Properties of products for flatness in the category of S-posets

R. Khosravi and M. Sedaghatjoo

Abstract

This paper is devoted to the study of products of classes of right S-posets possessing one of the flatness properties and preservation of such properties under products. Specifically, we characterize a pomonoid S over which its nonempty products as right S-posets satisfy some known flatness properties. Generalizing this results, we investigate products of right S-posets satisfying Condition $(P W P)$. Finally, we investigate pomonoids over which products of right S-posets transfer an arbitrary flatness property, projectivity, freeness, and regularity to their components.

1 Introduction

Over the past several decades, a chunk of literatures has been allocated to the flatness properties of acts over monoids. After switching these properties to their conterparts in the ordered algebraic structures by Fakhruddin in $1986([6,7])$, a great deal of investigation was devoted to the cognition of these notions in the context of ordered structures and to the results derived from the former known ones. Following this pattern, in this paper, we investigate preservation and reflection of some flatness properties such as

[^0]weak flatness, GP-(po-)flatness, Conditions $(W P)$ and $(W P)_{w}$.
For a monoid S a right S-act is a nonempty set A together with a map $A \times S \rightarrow A,(a, s) \rightsquigarrow a s$, such that $a 1=a$ and $a(s t)=(a s) t$. A monoid S endowed with a partial order, compatible with the binary operation, is called a pomonoid. For a pomonoid S, a right S-poset is a poset A which is also a right S-act whose action $A \times S \rightarrow A$ is monotone in both arguments. Left S-posets are defined analogously. In the sequel, the term S-poset is used simply to indicate a right S-poset. An S-subposet of an S-poset A_{S} is a (nonempty) subset of A which is closed under the action of S and denoted by $B \leq A$. Moreover, S-poset morphisms or simply S-morphisms are monotone maps between S-posets which preserve actions. The classes of S-posets and S-morphisms form a category, denoted by $S-P O S$, which comprises the main background of this work. For an account on this category and categorical notions used in this paper, the reader is referred to [5].

The subkernel of an S-poset morphism $f: A_{S} \longrightarrow B_{S}$ is defined by $\overrightarrow{k e r} f:=\left\{\left(a, a^{\prime}\right) \in A \times A: f(a) \leq f\left(a^{\prime}\right)\right\}$. An S-poset A_{S} is called flat (poflat) if for every left S-poset ${ }_{S} B$ and for all pairs $(a, b),\left(a^{\prime}, b^{\prime}\right)$ in $A \times B$, the equality (inequality) $a \otimes b=a^{\prime} \otimes b^{\prime}\left(a \otimes b \leq a^{\prime} \otimes b^{\prime}\right)$ in $A_{S} \otimes_{S} B$ implies the same equality (inequality) in $A_{S} \otimes_{S}\left(S b \cup S b^{\prime}\right)$. An S-poset A_{S} is called weakly flat (po-flat) if for $a, b \in A_{S}, s, t \in S$ the equality (inequality) $a s=b t(a s \leq b t)$ in A_{S} implies $a \otimes s=b \otimes t(a \otimes s \leq b \otimes t)$ in $A_{S} \otimes{ }_{S}(S s \cup S t)$. Putting $s=t$ in the foregoing definition yields principally weakly flat (po-flat) notion.

Remark 1.1. It is crucial to notice that for S-posets A_{S} and ${ }_{S} B$ and $(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B, a \otimes b \leq a^{\prime} \otimes b^{\prime}$ in $A_{S} \otimes{ }_{S} B$ if and only if there exists a scheme of the form

$$
\begin{aligned}
a & \leq a_{1} u_{1} & & \\
a_{1} v_{1} & \leq a_{2} u_{2} & & u_{1} b \leq v_{1} b_{2} \\
& \vdots & & \vdots \\
a_{n} v_{n} & \leq a^{\prime} & & u_{n} b_{n}
\end{aligned} \leq v_{n} b^{\prime}
$$

where for $1 \leq i \leq n, a_{i} \in A, b_{i} \in B, u_{i}, v_{i} \in S$. In this case we shall call n the length of the scheme and it should be mention that, by adding iterating inequalities, the length of the scheme can be increased to m for each natural number $m \geq n$.

Obviously, $a \otimes b$ and $a^{\prime} \otimes b^{\prime}$ are equal in $A_{S} \otimes_{S} B$ if and only if $a \otimes b \leq a^{\prime} \otimes b^{\prime}$ and $a^{\prime} \otimes b^{\prime} \leq a \otimes b$.

An S-poset A_{S} satisfies Condition $\left(P_{w}\right)$ if, for all $a, b \in A$ and $s, t \in S$, $a s \leq b t$ implies $a \leq a^{\prime} u, a^{\prime} v \leq b, u s \leq v t$ for some $a^{\prime} \in A, u, v \in S$. An S-poset A_{S} satisfies Condition (P) if, for all $a, b \in A$ and $s, t \in S, a s \leq b t$ implies $a=a^{\prime} u, b=a^{\prime} v, u s \leq v t$ for some $a^{\prime} \in A, u, v \in S$, and it satisfies Condition (E) if, for all $a \in A$ and $s, t \in S$, as $\leq a t$ implies $a=a^{\prime} u, u s \leq u t$ for some $a^{\prime} \in A, u \in S$. An S-poset is called strongly flat if it satisfies both Conditions (P) and (E). Projectivity is defined in the standard categorical manner. For a detailed account of the ingredients needed in this paper we refer the reader to $[1,6,7,17]$.

A pioneering work in the background of this paper goes back to [3], therein Bulman-Fleming investigated coherent and weakly coherent monoids in special cases. In [14] Sedaghatjoo et al. characterized principally weakly and weakly coherent monoids in general case. In [4], Bulman-Fleming characterized monoids over which products of projective acts are projective and in [2], the authors investigated flatness properties of $S \times S$ for a monoid S. Then in [12] some properties of products of S-acts are discussed. In light of S-posets as a generalization of S-acts, a large portion of literatures in the theory of semigroups and their actions has been accumulated to the flatness properties of S-posets, for instance $[1,5,11,15-17]$.

Meanwhile, pursuing the investigations, in [9] Khosravi studied pomonoids over which flatness properties such as strong flatness, Condition (P), Condition (E), Condition $\left(P_{w}\right)$, weak po-flatness and principal weak po-flatness of S-posets are preserved under products. In [10] products of S-posets satisfying Condition $(P W P)_{w}$ are discussed.

Hereby, continuing these researches, in this paper we investigate products of GP-po-flat, GP-flat, and weakly flat S-posets. Besides, preservation of Conditions $(P W P),(W P)$, and $(W P)_{w}$ under products are investigated. Ultimately, we reply to the question of when products of S-posets transfer flatness properties, projectivity, freeness, and regularity to their components.

If S is a pomonoid, the cartesian product S^{Γ} is an S-poset equipped with the componentwise order and action, where Γ is a nonempty set. Moreover, $\left(s_{\gamma}\right)_{\gamma \in \Gamma} \in S^{\Gamma}$ is denoted simply by $\left(s_{\gamma}\right)$, and the S-poset $S \times S$ will be denoted by $D(S)$.

2 GP-po-flat, GP-flat, weakly flat

We recall, from [13], that an S-poset A_{S} is called GP-po-flat, if for every $s \in S$, and $a, a^{\prime} \in A_{S}, a \otimes s \leq a^{\prime} \otimes s$ in $A_{S} \otimes{ }_{S} S$ implies the existence of a natural number m such that $a \otimes s^{m} \leq a^{\prime} \otimes s^{m}$ in $A_{S} \otimes{ }_{S} S s^{m}$. Similarly, GP-flat can be defined by replacing \leq by $=$ in the foregoing definition. It is obvious that every principally weakly po-flat S-poset is GP-po-flat, but not the converse. In this section we first concentrate on products of GP-po-flat and GP-flat S-posets over left $P S F$ pomonoids. Then we give equivalent conditions for S^{Γ}, for each nonempty set Γ, to be GP-(po-)flat or weakly flat. The following is needed to characterize GP-po-flatness.

Lemma 2.1. ([13]) An S-poset A_{S} is GP-po-flat if and only if for every $s \in S$, and $a, a^{\prime} \in A_{S}, a \otimes s \leq a^{\prime} \otimes s$ in $A_{S} \otimes{ }_{S} S$ implies that there exist $m, n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in S$ such that

$$
\left.\begin{array}{rlrl}
a & \leq a_{1} u_{1} & & \\
a_{1} v_{1} & \leq a_{2} u_{2} & & u_{1} s^{m} \leq v_{1} s^{m} \\
& \vdots & & \vdots \\
a_{n} v_{n} & \leq a^{\prime} & & u_{n} s^{m}
\end{array}\right) \leq v_{n} s^{m} .
$$

Recall that a pomonoid S is called left $P S F$ if all principal left ideals of S are strongly flat. For a pomonoid S an element $u \in S$ is called right semi-po-cancellable if for $s, t \in S, s u \leq t u$ implies that there exists $r \in S$ such that $r u=u, s r \leq t r$. It can be readily checked that a pomonoid S is left PSF if and only if every element of S is right semi-po-cancellable.

Lemma 2.2. Over a left PSF pomonoid S an S-poset A_{S} is GP-po-flat if and only if for any $a, a^{\prime} \in A_{S}, s \in S$, if as $\leq a^{\prime} s$, then there exist $r \in S$ and $m \in \mathbb{N}$ such that $r s^{m}=s^{m}$ and $a r \leq a^{\prime} r$.

Proof. Let A_{S} be GP-po-flat and $a s \leq a^{\prime} s$ for $s \in S, a, a^{\prime} \in A_{S}$. So $a \otimes s \leq$ $a^{\prime} \otimes s$ in $A_{S} \otimes_{S} S$ and Lemma 2.1 implies that there exist $m, n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in$
$A, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in S$ such that

$$
\begin{array}{rlrl}
a & \leq a_{1} u_{1} & & \\
a_{1} v_{1} & \leq a_{2} u_{2} & u_{1} s^{m} \leq v_{1} s^{m} \\
\vdots & & \vdots \\
a_{n} v_{n} & \leq a^{\prime} & u_{n} s^{m} & \leq v_{n} s^{m} .
\end{array}
$$

Regarding the inequality $u_{1} s^{m} \leq v_{1} s^{m}$, there exists $r_{1} \in S$ such that $r_{1} s^{m}=$ s^{m} and $u_{1} r_{1} \leq v_{1} r_{1}$. So $u_{2} r_{1} s^{m} \leq v_{2} r_{1} s^{m}$ implies that there exists $r_{2} \in S$ such that $r_{2} s^{m}=s^{m}$ and $u_{2} r_{1} r_{2} \leq v_{2} r_{1} r_{2}$. Carrying this process on we reach to $r=r_{1} \ldots r_{n} \in S$ such that $r s^{m}=s^{m}$ and $u_{i} r \leq v_{i} r$ for $1 \leq i \leq n$. Therefore,

$$
a r \leq a_{1} u_{1} r \leq a_{1} v_{1} r \leq a_{2} u_{2} r \leq \ldots \leq a^{\prime} r
$$

as desired. The converse is obvious.
Lemma 2.3. Over a left PSF pomonoid S an S-poset A_{S} is GP-flat if and only if for any $a, a^{\prime} \in A_{S}, s \in S$, if as $=a^{\prime} s$, there exist $r \in S$ and $m \in \mathbb{N}$ such that $r s^{m}=s^{m}$ and ar $=a^{\prime} r$.

Proof. Let $a s=a^{\prime} s$ for $s \in S, a, a^{\prime} \in A_{S}$. Since A_{S} is GP-flat, $a \otimes s^{m}=$ $a^{\prime} \otimes s^{m}$ in $A_{S} \otimes_{S} S s^{m}$. So there exist $k, n \in \mathbb{N}, a_{i}, a_{j}^{\prime} \in A$ and $u_{i}, u_{j}^{\prime}, v_{i}, v_{j}^{\prime} \in S$, for $1 \leq i \leq n, 1 \leq j \leq k$ such that

$$
\begin{array}{rlrl}
a & \leq a_{1} u_{1} & & \\
a_{1} v_{1} & \leq a_{2} u_{2} & u_{1} s^{m} \leq v_{1} s^{m} \\
& \vdots & & \vdots \\
a_{n} v_{n} & \leq a^{\prime} & u_{n} s^{m} \leq v_{n} s^{m} \\
& & & \\
a^{\prime} & \leq a_{1}^{\prime} u_{1}^{\prime} & & \\
a_{1}^{\prime} v_{1}^{\prime} & \leq a_{2}^{\prime} u_{2}^{\prime} & u_{1}^{\prime} s^{m} \leq v_{1}^{\prime} s^{m} \\
\vdots & & \vdots \\
a_{k}^{\prime} v_{k}^{\prime} & \leq a & u_{k}^{\prime} s^{m} \leq v_{k}^{\prime} s^{m} .
\end{array}
$$

Applying the argument used in the proof of the foregoing lemma for the right column of the scheme we get $r \in S$ such that $r s^{m}=s^{m}, u_{i} s^{m} \leq v_{i} s^{m}$
and $u_{j}^{\prime} s^{m} \leq v_{j}^{\prime} s^{m}$ for $1 \leq i \leq n, 1 \leq j \leq k$. Therefore,
$a r \leq a_{1} u_{1} r \leq a_{1} v_{1} r \leq a_{2} u_{2} r \leq \ldots \leq a^{\prime} r \leq a_{1}^{\prime} u_{1}^{\prime} r \leq a_{1}^{\prime} v_{1}^{\prime} r \leq \ldots \leq a r$, and so $a r=a^{\prime} r$. The converse is clear.

As a result of the above lemma we deduce the following corollary.
Corollary 2.4. Let S be a left PSF pomonoid and $A_{i}, 1 \leq i \leq n$ be S posets. Then $\prod_{i=1}^{n} A_{i}$ is GP-po-flat if and only if the inequality $\left(a_{1}, \ldots, a_{n}\right) s \leq$ $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) s$, for $a_{i}, a_{i}^{\prime} \in A_{i}, 1 \leq i \leq n, s \in S$, implies the existence of $r \in S$ and $m \in \mathbb{N}$ such that $r s^{m}=s^{m}$ and $\left(a_{1}, \ldots, a_{n}\right) r \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) r$.

The next theorem states that, for left $P S F$ pomonoids, flatness properties such as GP-flatness, GP-po-flatness, principal weak flatness and principal weak po-flatness are preserved under finite products.

Theorem 2.5. Let S be a left PSF pomonoid and $A_{i}, 1 \leq i \leq n$ be S-posets. Then we have the following assertions.
(i) If A_{i} is $G P$-po-flat for $1 \leq i \leq n$, then $\prod_{i=1}^{n} A_{i}$ is GP-po-flat.
(ii) If A_{i} is GP-flat for $1 \leq i \leq n$, then $\prod_{i=1}^{n} A_{i}$ is GP-flat.
(iii) If A_{i} is principally weakly po-flat for $1 \leq i \leq n$, then $\prod_{i=1}^{n} A_{i}$ is principally weakly po-flat.
(iv) If A_{i} is principally weakly flat for $1 \leq i \leq n$, then $\prod_{i=1}^{n} A_{i}$ is principally weakly flat.

Proof. (i): Suppose that $\left(a_{1}, \ldots, a_{n}\right) s \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) s$, for $s \in S, a_{i}, a_{i}^{\prime} \in$ $A_{i}, 1 \leq i \leq n$. Then $a_{1} s \leq a_{1}^{\prime} s$, and since S is a left $P S F$ pomonoid, there exist $r_{1} \in S$ and $m_{1} \in \mathbb{N}$ such that $r_{1} s^{m_{1}}=s^{m_{1}}$ and $a_{1} r_{1} \leq a_{1}^{\prime} r_{1}$. The inequality $a_{2} r_{1} s^{m_{1}} \leq a_{2}^{\prime} r_{1} s^{m_{1}}$ gives $r_{2} \in S$ and $m_{2} \in \mathbb{N}$ such that $r_{2}\left(s^{m_{1}}\right)^{m_{2}}=\left(s^{m_{1}}\right)^{m_{2}}$ and $a_{2} r_{1} r_{2} \leq a_{2}^{\prime} r_{1} r_{2}$. Continuing this process, we obtain $r_{1}, \ldots, r_{n} \in S, m_{1}, \ldots, m_{n} \in \mathbb{N}$ with $r_{i} s^{m_{1} \ldots m_{i}}=s^{m_{1} \ldots m_{i}}$ and $a_{i} r_{1} \ldots r_{i} \leq$ $a_{i}^{\prime} r_{1} \ldots r_{i}$ for each $1 \leq i \leq n$. Put $r=r_{1} \ldots r_{n}$ and $m=m_{1} \ldots m_{n}$. Thus $\left(a_{1}, \ldots, a_{n}\right) r \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) r$ and $r s^{m}=s^{m}$.

Applying Lemma 2.3(ii) is proved analogously.
Putting $m_{i}=1,1 \leq i \leq n$, (iii) and (iv) are proved in the same manners used for (i) and (ii).

Now, Theorem 2.5 provides another approach to Proposition 2.3 in [9].
Corollary 2.6. If S is a left PSF pomonoid, then the S-poset S^{n} is principally weakly flat (GP-po-flat) for each $n \in \mathbb{N}$.

Now, we engage in GP-po-flatness, GP-flatness and weak flatness of S^{Γ}.
Proposition 2.7. Let S be a pomonoid. Then S^{Γ} is GP-po-flat for each nonempty set Γ if and only if for any $s \in S$ there exist $\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right) \in$ $D(S)$ and $m \in \mathbb{N}$ such that $s_{i} s^{m} \leq t_{i} s^{m}$ for all $1 \leq i \leq n$, and for $(u, v) \in D(S), u s \leq v s$ implies the existence of $u_{1}, \ldots, u_{n} \in S$ such that

$$
\begin{aligned}
u & \leq u_{1} s_{1} \\
u_{1} t_{1} & \leq u_{2} s_{2} \\
& \vdots \\
u_{n} t_{n} & \leq v .
\end{aligned}
$$

Proof. Necessity. Let $L=\{(u, v) \in D(S) \mid u s \leq v s\}$, and index it by a set Γ as $L=\left\{\left(u_{\gamma}, v_{\gamma}\right) \mid \gamma \in \Gamma\right\}$. Since $\left(u_{\gamma}\right) s \leq\left(v_{\gamma}\right) s$ in S^{Γ}, by assumption $\left(u_{\gamma}\right) \otimes s^{m} \leq\left(v_{\gamma}\right) \otimes s^{m}$ in $S^{\Gamma} \otimes S s^{m}$ for some $m \in \mathbb{N}$, which implies that there exist $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n} \in S,\left(u_{\gamma}^{1}\right), \ldots,\left(u_{\gamma}^{n}\right) \in S^{\Gamma}$ such that

$$
\begin{array}{cc}
\left(u_{\gamma}\right) \leq\left(u_{\gamma}^{1}\right) s_{1} & \\
\left(u_{\gamma}^{1}\right) t_{1} \leq\left(u_{\gamma}^{2}\right) s_{2} & s_{1} s^{m} \leq t_{1} s^{m} \\
\vdots & \vdots \\
\left(u_{\gamma}^{n}\right) t_{n} \leq\left(v_{\gamma}\right) & s_{n} s^{m} \leq t_{n} s^{m} .
\end{array}
$$

Now the result follows immediately.
Sufficiency. Let $\Gamma \neq \emptyset$ and $\left(u_{\gamma}\right) s \leq\left(v_{\gamma}\right) s$ for $\left(u_{\gamma}\right),\left(v_{\gamma}\right) \in S^{\Gamma}$. Our assumption implies the existence of $m \in \mathbb{N}$ and $\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right) \in D(S)$ such that for $1 \leq i \leq n, s_{i} s^{m} \leq t_{i} s^{m}$ and for each $\gamma \in \Gamma$ there exist $u_{\gamma}^{1}, \ldots, u_{\gamma}^{n} \in S$ such that

$$
\begin{aligned}
u_{\gamma} & \leq u_{\gamma}^{1} s_{1} \\
u_{\gamma}^{1} t_{1} & \leq u_{\gamma}^{2} s_{2} \\
& \vdots \\
u_{\gamma}^{n} t_{n} & \leq v_{\gamma} .
\end{aligned}
$$

Thus $\left(u_{\gamma}\right) \otimes s^{m} \leq\left(u_{\gamma}^{1}\right) s_{1} \otimes s^{m} \leq\left(u_{\gamma}^{1}\right) \otimes s_{1} s^{m} \leq\left(u_{\gamma}^{1}\right) \otimes t_{1} s^{m} \leq\left(u_{\gamma}^{1}\right) t_{1} \otimes s^{m} \leq$ $\left(u_{\gamma}^{2}\right) s_{2} \otimes s^{m} \leq \ldots \leq\left(v_{\gamma}\right) \otimes s^{m}$ in $S^{\Gamma} \otimes S s^{m}$, as required.

Similar to the proof of the previous proposition and in light of the Remark 1.1, the following result is obtained.

Proposition 2.8. Let S be a pomonoid. Then S^{Γ} is GP-flat for each nonempty set Γ if and only if for any $s \in S$ there exist $\left(s_{i}, t_{i}\right),\left(s_{i}^{\prime}, t_{i}^{\prime}\right) \in$ $D(S), 1 \leq i \leq n$ and $m \in \mathbb{N}$ such that $s_{i} s^{m} \leq t_{i} s^{m}, s_{i}^{\prime} s^{m} \leq t_{i}^{\prime} s^{m}$ for all $1 \leq i \leq n$ and for $(u, v) \in D(S)$, us $=$ vs implies the existence of $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in S$ such that

$$
\begin{aligned}
& u \leq u_{1} s_{1} \\
& u_{1} t_{1} \leq u_{2} s_{2} \\
& \vdots \\
& u_{n} t_{n} \leq v \leq v_{1} s_{1}^{\prime} \\
& v_{1} t_{1}^{\prime} \leq v_{2} s_{2}^{\prime} \\
& \vdots \\
& v_{n} t_{n}^{\prime} \leq u
\end{aligned}
$$

If $S s \cap(S t] \neq \emptyset,\left\{\left(a s, a^{\prime} t\right) \mid a s \leq a^{\prime} t\right\}$ is denoted by $H(s, t)$. Recall that finitely generated left S-poset ${ }_{S} B$ is called finitely definable (FD) if the S morphism $S^{\Gamma} \otimes B \longrightarrow B^{\Gamma}$, given by $\left(s_{\gamma}\right)_{\Gamma} \otimes b \mapsto\left(s_{\gamma} b\right)_{\Gamma}$, is order-embedding for all nonempty sets Γ. Theorem 2.7 of [9], using finitely definable left ideals, gives the equivalent conditions for which S^{Γ} is weakly po-flat S-poset for each $\Gamma \neq \emptyset$. Similar considerations can be applied to weak flatness.

Definition 2.9. Let S be a pomonoid. A finitely generated left S-poset ${ }_{S} B$ is called weakly finitely definable (WFD) if the S-morphism $S^{\Gamma} \otimes B \longrightarrow B^{\Gamma}$ is a monomorphism for each nonempty set Γ.

The next theorem gives characterization of pomonoids over which S^{Γ} is weakly flat for each nonempty set Γ.

Theorem 2.10. For a pomonoid S, the following are equivalent:
(i) S^{Γ} is a weakly flat S-poset for each $\Gamma \neq \emptyset$.
(ii) Every finitely generated left ideal of S is WFD.
(iii) $S s$ is $W F D$ for each $s \in S$, and
for every $s, t \in S$, if $S s \cap S t \neq \emptyset$, then $\Delta_{S s \cap S t} \subseteq S(p, q) \cap S\left(q^{\prime}, p^{\prime}\right)$ for some $(p, q) \in H(s, t)$ and $\left(q^{\prime}, p^{\prime}\right) \in H(t, s)$.

Proof. The equivalence of (i) and (ii) is clear.
(i) \Rightarrow (iii): The first part is obvious. Let $s, t \in S$ such that $S s \cap S t \neq \emptyset$. Index the set $S s \cap S t$ by a set Γ as $\left\{u_{\gamma} s\left(=v_{\gamma} t\right) \mid \gamma \in \Gamma\right\}$. Since $S^{\Gamma} \otimes(S s \cup$ $S t) \rightarrow(S s \cup S t)^{\Gamma}$ is a monomorphism and $\left(u_{\gamma}\right) s=\left(v_{\gamma}\right) t$, then $\left(u_{\gamma}\right) \otimes s=$ $\left(v_{\gamma}\right) \otimes t$ in $S^{\Gamma} \otimes(S s \cup S t)$. So there exist $s_{i}, t_{i}, s_{j}^{\prime}, t_{j}^{\prime} \in S,\left(u_{\gamma}^{i}\right),\left(v_{\gamma}^{j}\right) \in S^{\Gamma}, 1 \leq$ $i \leq n, 1 \leq j \leq m, b_{2}, \ldots, b_{n}, c_{2}, \ldots, c_{m} \in S s \cup S t$ such that

$$
\begin{array}{cc}
\left(u_{\gamma}\right) \leq\left(u_{\gamma}^{1}\right) s_{1} & \\
\left(u_{\gamma}^{1}\right) t_{1} \leq\left(u_{\gamma}^{2}\right) s_{2} & s_{1} s \leq t_{1} b_{2} \\
\vdots & \vdots \\
\left(u_{\gamma}^{n}\right) t_{n} \leq\left(v_{\gamma}\right) & s_{n} b_{n} \leq t_{n} t \\
\left(v_{\gamma}\right) \leq\left(v_{\gamma}^{1}\right) s_{1}^{\prime} & \\
\left(v_{\gamma}^{1}\right) t_{1}^{\prime} \leq\left(v_{\gamma}^{2}\right) s_{2}^{\prime} & s_{1}^{\prime} t \leq t_{1}^{\prime} c_{2} \\
\vdots & \vdots \\
\left(v_{\gamma}^{m}\right) t_{m}^{\prime} \leq\left(u_{\gamma}\right) & s_{m}^{\prime} c_{m} \leq t_{m}^{\prime} s .
\end{array}
$$

Let k and r be the smallest integers such that $b_{k} \in S t$ and $c_{r} \in S s$. So $b_{k-1} \in S s$ and $c_{r-1} \in S t$. Take $p=s_{k-1} b_{k-1}, q=t_{k-1} b_{k}, q^{\prime}=s_{r-1}^{\prime} c_{r-1}$ and $p^{\prime}=t_{r-1}^{\prime} c_{r}$. Thus

$$
\begin{gathered}
\left(u_{\gamma}\right) s \leq\left(u_{\gamma}^{1}\right) s_{1} s \leq\left(u_{\gamma}^{1}\right) t_{1} b_{2} \leq\left(u_{\gamma}^{2}\right) s_{2} b_{2} \leq \ldots \leq \\
\left(u_{\gamma}^{k-1}\right) s_{k-1} b_{k-1} \leq\left(u_{\gamma}^{k-1}\right) t_{k-1} b_{k} \leq \ldots \leq\left(v_{\gamma}\right) t \leq\left(v_{\gamma}^{1}\right) s_{1}^{\prime} s \\
\leq \ldots \leq\left(v_{\gamma}^{r-1}\right) s_{r-1}^{\prime} c_{r-1} \leq\left(v_{\gamma}^{r-1}\right) t_{r-1}^{\prime} c_{r} \leq \ldots \leq\left(u_{\gamma}\right) s .
\end{gathered}
$$

Then $\left(u_{\gamma}\right) s=\left(u_{\gamma}^{k-1}\right) p=\left(u_{\gamma}^{k-1}\right) q=\left(v_{\gamma}^{r-1}\right) p^{\prime}=\left(v_{\gamma}^{r-1}\right) q^{\prime}=\left(v_{\gamma}\right) t$. Now it can be easily checked that $\Delta_{S s \cap S t} \subseteq S(p, q) \cap S\left(q^{\prime}, p^{\prime}\right)$ for $(p, q) \in H(s, t)$ and $\left(q^{\prime}, p^{\prime}\right) \in H(t, s)$.
(iii) \Rightarrow (i): Let I be a left ideal of S and $\left(u_{\gamma}\right) s=\left(v_{\gamma}\right) t$ for some $\left(u_{\gamma}\right),\left(v_{\gamma}\right) \in$ $S^{\Gamma}, s, t \in I$. Since $\Delta_{S s \cap S t} \subseteq S(p, q) \cap S\left(q^{\prime}, p^{\prime}\right)$ for some $(p, q) \in H(s, t)$ and $\left(q^{\prime}, p^{\prime}\right) \in H(t, s)$, for each $\gamma \in \Gamma$ there exist $w_{\gamma}, w_{\gamma}^{\prime} \in S$ such that $u_{\gamma} s=w_{\gamma} p=w_{\gamma} q=w_{\gamma}^{\prime} p^{\prime}=w_{\gamma}^{\prime} q^{\prime}=v_{\gamma} t$. Take $p=c s, q=d t, p^{\prime}=c^{\prime} s$ and
$q^{\prime}=d^{\prime} t$ for some $c, d, c^{\prime}, d^{\prime} \in S$. Since $S s$ and $S t$ are WFD, the equalities $\left(u_{\gamma}\right) s=\left(w_{\gamma} c\right) s=\left(w_{\gamma}^{\prime}\right) p^{\prime}$ and $\left(w_{\gamma} d\right) t=\left(w_{\gamma}^{\prime}\right) q^{\prime}=\left(v_{\gamma}\right) t$ imply the equalities $\left(u_{\gamma}\right) \otimes s=\left(w_{\gamma} c\right) \otimes s=\left(w_{\gamma}^{\prime} c^{\prime}\right) \otimes s$ and $\left(w_{\gamma} d\right) \otimes t=\left(w_{\gamma}^{\prime} d^{\prime}\right) \otimes t=\left(v_{\gamma}\right) \otimes t$ in $S^{\Gamma} \otimes S s$ and $S^{\Gamma} \otimes S t$, respectively. Therefore

$$
\left(u_{\gamma}\right) \otimes s=\left(w_{\gamma} c\right) \otimes s=\left(w_{\gamma}\right) \otimes c s \leq\left(w_{\gamma}\right) \otimes d t=\left(w_{\gamma} d\right) \otimes t=\left(v_{\gamma}\right) \otimes t
$$

$$
=\left(w_{\gamma}^{\prime} d^{\prime}\right) \otimes t=\left(w_{\gamma}^{\prime}\right) \otimes d^{\prime} t \leq\left(w_{\gamma}^{\prime}\right) \otimes c^{\prime} s=\left(w_{\gamma}^{\prime} c^{\prime}\right) \otimes s=\left(u_{\gamma}\right) \otimes s
$$

in $S^{\Gamma} \otimes(S s \cup S t)$. Thus $\left(u_{\gamma}\right) \otimes s=\left(v_{\gamma}\right) \otimes t$ in $S^{\Gamma} \otimes(S s \cup S t)$.
3 Conditions (PWP), (WP), (WP) w
Conditions $(P W P),(W P)$, and $(W P)_{w}$ were introduced in [8] which we need to recall them here. An S-poset A_{S} satisfies Condition $(P W P)$ if for all $a, a^{\prime} \in A, t \in S$, the inequality at $\leq a^{\prime} t$ implies the existence of $a^{\prime \prime} \in A$, $u, v \in S$ such that $a=a^{\prime \prime} u, a^{\prime}=a^{\prime \prime} v, u t \leq v t$. An S-poset A_{S} satisfies Condition $(W P)$ if for all $s, t \in S, a, a^{\prime} \in A_{S}$ and any homomorphism f : ${ }_{S} S s \cup S t \longrightarrow{ }_{S} S$, the inequality $a f(s) \leq a^{\prime} f(t)$ implies the existence of $a^{\prime \prime} \in A_{S}, p, q \in S s \cup S t$ such that $f(p) \leq f(q), a \otimes s=a^{\prime \prime} \otimes p$, and $a^{\prime} \otimes t=a^{\prime \prime} \otimes q$ in $A_{S} \otimes(S s \cup S t)$. Moreover, A_{S} satisfies Condition $(W P)_{w}$ if for all $s, t \in S, a, a^{\prime} \in A_{S}$ and any homomorphism $f:{ }_{S} S s \cup S t \longrightarrow{ }_{S} S$, the inequality $a f(s) \leq a^{\prime} f(t)$ implies the existence of $a^{\prime \prime} \in A_{S}, p, q \in S s \cup S t$ such that $f(p) \leq f(q), a \otimes s \leq a^{\prime \prime} \otimes p$, and $a^{\prime \prime} \otimes q \leq a^{\prime} \otimes t$ in $A_{S} \otimes(S s \cup S t)$. In this section we focus our attention on products of S-posets satisfying Conditions $(P W P),(W P)$, and $(W P)_{w}$.

The ordered version of a locally cyclic act is called a weakly locally cyclic S-poset for which every finitely generated S-subposet is contained in a cyclic S-subposet. Moreover, a left ideal of S which is also weakly locally cyclic is called weakly locally principal left ideal. By virtue of the terminology used in [9], the set $L(a, a)=\{(u, v) \in D(S) \mid u a \leq v a\}$ is a left S-subposet of $D(S)$.

Proposition 3.1. For any pomonoid S, the following are equivalent:
(i) Any finite product of S-posets satisfying Condition ($P W P$) satisfies Condition ($P W$) .
(ii) The diagonal S-poset $D(S)$ satisfies Condition $(P W P)$.
(iii) For every $a \in S$ the set $L(a, a)$ is a weakly locally cyclic left S-poset.

Proof. (i) \Rightarrow (ii) is clear.
(ii) \Rightarrow (iii): Let $(u, v),\left(u^{\prime}, v^{\prime}\right) \in L(a, a)$, for $a \in S$. Since $u a \leq v a$ and $u^{\prime} a \leq v^{\prime} a$, we have $\left(u, u^{\prime}\right) a \leq\left(v, v^{\prime}\right) a$, and our assumption implies that there exist $\left(w, w^{\prime}\right) \in D(S), p, q \in S$ such that $\left(w, w^{\prime}\right) p=\left(u, u^{\prime}\right),\left(w, w^{\prime}\right) q=\left(v, v^{\prime}\right)$ and $p a \leq q a$. So $(u, v),\left(u^{\prime}, v^{\prime}\right) \in S(p, q) \subseteq L(a, a)$, and it follows that $L(a, a)$ is weakly locally cyclic.
(iii) \Rightarrow (i): Suppose that A_{1}, \ldots, A_{n} are S-posets each satisfying Condition $(P W P)$. Let $\left(a_{1}, \ldots, a_{n}\right) u \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) u$ for $\left(a_{1}, \ldots, a_{n}\right),\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \in$ $\prod_{i=1}^{n} A_{i}, u \in S$. For each $1 \leq i \leq n, a_{i} u \leq a_{i}^{\prime} u$ implies the existence $a_{i}^{\prime \prime} \in A_{i}, p_{i}, q_{i} \in S$ such that $a_{i}^{\prime \prime} p_{i}=a_{i}, a_{i}^{\prime \prime} q_{i}=a_{i}^{\prime}$, and $p_{i} u \leq q_{i} u$. Then $\left(p_{i}, q_{i}\right) \in L(u, u)$ for each $1 \leq i \leq n$. Now, by assumption, there exists $(p, q) \in L(u, u)$ such that $\left(p_{i}, q_{i}\right) \in S(p, q)$. Suppose that $\left(p_{i}, q_{i}\right)=w_{i}(p, q)$ for $w_{i} \in S, 1 \leq i \leq n$. Then $\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}^{\prime \prime} w_{1}, \ldots, a_{n}^{\prime \prime} w_{n}\right) p,\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=$ $\left(a_{1}^{\prime \prime} w_{1}, \ldots, a_{n}^{\prime \prime} w_{n}\right) q$, and $p u \leq q u$, proving that $\prod_{i=1}^{n} A_{i}$ satisfies Condition ($P W P$).

The next theorem presents equivalent conditions on a pomonoid S for products of nonempty families of S-posets to satisfy Condition ($P W P$).
Theorem 3.2. For a pomonoid S, the following are equivalent:
(i) Products of nonempty families of S-posets satisfying Condition (PW P) satisfy Condition (PWP).
(ii) S^{Γ} satisfies Condition (PWP) for each nonempty set Γ.
(iii) For every $a \in S$ the set $L(a, a)$ is a cyclic left S-poset.

Proof. (i) \Rightarrow (ii) is clear. (ii) \Rightarrow (iii): Suppose that $a \in S$ and index the set $L(a, a)$ by $\left\{\left(u_{\gamma}, v_{\gamma}\right) \mid \gamma \in \Gamma\right\}$. Since $\left(u_{\gamma}\right) a \leq\left(v_{\gamma}\right) a$ and S^{Γ} satisfies Condition $(P W P)$, there exist $p, q \in S,\left(z_{\gamma}\right) \in S^{\Gamma}$ such that $p a \leq q a,\left(u_{\gamma}\right)=\left(z_{\gamma}\right) p$ and $\left(v_{\gamma}\right)=\left(z_{\gamma}\right) q$. Thus $(p, q) \in L(a, a)$ and for each $\gamma \in \Gamma,\left(u_{\gamma}, v_{\gamma}\right)=z_{\gamma}(p, q)$, which prove that $L(a, a)$ is cyclic.
(iii) \Rightarrow (i): Let $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets satisfying Condition $(P W P)$ and $A=\prod_{i \in I} A_{i}$. Suppose that $\left(x_{i}\right) a \leq\left(y_{i}\right) a$ where $a \in S$ and $\left(x_{i}\right),\left(y_{i}\right) \in A$. For each $i \in I$, since A_{i} satisfies Condition $(P W P)$, the inequality $x_{i} a \leq y_{i} a$ implies the existence of $u_{i}, v_{i} \in S, z_{i} \in A_{i}$ providing $u_{i} a \leq v_{i} a, x_{i}=z_{i} u_{i}, y_{i}=z_{i} v_{i}$. So $\left(u_{i}, v_{i}\right) \in L(a, a)=S(p, q)$. Thus for each $i \in I$ there exists $r_{i} \in S$ such that $\left(u_{i}, v_{i}\right)=r_{i}(p, q)$ and hence $x_{i}=$ $z_{i} r_{i} p, y_{i}=z_{i} r_{i} q$. Therefore $\left(x_{i}\right)=\left(z_{i} r_{i}\right) p,\left(y_{i}\right)=\left(z_{i} r_{i}\right) q$ and $p a \leq q a$.

In what follows we present the equivalent conditions for S^{Γ} to satisfy Condition $(W P)$ or $(W P)_{w}$.

Proposition 3.3. For a pomonoid S, the following are equivalent:
(i) S^{Γ} satisfies Condition $(W P)$ for each $\Gamma \neq \emptyset$.
(ii) Every finitely generated left ideal of S is WFD, and for any $s, t \in S$ and homomorphism $f:{ }_{S} S s \cup S t \longrightarrow{ }_{S} S$, if

$$
L_{f}(s, t)=\{(u s, v t) \mid(u s, v t) \in \overrightarrow{k e r} f\} \neq \emptyset
$$

then $L_{f}(s, t) \subseteq S(p, q)$ for some $(p, q) \in \overrightarrow{k e r} f$.
Proof. (i) \Rightarrow (ii): By Theorem 2.10, the first part is immediate. Let $f:{ }_{S} S s \cup$ $S t \longrightarrow{ }_{S} S$ be a homomorphism for $s, t \in S$. Suppose that $L_{f}(s, t) \neq \emptyset$ and index it by the set $\left\{\left(u_{\gamma} s, v_{\gamma} t\right) \mid \gamma \in \Gamma\right\}$. Since S^{Γ} satisfies Condition (WP), the inequality $\left(u_{\gamma}\right) f(s) \leq\left(v_{\gamma}\right) f(t)$ implies that there exist $\left(z_{\gamma}\right) \in S^{\Gamma}, p, q \in$ $S s \cup S t$ such that $f(p) \leq f(q),\left(u_{\gamma}\right) \otimes s=\left(z_{\gamma}\right) \otimes p$ and $\left(v_{\gamma}\right) \otimes t=\left(z_{\gamma}\right) \otimes q$ in $S^{\Gamma} \otimes(S s \cup S t)$. Clearly $\left(u_{\gamma}\right) s=\left(z_{\gamma}\right) p$ and $\left(v_{\gamma}\right) t=\left(z_{\gamma}\right) q$ in S^{Γ}, which imply that $L_{f}(s, t) \subseteq S(p, q)$.
(ii) $\Rightarrow(\mathrm{i})$: Let $s, t \in S$ and $f:{ }_{S} S s \cup S t \longrightarrow{ }_{s} S$ be a homomorphism. Suppose that $\left(u_{\gamma}\right) f(s) \leq\left(v_{\gamma}\right) f(t)$ in S^{Γ}. So $\left(u_{\gamma} s, v_{\gamma} t\right) \in L_{f}(s, t) \neq \emptyset$ and, by assumption, $L_{f}(s, t) \subseteq S(p, q)$ for some $(p, q) \in \overrightarrow{k e r} f$. Clearly $f(p) \leq f(q)$, and $\left(u_{\gamma} s, v_{\gamma} t\right)=z_{\gamma}(p, q)$ for each $\gamma \in \Gamma$. Thus, $\left(u_{\gamma}\right) s=\left(z_{\gamma}\right) p$ and $\left(v_{\gamma}\right) t=\left(z_{\gamma}\right) q$ in $(S s \cup S t)^{\Gamma}$. Since $(S s \cup S t)$ is WFD we deduce that $\left(u_{\gamma}\right) \otimes s=\left(z_{\gamma}\right) \otimes p$ and $\left(v_{\gamma}\right) \otimes t=\left(z_{\gamma}\right) \otimes q$ in $S^{\Gamma} \otimes(S s \cup S t)$, as required.

An adaptation of Proposition 3.3 in the category of S-acts gives the following proposition.

Proposition 3.4. For a monoid S, the following are equivalent:
(i) The S-act S^{Γ} satisfies Condition $(W P)$ for each $\Gamma \neq \emptyset$.
(ii) Every finitely generated left ideal of S is $F D$, and for any $s, t \in S$ and homomorphism $f: s_{S} S s \cup S t \longrightarrow{ }_{S} S$, if $L_{f}(s, t)=(S s \times S t) \cap \operatorname{ker} f \neq \emptyset$, then $L_{f}(s, t) \subseteq S(p, q)$ for some $(p, q) \in \operatorname{kerf}$.

Herein, we need to use the term $\widehat{S(p, q)}$ for a pair (p, q) in $D(S)$, introduced in [9], indicating the left S-poset $\{(u, v) \in D(S) \mid \exists w \in S, u \leq$ $w p, w q \leq v\}$ containing the cyclic S-poset $S(p, q)$.

Proposition 3.5. For a pomonoid S, the following are equivalent:
(i) S^{Γ} satisfies Condition $(W P)_{w}$ for each $\Gamma \neq \emptyset$.
(ii) Every finitely generated left ideal of S is $F D$, and for any $s, t \in S$ and homomorphism $f:{ }_{S} S s \cup S t \longrightarrow{ }_{S} S$, if $L_{f}(s, t)=\{(u s, v t) \mid(u s, v t) \in$ $\overrightarrow{k e r} f\} \neq \emptyset$, then $L_{f}(s, t) \subseteq \widehat{S(p, q)}$ for some $(p, q) \in \overrightarrow{k e r} f$.

Proof. The proof is similar to the proof of Proposition 3.3.

4 Transferring flatness properties from products to their components

This section is allocated to reply the question of when products of S-posets transfer flatness properties such as projectivity, freeness, and regularity to their components. The following lemma is an updated version of Remark 3.1 in [14] for S-posets, needed in the sequel.

Lemma 4.1. Let $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets and ${ }_{S} B$ be a left S-poset. Suppose that $\left(a_{i}\right) \otimes b \leq\left(a_{i}^{\prime}\right) \otimes b^{\prime}$ for $\left(a_{i}\right),\left(a_{i}^{\prime}\right) \in \prod_{I} A_{i}, b, b^{\prime} \in{ }_{S} B$. Then $a_{i} \otimes b \leq a_{i}^{\prime} \otimes b^{\prime}$ for each $i \in I$.

We begin our investigation with (po-)torsion freeness. An element c of a pomonoid S is called right po-cancellable if for any $s, t \in S, s c \leq t c$ implies $s \leq t$. An S-poset A_{S} is called (po-)torsion free if for any $a, a^{\prime} \in A$ and right (po-)cancellable element c of S, from ($a c \leq a^{\prime} c$) $a c=a^{\prime} c$ it follows that $\left(a \leq a^{\prime}\right) a=a^{\prime}$. The proof of the next lemma is straightforward.

Lemma 4.2. Let S be a pomonoid and $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets. Then $\prod_{I} A_{i}$ is (po-)torsion free if and only if A_{i} is (po-)torsion free for each $i \in I$.

For GP-po-flatness we have the following result.
Lemma 4.3. Let S be a pomonoid and $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets such that $\prod_{I} A_{i}$ is GP-po-flat. Then A_{i} is GP-po-flat for each $i \in I$.

Proof. Suppose that $j \in I$ and $a s \leq a^{\prime} s$ for $s \in S, a, a^{\prime} \in A_{j}$. For each $i \neq j$ in I, choose $a_{i} \in A_{i}$ and define

$$
c_{i}= \begin{cases}a_{i} & i \neq j \\ a & i=j\end{cases}
$$

and

$$
c_{i}^{\prime}= \begin{cases}a_{i} & i \neq j \\ a^{\prime} & i=j\end{cases}
$$

Thus $\left(c_{i}\right) s \leq\left(c_{i}^{\prime}\right) s$ and, by assumption, $\left(c_{i}\right) \otimes s^{m} \leq\left(c_{i}^{\prime}\right) \otimes s^{m}$ in $\prod_{I} A_{i} \otimes{ }_{S} S s^{m}$ for some $m \in \mathbb{N}$. The result now follows by Lemma 4.1.

The following result could be proved by letting $m=1$ in the proof of the previous lemma.

Corollary 4.4. Let S be a pomonoid and $\left\{A_{i} \mid i \in I\right\}$ be a family of S posets such that $\prod_{I} A_{i}$ is principally weakly po-flat. Then A_{i} is principally weakly po-flat for each $i \in I$.

Substituting \leq by $=$ in the proofs of Lemma 4.3 and Corollary 4.4, leads us to the following results respectively.

Lemma 4.5. Let S be a pomonoid and $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets such that $\prod_{I} A_{i}$ is GP-flat. Then A_{i} is GP-flat for each $i \in I$.

Corollary 4.6. Let S be a pomonoid and $\left\{A_{i} \mid i \in I\right\}$ be a family of S posets such that $\prod_{I} A_{i}$ is principally weakly flat. Then A_{i} is principally weakly flat for each $i \in I$.

The following arguments are about Conditions $(P W P)$ and $(P W P)_{w}$.
Proposition 4.7. Let S be a pomonoid and $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets. The following statements are verified.
(i) If $\prod_{I} A_{i}$ satisfies Condition $(P W P)$, then A_{i} satisfies Condition $(P W P)$ for each $i \in I$.
(ii) If $\prod_{I} A_{i}$ satisfies Condition $(P W P)_{w}$, then A_{i} satisfies Condition $(P W P)_{w}$ for each $i \in I$.

Proof. (i): Let $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets such that $\prod_{I} A_{i}$ satisfies Condition $(P W P)$. Suppose that $a t \leq a^{\prime} t$ for $a, a^{\prime} \in A_{j}, t \in S$. Fix $a_{i} \in A_{i}$ for each $i \neq j$ in I and define

$$
c_{i}= \begin{cases}a & i=j \\ a_{i} & i \neq j\end{cases}
$$

and

$$
d_{i}=\left\{\begin{array}{ll}
a^{\prime} & i=j \\
a_{i} & i \neq j
\end{array} .\right.
$$

Thus, $\left(c_{i}\right) t \leq\left(d_{i}\right) t$ and, by assumption, there exist $\left(a_{i}^{\prime \prime}\right) \in \prod_{I} A_{i}$ and $u, v \in$ S such that $\left(c_{i}\right)=\left(a_{i}^{\prime \prime}\right) u,\left(d_{i}\right)=\left(a_{i}^{\prime \prime}\right) v$ and $u t \leq v t$. So $a=a_{j}^{\prime \prime} u, a^{\prime}=a_{j}^{\prime \prime} v$, and the result follows. By a similar argument, part (ii) is verified.

Recall from [1] that a pomonoid S is called weakly right reversible in case $S s \cap(S t] \neq \emptyset$ for each $s, t \in S$. In what follows, we investigate flatness properties for which transferring from products to their components meets additional conditions on the pomonoid S.

Theorem 4.8. For a pomonoid S, the following conditions are equivalent:
(i) Po-flatness transfers from products to their components.
(ii) Weak po-flatness transfers from products to their components.
(iii) Flatness transfers from products to their components.
(iv) Weak flatness transfers from products to their components.
(v) The one-element S-poset Θ_{S} meets one of the Conditions $(P),\left(P_{w}\right)$, po-flatness, flatness, weak po-flatness or weak flatness.
(vi) S is weakly right reversible.

Proof. The equivalence of conditions (v) and (vi) is shown in [1, Theorem $1]$.
(i),(ii),(iii),(iv) \Rightarrow (v): Since $S_{S} \cong S_{S} \times \Theta_{S}$, all implications are verified.
(vi) \Rightarrow (i): Suppose that $\prod_{I} A_{i}$ is po-flat for a family $\left\{A_{i} \mid i \in I\right\}$ of S-posets. Let ${ }_{S} B$ be a left S-poset and $a \otimes b \leq a^{\prime} \otimes b^{\prime}$ in $A_{j} \otimes B$ for some $j \in I, a, a^{\prime} \in A_{j}, b, b^{\prime} \in{ }_{S} B$. Thus, there exists a scheme such as:

$$
\begin{array}{rlrl}
a & \leq a_{1} u_{1} & & \\
a_{1} v_{1} & \leq a_{2} u_{2} & & u_{1} b \leq v_{1} b_{2} \\
\vdots & & \vdots \\
a_{n} v_{n} & \leq a^{\prime} & u_{n} b_{n} & \leq v_{n} b^{\prime}
\end{array}
$$

where $a_{i} \in A_{j}, b_{i} \in B, u_{i}, v_{i} \in S$ for $1 \leq i \leq n$. Putting $v_{0}=u_{n+1}=1$, our assumption implies the existence of $c_{0}, d_{0} \in S$ with $c_{0} v_{0} \leq d_{0} u_{1}$. Proceeding inductively, we get $c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n} \in S$ such that $c_{i} d_{i-1} v_{i} \leq d_{i} u_{i+1}$ for each $1 \leq i \leq n+1$. Fix $a_{i}^{\prime} \in A_{i}$ for each $j \neq i \in I$. Define

$$
\alpha_{i}=\left\{\begin{array}{ll}
a_{i}^{\prime} c_{n} \ldots c_{1} c_{0} & i \neq j \\
a & i=j
\end{array}, \quad \alpha_{i}^{\prime}= \begin{cases}a_{i}^{\prime} d_{n} & i \neq j \\
a^{\prime} & i=j\end{cases}\right.
$$

and

$$
\beta_{l i}= \begin{cases}a_{i}^{\prime} c_{n} \ldots c_{l} d_{l-1} & i \neq j \\ a_{l} & i=j\end{cases}
$$

for each $i \in I, 1 \leq l \leq n-1$. Thus $\left(\alpha_{i}\right) \otimes b \leq\left(\alpha_{i}^{\prime}\right) \otimes b^{\prime}$ in $\prod_{I} A_{i} \otimes B$ by the scheme:

$$
\begin{array}{rlrl}
\left(\alpha_{i}\right) & \leq\left(\beta_{1 i}\right) u_{1} & & \\
\left(\beta_{1 i}\right)_{I} v_{1} & \leq\left(\beta_{2 i}\right) u_{2} & & u_{1} b \leq v_{1} b_{2} \\
\vdots & & \vdots \\
\left(\beta_{n i}\right) v_{n} & \leq\left(\alpha_{i}^{\prime}\right) & u_{n} b_{n} \leq v_{n} b^{\prime}
\end{array}
$$

Therefore, by our assumption, $\left(\alpha_{i}\right) \otimes b \leq\left(\alpha_{i}^{\prime}\right) \otimes b^{\prime}$ in $\prod_{I} A_{i} \otimes\left(S b \cup S b^{\prime}\right)$ which gives $a \otimes b \leq a^{\prime} \otimes b^{\prime}$ in $A_{j} \otimes\left(S b \cup S b^{\prime}\right)$, using Lemma 4.1.

The implications (vi) \Rightarrow (ii) , (vi) \Rightarrow (iii) and (vi) \Rightarrow (iv) follow analogously.

Proposition 4.9. For a pomonoid S, the following are equivalent:
(i) Condition (P) transfers from products to their components.
(ii) Condition $\left(P_{w}\right)$ transfers from products to their components.
(iii) Θ_{S} satisfies Condition (P) or Condition $\left(P_{w}\right)$.
(iv) S is weakly right reversible.

Proof. According to the proof of Theorem 4.8, it is enough to prove the implication (iv) \Rightarrow (i). Let $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets such that $\prod_{I} A_{i}$ satisfies Condition (P). Let as $\leq a^{\prime} t$ for $a, a^{\prime} \in A_{j}, s, t \in S$. Fix $a_{i} \in A_{i}$ for each $i \neq j$ in I. Since S is weakly right reversible, there exist $u_{1}, v_{1} \in S$ such that $u_{1} s \leq v_{1} t$. Define

$$
c_{i}= \begin{cases}a & i=j \\ a_{i} u_{1} & i \neq j\end{cases}
$$

and

$$
d_{i}=\left\{\begin{array}{ll}
a^{\prime} & i=j \\
a_{i} v_{1} & i \neq j
\end{array} .\right.
$$

So $\left(c_{i}\right) s \leq\left(d_{i}\right) t$ and by assumption there exist $\left(a_{i}^{\prime \prime}\right) \in \prod_{I} A_{i}, u, v \in S$ such that $\left(c_{i}\right)=\left(a_{i}^{\prime \prime}\right) u,\left(d_{i}\right)=\left(a_{i}^{\prime \prime}\right) v$, and $u s \leq v t$. Hence $a=a_{j}^{\prime \prime} u, a^{\prime}=a_{j}^{\prime \prime} v$, and the result follows.

Theorem 4.10. For a pomonoid S, the following statements are equivalent:
(i) Condition (WP) transfers from products to their components.
(ii) Condition $(W P)_{w}$ transfers from products to their components.
(iii) Θ_{S} satisfies Condition $(W P)$ or Condition $(W P)_{w}$.
(iv) S is weakly right reversible.

Proof. Since Conditions $(W P)$ and $(W P)_{w}$ both imply weak po-flatness, the implications (iii) \Rightarrow (iv) is valid. Besides, according to the proof of Theorem 4.8 we have the implications (i) \Rightarrow (iii) and (ii) \Rightarrow (iii).
$($ iv $) \Rightarrow(\mathrm{i})$: Let $\left\{A_{i} \mid i \in I\right\}$ be a family of S-posets such that $\prod_{I} A_{i}$ satisfies Condition $(W P)$. Let $s, t \in S$ and $f:(S s \cup S t) \longrightarrow S$ be a homomorphism such that $a f(s) \leq a^{\prime} f(t)$ for $a, a^{\prime} \in A_{j}, j \in I$. Since S is weakly right reversible, there exist $u_{1}, v_{1} \in S$ such that $u_{1} f(s) \leq v_{1} f(t)$. Fix $a_{i} \in A_{i}$ for $j \neq i \in I$. Let

$$
c_{i}= \begin{cases}a & i=j \\ a_{i} u_{1} & i \neq j\end{cases}
$$

and

$$
d_{i}= \begin{cases}a^{\prime} & i=j \\ a_{i} v_{1} & i \neq j\end{cases}
$$

Then $\left(c_{i}\right) f(s) \leq\left(d_{i}\right) f(t)$. By assumption, there exist $\left(a_{i}^{\prime \prime}\right) \in \prod_{I} A_{i}, p, q \in$ $S s \cup S t$ such that $\left(c_{i}\right) \otimes s=\left(a_{i}^{\prime \prime}\right) \otimes p,\left(d_{i}\right) \otimes t=\left(a_{i}^{\prime \prime}\right) \otimes q$ in $\prod_{I} A_{S} \otimes_{S}(S s \cup S t)$ and $f(p) \leq f(q)$. Thus, thanks to Lemma 4.1, $a \otimes s=a_{j}^{\prime \prime} \otimes p, a^{\prime} \otimes t=a_{j}^{\prime \prime} \otimes q$ in $A_{j} \otimes_{S}(S s \cup S t)$ and hence A_{j} satisfies Condition $(W P)$.

The implication (iv) \Rightarrow (ii) is followed analogously.
Theorem 4.11. For a pomonoid S, the following assertions are equivalent:
(i) Condition (E) transfers from products to their components.
(ii) Strong flatness transfers from products to their components.
(iii) Θ_{S} is strongly flat or satisfies Condition (E).
(iv) S is left collapsible.

Proof. The equivalence of (iii) and (iv) is shown in [1, Theorem 1]. The implications (i) \Rightarrow (iii) and (ii) \Rightarrow (iii) are similar to their peer in the foregoing theorem. (iv) \Rightarrow (i): It is similar to the proof of $(\mathrm{iii}) \Rightarrow(\mathrm{i})$ in Proposition 4.9. (iv) \Rightarrow (ii) follows by (iv) \Rightarrow (i) and Proposition 4.9.

Concerning properties projectivity, freeness and regularity, the results are proved similar to the act case ([14]), so their proofs are omitted.

Proposition 4.12. For a pomonoid S, the following are equivalent:
(i) Projectivity transfers from products to their components.
(ii) Θ_{S} is projective.
(iii) S contains a left zero.

Proposition 4.13. Let S be a pomonoid on which there exists a regular S-poset. The following are equivalent:
(i) Regularity transfers from products to their components.
(ii) Θ_{S} is regular.
(iii) S contains a left zero.

Proposition 4.14. For a pomonoid S, the following are equivalent:
(i) Freeness transfers from products to their components.
(ii) Θ_{S} is free.
(iii) $S=\{1\}$.

Concluding this section, we summarize the results in the following table.

Property	The necessary and sufficient condition on S for transferring a flatness property from products to their components
Torsion freeness GP-po-flatness GP-flatness Principal weak po-flatness Principal weak flatness Condition $(P W P)$ Condition $(P W P)_{w}$	S needs no condition.
Weak flatness Weak po-flatness Flatness Po-flatness Condition (P) Condition $\left(P_{w}\right)$ Condition $(W P)$ Condition $(W P)_{w}$	S is weakly right reversible.
Condition (E) Strong flatness	S is left collapsible.
Projectivity	S contains a left zero.
Regularity (if there exists a regular $S-$ poset)	S contains a left zero.
Freeness	$S=\{1\}$.

Table 1: Classification of pomonoids by transferring a flatness property from products of S-posets to their components.

Acknowledgement

The authors wish to express their appreciation to the anonymous referee for his/her constructive comments improving the paper. They would also like to acknowledge Professor M.M. Ebrahimi for providing the communications.

References

[1] S. Bulman-fleming, D. Gutermuth, A. Glimour, and M. Kilp, Flatness properties of S-posets, Comm. Algebra 34(4) (2006), 1291-1317.
[2] S. Bulman-Fleming and A. Gilmour, Flatness properties of diagonal acts over monoids, Semigroup Forum 79(2) (2009), 298-314.
[3] S. Bulman-Fleming and K. McDowell, Coherent monoids, Chapter in: Almeida, J., et al., eds. Lattices, Semigroups and Universal Algebra, New York, Springer (1990), 29-37.
[4] S. Bulman-Fleming, Products of projective S-system, Comm. Algebra 19(3) (1991), 951-964.
[5] S. Bulman-Fleming and M. Mahmoudi, The category of S-posets, Semigroup Forum 71(3) (2005), 443-461.
[6] S.M. Fakhruddin, Absolute flatness and amalgams in pomonoids, Semigroup Forum 33 (1986), 15-22.
[7] S.M. Fakhruddin, On the category of S-posets, Acta Sci. Math. (Szeged) 52 (1988), 85-92.
[8] A. Golchin and P. Rezaei, Subpullbacks and flatness properties of S-posets, Comm. Algebra 37(6) (2009), 1995-2007.
[9] R. Khosravi, On direct products of S-posets satisfying flatness properties, Turk. J. Math. 38 (2014), 79-86.
[10] X.L. Liang and Y.F. Luo, On Condition $(P W P)_{w}$ for S-posets, Turk. J. Math. 39 (2015), 795-809.
[11] X.L. Liang and Y. Luo, Subpullbacks and coproducts of S-posets, Categ. General Alg. Struct. Appl. 3(1) (2015), 1-20.
[12] L. Nouri, A. Golchin, and H. Mohammadzadeh, On Properties of Product acts over monoids, Comm. Algebra 43(5) (2015), 1854-1876.
[13] H.S. Qiao and H.C. Wen, On a generalizations of principally weakly po-flat poset, J. Shandong. Univ. 50(12) (2015), 1571-9352.
[14] M. Sedaghatjoo, R. Khosravi, and M. Ershad, Principaly weakly and weakly coherent monoids, Comm. Algebra 37(12) (2009), 4281-4295.
[15] X. Shi, On flatness properties of cyclic S-posets, Semigroup Forum 77(2) (2008), 248-266.
[16] X. Shi, Strongly flat and po-flat S-posets, Comm. Algebra 33(12) (2005), 4515-4531.
[17] X. Shi, Z. Liu, F. Wang, and S. Bulman-Fleming, Indecomposable, projective, and flat S-posets, Comm. Algebra 33(1) (2005), 235-251.

Roghaieh Khosravi, Department of Mathematics, Fasa University, Fasa, Iran.

Email: khosravi@fasau.ac.ir

Mojtaba Sedaghatjoo, Department of Mathematics, College of Science, Persian Gulf University, Bushehr, Iran.
Email: sedaghat@pgu.ac.ir

[^0]: Keywords: Product, pomonoid, S-poset, flat, condition $(W P)$, condition $(P W P)$. Mathematics Subject Classification [2010]: 20M50, 06F05.
 Received: 18 April 2016, Accepted: 5 June 2016
 ISSN Print: 2345-5853 Online: 2345-5861
 (C) Shahid Beheshti University

