace of X. Since H is open, we infer that all of its points are isolated,
hence y is isolated. We notice that we have already shown that the above
set G, where |X \G| < λ is a neighborhood of x.

It is interesting to note that in the proof of the part (2)⇒(1) of the
previous theorem, instead of the assumption Ox = Sλ(X), we just used the
fact that Ox ⊆ Sλ(X). As an immediate consequence of Theorem 2.14, we
obtain that if in a Pλ-space X with |X| ≥ λ, Ox ⊆ Sλ(X), for some x ∈ X,
then Ox = Sλ(X) and X is the one-point λ-compactification of a discrete
space Y with |Y | ≥ λ. It is known that CF (X) is never a prime ideal in
C(X), see [10, Proposition 1.2]. In contrast to this fact, it has already been
observed that SCF (X) can be a prime ideal (even a maximal ideal). Let us
record this fact which is an advantage of Sλ(X) over CF (X), where λ > ℵ0,
in the context of C(X). The following corollary is proved in [13, 2.19].

Corollary 2.15. Let X be either countable or one-point ℵ1-compactification
of some uncountable discrete space. Then SCF (X) = Sℵ1(X) is a prime
ideal in C(X).

We immediately have the following proposition, see also [17, Example
1.8].

Proposition 2.16. Let X be the one-point λ-compactification of a discrete
space Y with |Y | > λ. Then Sλ(X) is a prime ideal (in fact a maximal
ideal) in C(X).

3 λ-Pseudo minimal ideals and λ-disjoint spaces

In this section we are trying to extend the definitions and the results of [13,
Section 4] concerning the super socle of C(X) to Sλ(X). We recall that
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CF (X) is a direct sum of minimal ideals in C(X), which are evidently
generated by idempotents. Note that, if I is a minimal ideal in C(X) then
I = eC(X), where e ∈ C(X) is an idempotent such that there is x ∈ X
with e(x) = 1 and e(X \ {x}) = 0 (clearly, x is an isolated point in X,
see [19, Proposition 3.1]). Similarly to CF (X), in [13, lemma 4.2], it is
shown that the super socle of C(X) is a kind of direct sum of ideals in
C(X), which is not necessarily a direct sum. Motivated by this, we show
that similar results hold for Sλ(X), too.

The following definition is the counterpart of [13, Definition 4.1].

Definition 3.1. Let G be an open neighborhood of x ∈ X with |G| < λ.
Then the ideal (fxG), where fxG ∈ C(X) such that fxG(x) = 1 and fxG(X\G) =
(0) (note, by complete regularity of X, fxG exists and fxG ∈ Sλ(X), but it is
not necessarily unique) is called a λ-pseudo minimal ideal at x.

Let L(X) be the set of all open subsets of X with cardinality less than
λ. Take G ∈ L(X) and x ∈ G. Then we say that an element f ∈ C(X) is
of the form fxG, if f(x) = 1 and f(X \G) = 0. Now put

F xG = {f ∈ C(X) : f is of the form fxG}

and F xL(X) =
⋃

G∈L(X)

F xG. Then Sx =
∑

f∈FxL(X)

(f) is called the λ-pseudo socle

at x. Finally, if we put

F
Iλ(X)
L(X) = {f ∈ C(X) : f is of the form fxG,where (x,G) ∈ Iλ(X)× L(X)

and x ∈ G}

and S =
∑

f∈F Iλ(X)

L(X)

(f), then
∑

x∈Iλ(X)

Sx = S ⊆ Sλ(X) is called the λ-pseudo

socle of C(X).

We should emphasize that (g), where g ∈ C(X), is a λ-pseudo minimal

ideal at an element x ∈ Iλ(X) if and only if g ∈ F Iλ(X)
L(X) . We should also recall

that if x ∈ X is an isolated point then the pseudo minimal ideal (fx{x}) at x,

is in fact a minimal ideal in C(X), by the comment preceding the previous
definition, see also [19, Proposition 3.1]. It is clear that (fx{x}) is contained

in every λ-pseudo minimal ideal, (fxG) say, at x (note, fx{x}f
x
G 6= 0 implies
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that (fx{x}f
x
G) = (fx{x}) ⊆ (fxG)). Consequently,

(fx{x}) =
⋂
{(g) : (g) is a λ-pseudo minimal ideal at x}

(that is, every minimal ideal in C(X), which is clearly a λ-pseudo minimal
ideal at an isolated point x ∈ X, is the intersection of all λ-pseudo minimal
ideals at x), see also [13].

The following lemma is now evident (note, let 0 6= f ∈ Sλ(X), f(x) = r,
for some x ∈ X \Z(f) = G, then f ∈ (fxG) ⊆ Sλ(X) ⊆ S, where fxG = r−1f).

Lemma 3.2. Sλ(X) =
∑

x∈Iλ(X) Sx = S (that is, the λ-super socle and the
λ-pseudo socle of C(X) coincide).

It is manifest that the above sum is not necessarily a direct sum of ideals
Sx. Next, we are looking for spaces X in order to get some kind of direct
sum for Sλ(X). Let us begin with an example as a prototype.

The following example imitates [13, Example 4.3].

Example 3.3. Let X be a discrete space such that |X| ≥ λ. In view of [19,
Proposition 3.3] and its proof, we have CF (X) =

∑
x∈X

⊕
(fx{x}). As for

the λ-super socle, first we may put X =
⋃
i∈I

Xi, where each Xi is an infinite

subset of X with cardinality less than λ, and for i 6= j, Xi ∩Xj = ∅. Now
for each i ∈ I we define the ideal Si = {f ∈ C(X) : X \ Z(f) ⊆ Xi}. Then
one easily shows that Sλ(X) =

∑
i∈I
⊎
λ Si, where an element f of the latter

sum is of the form f =
∑
i∈I

fi with fi ∈ Si such that |{i ∈ I : fi 6= 0}| < λ,

(note that the infinite sum f =
∑
i∈I

fi is well-defined, for, if x ∈ X then

f(x) = fi(x) for a unique i ∈ I). It is manifest that
∑
i∈I

⊕
Si exists and it

is a subideal of Sλ(X).

If
∑
i∈I

⊕
Si and

∑
i∈I

⊎
λ Si exist for a collection of ideals Si in C(X), then

similar to [13], we call the latter sum “λ-strong direct sum” of these ideals.
Motivated by the previous example, we present the next theorem, which

was promised earlier. First we need the following definition.

Definition 3.4. A space X is called λ-disjoint, if its λ-isolated points (that
is, Iλ(X)) can be disjointly separated, that is, its λ-isolated points can
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be written as a union of disjoint collection of clopen subsets of X with
cardinality less than λ.

Example 3.5. Discrete spaces with cardinality greater than or equal to λ,
a topological space X without λ-isolated points (for example, X = R with
the usual topology), the one-point λ-compactification of a discrete space D,
where |D| ≥ λ, the sum (that is, free union) of any collection of λ-disjoint
spaces, c-disjoint spaces, where c is the cardinality of R, c ≤ λ, and finally
X = Y ⊕ Z, where Y has no λ-isolated points and Z is a λ-disjoint space,
are some examples of λ-disjoint spaces.

We conclude this section by proving that for λ-disjoint spaces, the λ-
super socle of C(X) is almost decomposable (that is, it is a λ-strong direct
sum or a direct sum of some of its subideals).

Theorem 3.6. Let λ be a regular cardinal number and X be a λ-disjoint
space with X = Y ∪ Z, Y ∩ Z = ∅ such that Iλ(X) = Z =

⋃
i∈I Gi, where

each Gi is a clopen set with cardinality less than λ, and Gi ∩Gj = ∅ for all
i 6= j. Then Sλ(X) =

∑
i∈I
⊎
λ Si, where Si = {f ∈ C(X) : X \Z(f) ⊆ Gi}.

Moreover,
∑

i∈I
⊕
Si ⊆ Sλ(X), and if I is finite then Sλ(X) =

∑
i∈I
⊕
Si.

Proof. Let f ∈ ∑i∈I
⊎
λ Si. Then f =

∑
i∈I

fi with fi ∈ Si. This implies

that X \ Z(f) ⊆ ⋃
i∈J

X \ Z(fi), where J ⊆ I with |J | < λ such that fi 6= 0

for all i ∈ J . But for each i, X \ Z(fi) ⊆ Gi implies |X \ Z(fi)| < λ, and
consequently |X \Z(f)| < λ. Hence f ∈ Sλ(X). Conversely, let f ∈ Sλ(X).
Now for each i ∈ I, we define fi ∈ C(X) by fi(x) = f(x) for each x ∈ Gi
and X \ Gi ⊆ Z(fi). So X \ Z(fi) ⊆ Gi, and therefore fi ∈ Si, for all
i ∈ I. Since |X \ Z(f)| < λ, we infer that X \ Z(f) ⊆ Z which implies
that f(Gi) 6= 0, where |{i ∈ I : f(Gi) 6= 0}| < λ. Clearly, f(Y ) = 0.
Thus, whenever f(x) 6= 0, there is a unique i ∈ I with x ∈ Gi such that
fi(x) = f(x), which immediately shows that f =

∑
i∈I

fi, where fi ∈ Si, and

we are done. The last part is evident.

Definition 3.7. Let {Ai : i ∈ I} be a collection of ideals in C(X). If for
each fi ∈ Ai,

∑
i∈I

fi ∈ RX , where (
∑
i∈I

fi)(x) =
∑
i∈I

fi(x) is well-defined for all
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x ∈ X, then by the external sum of these ideals, we mean

ex∑

i∈I
Ai = {f ∈ RX : f =

∑

i∈I
fi, fi ∈ Ai}.

Clearly,
ex∑
i∈I

Ai may not be an ideal in C(X) (note, it is indeed an ideal

in C(X) if I is finite), but it is naturally a C(X)-module.

Remark 3.8. Let X = ⊕i∈IXi be the sum (free union) of spaces Xi, where
|Xi| ≥ λ, for each i ∈ I and I(X) be the set of isolated points of X. For each
i ∈ I, define ei(Xi) = 1 and ei(Xj) = 0 for all j 6= i. Then we may assume

that C(Xi) = eiC(X). Clearly,
∑
i∈I
⊕C(Xi) ⊆ C(X) =

ex∑
i∈I

C(Xi) (note,

1 =
∑
i∈I

ei). In view of [19, Propositions 3.1, 3.3], one can easily see that

CF (X) =
∑

x∈I(X)

⊕(fx{x}) =
∑
i∈I

CF (Xi). Moreover, Sλ(X) =
∑
i∈I

⊎
λ Sλ(Xi).

Let us prove the latter equality. Let f ∈ Sλ(X). Then |X \ Z(f)| < λ,
hence |J | < λ, where J = {i ∈ I : Xi ∩ (X \ Z(f)) 6= ∅}. For each i ∈ J
put Gi = Xi ∩ (X \ Z(f)). Now define fi = eif , for each i ∈ I and note
that f(Gi) 6= 0, whenever i ∈ J . Clearly, fi ∈ Sλ(Xi) for each i ∈ I, hence
f =

∑
i∈I

fi ∈
∑
i∈I
]Sλ(Xi). The converse is evident.
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