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The ring of real-valued functions on a
frame

A. Karimi Feizabadi, A.A. Estaji, and M. Zarghani

Communicated by Themba Dube

Abstract. In this paper, we define and study the notion of the real-valued
functions on a frame L. We show that F (L), consisting of all frame homomor-
phisms from the power set of R to a frame L, is an f -ring, as a generalization
of all functions from a set X into R. Also, we show that F (L) is isomorphic
to a sub-f -ring of R(L), the ring of real-valued continuous functions on L.
Furthermore, for every frame L, there exists a Boolean frame B such that
F (L) is a sub-f -ring of F (B).

1 Introduction

Pointfree topology focuses on the open sets rather than the points of a space,
and deals with abstractly defined “lattice of open sets”, called frames, and
their homomorphisms. The ring of real continuous functions in pointfree
topology has been studied by a number of authors, such as B. Banaschewski
(see [2, 4, 5]), R.N. Ball and J. Walters-Wayland (see [1]) and T. Dube
(see [6–8]).

In this paper, we are going to turn our viewpoint and regard the power
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set of a set X as a frame, and study all its subsets, rather than the points of
X. Our future purpose is to consider a frame L endowed with a topoframe
as well as the power set of X endowed with a topology (see [9]).

In section 3, we introduce the concept of real-valued functions F (L) and
show that F (L) with the operator ⋄ defined at the start of this section, is
an f -ring.

In section 4, we show that the f -ring F (L) is a generalization of RX ,
the collection of all functions from a set X into the set R.

In section 5, we prove that for every frame L, there exists a Boolean
frame B such that F (L) is a sub-f -ring of F (B).

In the last section, we show that F (L) is isomorphic to a sub-f -ring of
R(L), the f -ring of all real continuous functions on L, and demonstrate that
the inclusion may be strict.

2 Preliminaries

A frame is a complete lattice L in which the infinite distributive law

x ∧
∨
S =

∨
{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊆ L. We denote the top element and the bottom
element of L by ⊤ and ⊥, respectively. The frame of all subsets of a set X
is denoted by P(X).

A frame homomorphism (or frame map) is a map between frames which
preserves finite meets, including the top element, and arbitrary joins, in-
cluding the bottom element.

Here we present some of the background facts concerning f -rings which
are used in our manuscript. To begin with, a lattice-ordered ring is a ring
A with a lattice structure such that, for all a, b, c ∈ A,

(a ∧ b) + c = (a+ c) ∧ (b+ c)

or, equivalently,

(a ∨ b) + c = (a+ c) ∨ (b+ c)

and

0 ≤ ab whenever 0 ≤ a and 0 ≤ b .
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As immediate consequences one has that −(a∨b) = (−a)∧ (−b), −(a∧ b) =
(−a) ∨ (−b) and a ≤ b implies − b ≤ −a.

Further, with the definitions

a+ = a ∨ 0, a− = (−a) ∨ 0, |a| = a ∨ (−a)

one has the rules

0 ≤ |a|, |a| = a+ + a−, a = a+ − a−, a+ ∧ a− = 0,

|a+ b| ≤ |a|+ |b|, |ab| ≤ |a||b|.

A homomorphism of lattice-ordered rings is, of course, a map between such
rings which is both a ring and a lattice homomorphism. We note in passing
that in certain cases any ring homomorphism automatically preserves the
lattice operations.

An ℓ-ideal in a lattice-ordered ring A is a ring ideal J of A with the
added property that |x| ≤ |a| and a ∈ J implies x ∈ J , for any x, a ∈ A.

For any a ∈ A, the ℓ-ideal generated by a is

[a] = {x ∈ A : |x| ≤ |a|b, b ≥ 0 in A} .

Now, an f -ring is a lattice-ordered ring A which satisfies any of the
following equivalent conditions:

1. (a ∧ b)c = (ac) ∧ (bc) for any a, b ∈ A and c ≥ 0 in A.

2. |ab| = |a||b|.

3. [a ∧ b] = [a] ∩ [b] for any a, b ≥ 0 in A.

We call a lattice-ordered ring A with unit strong if every a ≥ 1 is invert-
ible in A, and bounded if, for each a ∈ A, |a| ≤ n, for some natural number
n (where we permit notational confusion between the natural number n
and the sum in A of n summands equal to the unit 1 of A). Further, A is
called Archimedean if, whenever 0 ≤ a, b and na ≤ b for all natural n, then
a = 0. In the following, A is always an Archimedean, strong, and bounded
commutative f -ring with unit. Also, homomorphisms between such rings
are understood to be unit preserving.
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An f -ring A has a natural topology, its uniform topology, with basic
neighbourhoods

Vn(a) = {x ∈ A : |x− a| < 1

n
}, n = 1, 2, ...,

for each a ∈ A.
Note that L(A), the frame of all ℓ-ideals of A, is a compact frame.

Moreover, for any I, J ∈ L(A), the following statements hold.

1. I ∨ J = I + J = {a+ b : a ∈ I, b ∈ J}.

2. I ∩ J = I ∩ J .

The latter statement expresses that CL(A), the frame of all closed ℓ-ideals
of A, is a sublocal of L(A) and a frame under finite meets in L(A) and the
closure of arbitrary joins in L(A); in particular it is a compact completely
regular frame.

3 An algebraic structure and an order structure on the Real-
valued functions on a frame

The main aim of this section is to show that the collection of all real-valued
functions on a frame is an f -ring. If a frame happens to be a Boolean
algebra we speak of a Boolean frame.

Definition 3.1. A real-valued function on a frame L is a frame homo-
morphism f : P(R) → L, where one assumes (P(R),⊆) to be a Boolean
frame.

In what follows, the set of all real-valued functions on a frame L is
denoted by FP(L). We abbreviate FP(L) as F (L).

Definition 3.2. Let ⋄ : R × R → R be an operation on R (in particular
⋄ ∈ {+, . ,∨,∧}). Let f, g be two real-valued functions on L. Define f ⋄ g :
P(R)→ L by

(f ⋄ g)(X) =
∨
{f(Y ) ∧ g(Z) : Y ⋄ Z ⊆ X},

where Y ⋄ Z = {y ⋄ z : y ∈ Y, z ∈ Z}.
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Lemma 3.3. Let f, g be two real-valued functions on a frame L. Then f ⋄g
is a poset homomorphism.

Proof. Trivial.

Hereafter, when a topology is used on a subset of R it is assumed to be
the usual topology. The frame of open subsets of a topological space X is
denoted by OX.

For p, q ∈ R, let

⟨p, q⟩ := {x ∈ Q : p < x < q}

and Kp, qJ:= {x ∈ R : p < x < q}.
Lemma 3.4. Let f, g be two real-valued functions on a frame L. Then for
every ⋄ ∈ {+, . ,∨,∧}, the following statements hold.

1. (f ⋄ g)(X) =
∨
{f({x}) ∧ g({y}) : x ⋄ y ∈ X}, for every X ∈ P(R).

2. (f ⋄ g)(U) =
∨
{f(Kr, sJ) ∧ g(Ku, vJ) : Kr, sJ ⋄ Ku, vJ⊆ U}, for every

U ∈ OR.

3. f = g if and only if f({r}) = g({r}), for every r ∈ R.

Proof. 1. Let ⋄ : R×R→ R be an operation on R and X ∈ P(R). Then

(f ⋄ g)(X) =
∨
{f(Y ) ∧ g(Z) : Y ⋄ Z ⊆ X}

=
∨
{f(

∪
y∈Y {y}) ∧ g(

∪
z∈Z{z}) : Y ⋄ Z ⊆ X}

=
∨
{
∨
y∈Y f({y}) ∧

∨
z∈Z g({z}) : Y ⋄ Z ⊆ X}

=
∨
{
∨
y∈Y

∨
z∈Z(f({y}) ∧ g({z})) : Y ⋄ Z ⊆ X}

=
∨
{f({y}) ∧ g({z}) : y ⋄ z ∈ X}.

2. Suppose that x ⋄ y ∈ U ∈ OR. Since ⋄ : R × R → R is a continuous
map, there are r, s, u, v ∈ Q such that x ∈Kr, sJ, y ∈Ku, vJ, and x ⋄ y ∈Kr, sJ ⋄ Ku, vJ⊆ U . Thus

(f ⋄ g)(U) =
∨
{f({x}) ∧ g({y}) : x ⋄ y ∈ U}

≤
∨
{f(Kr, sJ) ∧ g(Ku, vJ) : Kr, sJ ⋄ Ku, vJ⊆ U}

≤
∨
{f(Y ) ∧ g(Z) : Y ⋄ Z ⊆ U}

= (f ⋄ g)(U).
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Consequently,

(f ⋄ g)(U) =
∨
{f(Kr, sJ) ∧ g(Ku, vJ) : Kr, sJ ⋄ Ku, vJ⊆ U}.

3. Trivial.

Proposition 3.5. Let f, g be two real-valued functions on a frame L and
⋄ ∈ {+, .,∨,∧}. Then f ⋄ g is a real-valued function on L.

Proof. Suppose that h = f ⋄ g and X1, X2 ⊆ R. Then
h(X1) ∧ h(X2) =

∨
{f(Y1) ∧ g(Z1) : Y1 ⋄ Z1 ⊆ X1} ∧

∨
{f(Y2) ∧ g(Z2) : Y2 ⋄ Z2 ⊆ X2}

=
∨
{f(Y1) ∧ g(Z1) ∧ f(Y2) ∧ g(Z2) : Y1 ⋄ Z1 ⊆ X1, Y2 ⋄ Z2 ⊆ X2}

=
∨
{f(Y1 ∩ Y2) ∧ g(Z1 ∩ Z2) : Y1 ⋄ Z1 ⊆ X1, Y2 ⋄ Z2 ⊆ X2}

≤
∨
{f(Y ) ∧ g(Z) : Y ⋄ Z ⊆ X1 ∩X2}

= h(X1 ∩X2).

Hence, by Lemma 3.3, h(X1 ∩X2) = h(X1) ∧ h(X2).
Now, let {Xi : i ∈ I} be a family of subsets of R. Suppose that Y ⋄Z ⊆∪
Xi. If y ∈ Y and z ∈ Z, then there exists i ∈ I such that y ⋄ z ∈ Xi. So,

f({y}) ∧ g({z}) ≤ h(Xi). Hence

f(Y ) ∧ g(Z) =
∨
{f({y}) ∧ g({z}) : y ∈ Y, z ∈ Z} ≤

∨
i∈I

h(Xi).

Thus

h(
∪
i∈I

Xi) =
∨
{f(Y ) ∧ g(Z) : Y ⋄ Z ⊆

∪
i∈I

Xi} ≤
∨
i∈I

h(Xi).

By Lemma 3.3, h(
∪
i∈I Xi) =

∨
i∈I h(Xi). Also, we have

h(∅) =
∨
{f({x}) ∧ g({y}) : x ⋄ y ∈ ∅}

=
∨
∅

= ⊥

and
h(R) =

∨
{f({x}) ∧ g({y}) : x ⋄ y ∈ R}

= f(R) ∧ g(R)
= ⊤ ∧⊤
= ⊤.
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Lemma 3.6. Let f , g and h be real-valued functions on a frame L and
⋄ ∈ {+, .,∨,∧}. Then the following statements hold.

1. f ⋄ g = g ⋄ f .

2. f ∨ f = f and f ∧ f = f .

3. f ⋄ (g ⋄ h) = (f ⋄ g) ⋄ h.

4. f ∨ (f ∧ g) = f and f ∧ (f ∨ g) = f .

5. (f + g)h = fh+ gh.

6. If (⋄, ⋄′) ∈ {(∨,∧), (∧,∨), (+,∧), (+,∨)}, then f ⋄ (g ⋄′ h) = (f ⋄ g) ⋄′
(f ⋄ h).

Proof. 1. Trivial.

2. Trivial.

3. For every r ∈ R, we have

((f ⋄ g) ⋄ h)({r}) =
∨
{(f ⋄ g)({x}) ∧ h({y}) : x ⋄ y = r}

=
∨
{
∨
{f({z}) ∧ g({t}) : z ⋄ t = x} ∧ h({y}) : x ⋄ y = r}

=
∨
{f({z}) ∧ g({t}) ∧ h({y}) : (z ⋄ t) ⋄ y = r}

=
∨
{f({z}) ∧ g({t}) ∧ h({y}) : z ⋄ (t ⋄ y) = r}

=
∨
{f({z}) ∧

∨
{g({t}) ∧ h({y}) : t ⋄ y = v} : z ⋄ v = r}

=
∨
{f({z}) ∧ (g ⋄ h)({v}) : z ⋄ v = r}

= (f ⋄ (g ⋄ h))({r}).

Hence, (f ⋄ g) ⋄ h = f ⋄ (g ⋄ h).
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4. For every r ∈ R, we have

f ∨ (f ∧ g)({r}) =
∨
{f({x}) ∧ (f ∧ g)({t}) : x ∨ t = r}

=
∨
{f({x}) ∧

∨
{f({y}) ∧ g({z}) : y ∧ z = t} : x ∨ t = r}

=
∨
{f({x}) ∧ (f({y}) ∧ g({z})) : x ∨ (y ∧ z) = r}

=
∨
{f({x} ∩ {y}) ∧ g({z}) : x ∨ (y ∧ z) = r}

=
∨
{f({x}) ∧ g({z}) : x ∨ (x ∧ z) = r}

=
∨
{f({x}) ∧ g({z}) : x = r}

= f({r}) ∧
∨
{g({z}) : z ∈ R}

= f({r}) ∧ ⊤

= f({r}).

Therefore, f∨(f∧g) = f and a similar proof shows that f∧(f∨g) = f .

5. For every r ∈ R, we have

(fh+ gh)({r}) =
∨
{(fh)({a}) ∧ gh({b}) : a+ b = r}

=
∨
{
∨
{f({z}) ∧ h({y}) : zy = a}

∧
∨
{g({t}) ∧ h({w}) : tw = b} : a+ b = r}

=
∨
{f({z}) ∧ g({t}) ∧ h({y} ∩ {w}) : zy + tw = r}

=
∨
{f({z}) ∧ g({t}) ∧ h({y}) : zy + ty = r}

=
∨
{f({z}) ∧ g({t}) ∧ h({y}) : (z + t)y = r}

=
∨
{
∨
{f({z}) ∧ g({t}) : z + t = x} ∧ h({y}) : xy = r}

=
∨
{(f + g)({x}) ∧ h({y}) : xy = r}

= ((f + g)h)({r}).

Therefore, (f + g)h = fh+ gh.

6. For every r, x, y, z, t ∈ R, we have x ⋄ (y ⋄′ t) = (x ⋄ y) ⋄′ (x ⋄ t), it
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follows that

(f ⋄ (g ⋄′ h))({r}) =
∨
{f({x}) ∧ (g ⋄′ h)({z}) : x ⋄ z = r}

=
∨
{f({x}) ∧

∨
{g({y}) ∧ h({t}) : y ⋄′ t = z} : x ⋄ z = r}

=
∨
{f({x}) ∧ g({y}) ∧ h({t}) : x ⋄ (y ⋄′ t) = r}

=
∨
{f({x}) ∧ g({y}) ∧ h({t}) : (x ⋄ y) ⋄′ (x ⋄ t) = r}

=
∨
{
∨
{f({x}) ∧ g({y}) : x ⋄ y = v}∧∨

{f({x}) ∧ h({t}) : x ⋄ t = w} : v ⋄′ w = r}

=
∨
{(f ⋄ g)({v}) ∧ (f ⋄ h)({w}) : v ⋄′ w = r}

= (f ⋄ g) ⋄′ (f ⋄ h)({r}).

Therefore, f ⋄ (g ⋄′ h) = (f ⋄ g) ⋄′ (f ⋄ h).

The set F (L) of all continuous real functions on a frame L will be pro-
vided with an algebraic and an order structure. The partial ordering on
F (L) is defined by:

f ≤ g if and only if f ∧ g = f if and only if f ∨ g = g.

Also, by Lemma 3.6, F (L) is lattice.

Remark 3.7.

1. The constant real-valued function on a frame L. For each c ∈ R,
let c be defined by

c(X) =

{
⊤L if c ∈ X,

⊥L if c /∈ X

for every X ∈ P(R). It is obvious that c ∈ F (L). Also, for every
f ∈ F (L),

(f + 0)({x}) =
∨
{f({y}) ∧ 0({z}) : y + z = x} = f({x})

and
(f1)({x}) =

∨
{f({y}) ∧ 1({z}) : yz = x} = f({x}),

where x ∈ R. Therefore, f + 0 = f and f1 = f .
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2. Additive inverse. Let f ∈ F (L). The mapping −f : P(R) → L
defined by (−f)(X) = f(−X) clearly belongs to F (L), where X ∈
P(R) and −X = {−x : x ∈ X}. Also, for any r ∈ R,

(f + (−f))({r}) =
∨
{f({y}) ∧ (−f)({z}) : y + z = r}

=
∨
{f({y}) ∧ f({−z}) : y + z = r}

=
∨
{f({y}) ∧ f({y − r}) : y ∈ R}

=
∨
{f({y} ∧ {y − r}) : y ∈ R}

=

{
f(R) if r = 0∨
{⊥L} if r ̸= 0

=

{
⊤L if r = 0

⊥L if r ̸= 0
= 0({r}).

Therefore, f + (−f) = 0.

3. Product with a scalar. For any f ∈ F (L) and r ∈ R, define

r.f(X) =

{
0(X) if r = 0,

f(1rX) if r ∈ R− {0},

where X ∈ P(R) and 1
rX = {1rx : x ∈ X}; a straightforward calcula-

tion gives r.f = rf .

Lemma 3.8. Let r ∈ R and f, g ∈ F (L). Then the following properties
hold.

1. (f ∧ g)({r}) = (f({r}) ∧ g[r,+∞)) ∨ (f [r,+∞) ∧ g({r})).

2. (f ∨ g)({r}) = (f({r}) ∧ g(−∞, r]) ∨ (f(−∞, r] ∧ g({r})).

3. (f ∧ 0)({r}) =


⊥ if r > 0,

f [0,+∞) if r = 0,

f({r}) if r < 0.
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4. (f ∨ 0)({r}) =


f({r}) if r > 0,

f(−∞, 0] if r = 0,

⊥ if r < 0.

Proof. Trivial.

Theorem 3.9. (F (L),+, .,∨,∧) is an f-ring.

Proof. By Lemma 3.6 and Remark 3.7, it suffices to show that if f, g ∈ F (L)
with f, g ≥ 0, then fg ≥ 0. By Lemma 3.8, we have

(fg ∧ 0)({r}) =


(fg)({r}) if r < 0

fg[0,+∞) if r = 0

⊥L if r > 0

=


∨
{f({x}) ∧ g({y}) : xy = r, r < 0} if r < 0

(f [0,+∞) ∧ g[0,+∞)) ∨ (f(−∞, 0] ∧ g(−∞, 0]) if r = 0

⊥L if r > 0

=



∨
{f({x}) ∧ g({y}) : xy = r, x > 0, y < 0}

∨
∨
{f({x}) ∧ g({y}) : xy = r, x < 0, y > 0} if r < 0

(⊤ ∧⊤) ∨ (f(−∞, 0] ∧ g(−∞, 0]) if r = 0

⊥L if r > 0

=



∨
{f({x}) ∧ ⊥ : xy = r, x > 0, y < 0}

∨
∨
{⊥ ∧ g({y}) : xy = r, x < 0, y > 0} if r < 0

⊤L if r = 0

⊥L if r > 0

=


⊤L if r = 0

⊥L if r ̸= 0

= 0({r}).

Hence fg ≥ 0.
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Finally, it is worth mentioning that the association L −→ F (L) from the
category of frames to that of real-valued functions on frames is functorial: for
any frame homomorphism ϕ :M −→ L, the associated map Fϕ : F (M) −→
F (L) takes any f ∈ F (M) to ϕf ∈ F (L), and especially takes 1Frm to the
identity arrow of real-valued functions on frames. Obviously, the resulting
functor F is a covariant functor.

4 A generalization of RX

The set RX of all real-valued functions on a set X will be provided with an
algebraic and an order structure. If ⋄ ∈ {+, .,∧,∨}, then for every f, g ∈ RX
and x ∈ X, define f ⋄ g by

(f ⋄ g)(x) = f(x) ⋄ g(x).

Since (R,+, .,∧,∨) is an f -ring, we infer that RX is an f -ring (see [10]).
The following theorem shows that F (L), as an f -ring, is a generalization

of RX .

Theorem 4.1. The assignment θ(f) = f−1 from RX to F (P(X)) is an
f-ring isomorphism, where

f−1 : P(R) −→ P(X)

A 7−→ {x ∈ X : f(x) ∈ A}.

Proof. (i) Clearly θ is a function.

(ii) Let f, g ∈ RX such that θ(f) = θ(g). Then for every x ∈ X,

x ∈ f−1({f(x)}) = g−1({f(x)}),

which follows that f(x) = g(x). Hence f = g. Therefore, θ is one-one.

(iii) To show that θ is surjective, let g ∈ F (P(X)). The relation h, define
by

h(x) = λ iff x ∈ g({λ})

is a function from X to R, since
∪
λ∈R g({λ}) = g(R) = X. Therefore

for any x ∈ X, there exists λ ∈ R such that x ∈ g({λ}) and hence
Dom(h) = X. It immediately follows from the defnition that θ(h) =
h−1 = g.
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(iv) By Lemma 3.4, for any f, g ∈ RX , r ∈ R and ⋄ ∈ {+, .,∧,∨}, we have

(θ(f)⋄θ(g))({r}) = (f−1⋄g−1)({r}) =
∪
{f−1({a})∩g−1({b}) : a⋄b = r} .

Furthermore,

θ(f ⋄ g)({r}) = (f ⋄ g)−1({r}) = {x ∈ X : (f ⋄ g)(x) = r}.

Let z ∈ (θ(f) ⋄ θ(g))({r}). Then there exist a, b ∈ R with a ⋄ b = r
such that z ∈ f−1({a}) ∩ g−1({b}), and thus

(f ⋄ g)(z) = f(z) ⋄ g(z) = a ⋄ b = r,

which follows that z ∈ θ(f ⋄ g)({r}). Hence,

(θ(f) ⋄ θ(g))({r}) ⊆ θ(f ⋄ g)({r}).

To establish the reverse inclusion, consider z ∈ θ(f ⋄ g)({r}), then

f(z) ⋄ g(z) = (f ⋄ g)(z) = r .

Since z ∈ f−1({f(z)}) ∩ g−1({g(z)}), we conclude that z ∈ (θ(f) ⋄
θ(g))({r}). Hence,

θ(f ⋄ g)({r}) ⊆ (θ(f) ⋄ θ(g))({r}).

Therefore, θ(f ⋄ g) = θ(f) ⋄ θ(g). This completes the proof of the
theorem.

5 Boolean algebra

In this section, we show that for every frame L, there exists a Boolean frame
B such that F (L) is a sub-f -ring of F (B).

Remark 5.1. Let (L,
∨
,∧) be a frame. It is well-known that

BL := {a ∈ L : a⋆⋆ = a} ,

is the Booleanization of the frame L which the underlying set BL has meet
⊓ and join

⊔
given by:
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(i) a ⊓ b = a ∧ b

(ii)
⊔
A = (

∨
A)⋆⋆ .

Lemma 5.2. Let L be a frame and f : P(R) → L be a frame map. Then
f(A)′ = f(A′), for every A ⊆ R, where the complement of f(A) is, by
definition, (f(A))′, abbreviated f(A)′.

Proof. Since f is a frame map, f(A′)∧ f(A) = ⊥ and f(A′)∨ f(A) = ⊤. It
follows immediately that f(A′) is the complement of f(A).

Theorem 5.3. Let L be a frame. Then the mapping

φ : F (L) −→ F (BL)

f 7−→ f⋆⋆

is an f-ring embedding, where

f⋆⋆ : P(R) −→ BL

A 7−→ (f(A))⋆⋆

Proof. By definition of BL, if f ∈ F (L) and A,B ∈ P(R), then

φ(f)(A∩B) = (f(A∩B))⋆⋆ = (f(A)∧ f(B))⋆⋆ = f(A)⋆⋆ ∧ f(B)⋆⋆ = φ(f)(A)⊓φ(f)(B).

Also, if {Aλ}λ∈Λ
⊆ P(R), then, by Remark 5.1 and Lemma 5.2,

φ(f)(
∪
λ∈Λ

Aλ) = (f(
∪
λ∈Λ

Aλ))
⋆⋆ = (

∨
λ∈Λ

f(Aλ))
⋆⋆ =

⊔
λ∈Λ

φ(f)(Aλ).

Hence f⋆⋆ : P(R) → BL is a frame map. If f, g ∈ F (L) and φ(f) = φ(g),
then, by Lemma 5.2,

f(A) = f⋆⋆(A) = φ(f)(A) = φ(g)(A) = g⋆⋆(A) = g(A)

for every A ∈ P(R). So f = g and hence φ is one-one.
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If f, g ∈ F (L) and A ∈ P(R), then

φ(f ⋄ g)(A) = (f ⋄ g)⋆⋆(A)
= ((f ⋄ g)(A))⋆⋆

= (
∨L{f({x}) ∧ g({y}) : x ⋄ y ∈ A})⋆⋆

=
⊔
{f({x}) ∧ g({y}) : x ⋄ y ∈ A} by Remark 5.1

=
⊔
{f({x}) ⊓ g({y}) : x ⋄ y ∈ A}

=
⊔
{(f({x}))⋆⋆ ⊓ (g({y}))⋆⋆ : x ⋄ y ∈ A} by Lemma 5.2

=
⊔
{φ(f)({x}) ⊓ φ(g)({y}) : x ⋄ y ∈ A}

= (φ(f) ⋄ φ(g))(A)

for every ⋄ ∈ {+, .,∧,∨}. Therefore, φ is an f -ring monomorphism.

6 The relation between F (L) and R(L)

Now, we are going to prove that F (L) is isomorphic to a sub-f -ring of R(L).
Theorem 6.1. For any frame L, the mapping F (L) −→ R(L) taking any
f to f ◦ j is an f -ring monomorphism, where j : L(R) −→ O(R) taking
(p, q) to Kp, qJ is an isomorphism.

Proof. Let f, g ∈ F (L) such that f ◦ j = g ◦ j. For every r ∈ R, we have

f({r}) = f((R− {r})′)
= (f(R− {r}))′ by Lemma 5.2

= ((f ◦ j)((−, r) ∨ (r,−)))′

= ((g ◦ j)((−, r) ∨ (r,−)))′

= (g(R− {r}))′

= g((R− {r})′) by Lemma 5.2

= g({r}).

Hence f = g. Furthermore, for each operator ⋄ in {+, .,∨,∧} and for each
p, q ∈ Q, we have

((f ⋄ g) ◦ j)(p, q) = (f ⋄ g)(Kp, qJ)
=

∨
{(f(Kr, sJ) ∧ g(Ku, vJ) : Kr, sJ ⋄ Ku, vJ⊆Kp, qJ}

=
∨
{(f ◦ j)(r, s) ∧ (g ◦ j)(u, v) : < r, s > ⋄ < u, v >⊆< p, q >}

= ((f ◦ j) ⋄ (g ◦ j))(p, q).
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Hence, F (L) is isomorphic to a sub-f -ring of R(L).

We now present a counterexample to show that the relation of inclusion
between F (L) and R(L) in Theorem 6.1 may be strict. For this, let A =
C([0, 1]), the ring of real continuous functions on [0, 1], and let CL(A) be
the frame of all closed ℓ-ideals of A. First, we show that F (CL(A)) ∼= R as
f -rings. To see this, let f : P(R) −→ CL(A) be a frame map and let Ir :=
f({r}) for any r ∈ R. Since CL(A) is compact, there exist r1, ..., rn ∈ R
such that

Ir1+· · ·+Irn = Ir1∨· · ·∨Irn = Ir1 ∨ · · · ∨ Irn = f({r1}) ∨ ... ∨ f({rn}) = A ,

where ∨ is the join of ℓ-ideals among the ℓ-ideals of A. So there exists
αi ∈ Iri such that 1A = α1 + · · · + αn for every 1 ≤ i ≤ n, where we can
assume that αi ≥ 0, by triangle property in f -rings, with at least one of
them being nonzero. Assume that α1 ̸= 0, say. We show that α1 = 1A and
αi = 0A for any i ̸= 1. The case in which n = 1 is trivial. If n = 2, then
Ir1 + Ir2 = A with 1A = α + β for some positive α ∈ Ir1 and nonnegative
β ∈ Ir2 . Applying the notation [a] for the ℓ-ideal generated by a ∈ A, we
can write

α ∧ β ∈ [α ∧ β] = [α] ∩ [β] = [α] ∩ [β] ⊆ Ir1 ∩ Ir2 = {0A} .

So that α ∧ β = 0A. Moreover,

α ∧ β =
1

2
(α+ β − |α− β|) = 1

2
(1− |1− 2β|)

So |1−2β| = 1, whence (1−2β)(r) = ±1 for all r in [0, 1] and we conclude,
using the continuity of 1−2β, that 1−2β = 1 or 1−2β = −1. Consequently,
β = 0 or β = 1, respectively. But β = 1 is impossible because α ∧ β = 0A.
If β = 0, then α = 1, as desired.

Next, if n ≥ 3, then

Ir1∩(Ir2+· · ·+Irn) = Ir1∩(Ir2 ∨ · · · ∨ Irn) = (Ir1 ∧ Ir2) ∨ · · · ∨ (Ir1 ∧ Irn) = 0 .

So that α1∧ (α2+ · · ·+αn) = 0. Let α := α1, β := α2+ · · ·+αn, and using
an argument similar to the latter case above, we conclude that α = α1 = 1
and β = α2 + · · · + αn = 0. Hence α2 = · · · = αn = 0, Since the αi’s are
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all nonnegative. Consequently, f({r1}) = Ir1 = A, and for every s ̸= r1,
f({s}) = f({s}) ∩ A = f({s}) ∩ f({r1}) = {0A}. So every frame map in
F (CL(A)) is constant.

Now, by Proposition 6 of [4] and Proposition 4.1 of [3], since A is an
Archimedean, strong, and bounded f -ring over Q, A is isomorphic to a
subring of R(CL(A)); indeed, A is isomorphic to R(CL(A)) since A is com-
plete in its uniform topology (see [4], p.36). Furthermore, the the image of
a constant function in F (CL(A)) under the embedding defined in Theorem
6.1 is a constant function in R(CL(A)), whence F (CL(A)) ̸= R(CL(A)).
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