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On condition (G-PWP )

M. Arabtash, A. Golchin, and H. Mohammadzadeh

Abstract. Laan introduced the principal weak form of Condition (P ) as
Condition (PWP ) and gave some characterization of monoids by this con-
dition of their acts. In this paper first we introduce Condition (G-PWP ), a
generalization of Condition (PWP ) of acts over monoids and then will give
a characterization of monoids when all right acts satisfy this condition. We
also give a characterization of monoids, by comparing this property of their
acts with some others. Finally, we give a characterization of monoids coming
from some special classes, by this property of their diagonal acts and extend
some results on Condition (PWP ) to this condition of acts.

1 Introduction

In [12], the concept of strong flatness was introduced: a right act AS is
strongly flat if the functor AS ⊗ − preserves pullbacks and equalizers. In
that article strongly flat acts were characterized as those acts that satisfy
two interpolation conditions, later labelled Condition (P ) and Condition (E)
in [13]. In [10] Valdis Laan introduced the principal weak form of Condition
(P ) as Condition (PWP ) and gave some characterization of monoids, by
this condition of their acts.
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In this article in Section 2 first of all we introduce a generalization of
Condition (PWP ), called Condition (G-PWP ) and will give some general
properties. Then for a monoid S we will give a necessary and sufficient con-
dition for a right S-act to satisfy this condition. We show that Condition
(PWP ) implies Condition (G -PWP ), but not the converse, and Condition
(G -PWP ) implies GP -flatness, but the converse is not true in general.
Then, we will give a characterization of monoids S over which all right S-
acts satisfy Condition (G -PWP ) and also a characterization of monoids S
for which this condition of right S-acts has some other properties and vice
versa. Some results from Condition (PWP ) will also be extended to this
property. Finally, in Section 3 we give a characterization of monoids coming
from some special classes, by this property of their diagonal acts.

Throughout this article, N will stand for natural numbers. We refer the
reader to [5] and [8] for basic definitions and results relating to acts over
monoids and to [10] and [11] for definitions and results on flatness which
are used here.

We use the following abbreviations,

weak pullback flatness = WPF.

weak kernel flatness = WKF.

principal weak kernel flatness = PWKF.

translation kernel flatness = TKF.

2 Characterization by condition (G-PWP ) on right S-acts

We recall from [10] that a right S-act AS satisfies Condition (PWP ) if
as = a′s, for a, a′ ∈ AS and s ∈ S, implies that there exist a′′ ∈ AS and
u, v ∈ S, such that a = a′′u, a′ = a′′v and us = vs.

Definition 2.1. Let S be a monoid and AS a right S-act. We say that AS
satisfies Condition (G-PWP ) if as = a′s for a, a′ ∈ AS and s ∈ S, implies
that there exist a′′ ∈ AS and u, v ∈ S, n ∈ N, such that a = a′′u, a′ = a′′v
and usn = vsn.
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Clearly, Condition (PWP ) implies Condition (G-PWP ), but not the
converse, see the following example.

First we recall from [8] that a right ideal K of a monoid S is called left
stabilizing if for every k ∈ K, there exists l ∈ K such that lk = k. We
also recall from [10] that K is called left annihilating if for all s ∈ S and
x, y ∈ S \K, xs, ys ∈ K implies that xs = ys.

Example 2.2. Let S = {1, 0, e, f, a} be a monoid with the following table:

1 0 e f a

1 1 0 e f a
0 0 0 0 0 0
e e 0 e a a
f f 0 0 f 0
a a 0 0 a 0

If K = aS = {0, a}, then it is easy to see that the right Rees factor S-act
S/K satisfies Condition (G-PWP ). But K is not left annihilating, because,
a ∈ S, e, f ∈ S \K, ea, fa ∈ K and ea ̸= fa, also K is not left stabilizing,
thus, by [8, III, 10.11], S/K is not principally weakly flat and so it does not
satisfy Condition (PWP ).

All statements in Proposition 2.3 are easy consequences of definition.

Proposition 2.3. Let S be a monoid and AS be a right S-act. Then

(1) SS satisfies Condition (G-PWP ).

(2) ΘS satisfies Condition (G-PWP ).

(3) Any retract of an act satisfying Condition (G-PWP ) satisfies Condi-
tion (G-PWP ).

(4) Let AS =
∏
i∈I

Ai, where Ai, i ∈ I, are right S-acts. If AS satisfies

Condition (G-PWP ), then Ai satisfies Condition (G-PWP ), for ev-
ery i ∈ I.
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(5) Let AS =
⨿
i∈I

Ai, where Ai, i ∈ I, are right S-acts. Then AS satisfies

Condition (G-PWP ) if and only if each Ai, i ∈ I, satisfies Condition
(G-PWP ).

(6) Let {Bi|i ∈ I} be a chain of subacts of AS. If every Bi, i ∈ I, satisfies
Condition (G-PWP ), then

∪
i∈I

Bi satisfies Condition (G-PWP ).

Proposition 2.4. A right S-act AS satisfies Condition (G-PWP ) if and
only if for all a, a′ ∈ AS and all homomorphisms f : SS −→ SS, the equality
af(s) = a′f(s) for all s ∈ S implies that there exist a′′ ∈ AS, u, v ∈ S
and n ∈ N such that a ⊗ s = a′′ ⊗ u, a′ ⊗ s = a′′ ⊗ v in AS ⊗ SS and
ufn(1) = vfn(1).

Proof. Necessity. Suppose that AS satisfies Condition (G-PWP ) and let
af(s) = a′f(s), for homomorphism f : SS −→ SS, a, a

′ ∈ AS and s ∈ S.
Then, asf(1) = a′sf(1) and so there exist a′′ ∈ AS , u, v ∈ S and n ∈ N
such that as = a′′u, a′s = a′′v and ufn(1) = vfn(1). Thus, by [8, II, 5.13],
a⊗ s = a′′ ⊗ u and a′ ⊗ s = a′′ ⊗ v in AS ⊗ SS, as required.
Sufficiency. Suppose that as = a′s, for a, a′ ∈ AS , s ∈ S and let f : SS −→
SS be defined as f(r) = rs, r ∈ S. It is obvious that f is a homomorphism
where af(1) = a′f(1). Then, by assumption, there exist a′′ ∈ AS , u, v ∈ S
and n ∈ N such that a ⊗ 1 = a′′ ⊗ u, a′ ⊗ 1 = a′′ ⊗ v in AS ⊗ SS and
ufn(1) = vfn(1). Thus usn = vsn and, by [8, II, 5.13], a = a′′u, a′ = a′′v.
Hence AS satisfies Condition (G-PWP ), as required.

We recall from [7] that a right S-act AS is called GP -flat if a⊗s = a′⊗s
in AS ⊗ SS, for a, a

′ ∈ AS , s ∈ S implies that there exists n ∈ N such that
a⊗ sn = a′ ⊗ sn in AS ⊗ SSs

n.

Proposition 2.5. Let S be a monoid and AS be a right S-act. If AS
satisfies Condition (G-PWP ), then AS is GP -flat.

Proof. Suppose that AS satisfies Condition (G-PWP ) and let as = a′s for
a, a′ ∈ AS and s ∈ S. Then there exist a′′ ∈ AS , u, v ∈ S and n ∈ N such
that a = a′′u, a′ = a′′v and usn = vsn. Therefore,

a⊗ sn = a′′u⊗ sn = a′′ ⊗ usn = a′′ ⊗ vsn = a′′v ⊗ sn = a′ ⊗ sn

in AS ⊗ SSs
n, and so AS is GP -flat, as required.
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The converse of Proposition 2.5 is not true, see the following example.

Example 2.6. Let S = {1, e, f, 0} be a semilattice, where ef = 0. Consider
the right ideal K = eS = {e, 0} of S. Since K is left stabilizing, S/K is
principally weakly flat, by [8, III, 10.11], and so it is GP -flat. But, it is easy
to see that S-act S/K does not satisfy Condition (G-PWP ).

We recall from [13] that a right S-act AS satisfies Condition (E) if
as = at, for a ∈ AS and s, t ∈ S, implies that there exist a′ ∈ AS and u ∈ S,
such that a = a′u and us = ut. Also we recall from [9] that a right S-act AS
satisfies Condition (E′) if as = at and sz = tz, for a ∈ AS and s, t, z ∈ S,
imply that there exist a′ ∈ AS and u ∈ S, such that a = a′u and us = ut. A
right S-act AS satisfies Condition (EP ) if as = at for a ∈ AS and s, t ∈ S,
implies that there exist a′ ∈ AS and u, u′ ∈ S such that a = a′u = a′u′ and
us = u′t. A right S-act AS satisfies Condition (E′P ) if as = at and sz = tz,
for a ∈ AS and s, t, z ∈ S, imply that there exist a′ ∈ AS and u, u′ ∈ S such
that a = a′u = a′u′ and us = u′t (see [1], [2]).

It is obvious that (E)⇒ (E′)⇒ (E′P ) and (E)⇒ (EP )⇒ (E′P ), but
not the converses in general (see [1], [2]).

For monoids over which all right acts satisfy Condition (G-PWP ), see
the following proposition.

Proposition 2.7. For any monoid S, the following statements are equiva-
lent:

(1) all right S-acts satisfy Condition (G-PWP );

(2) all right S-acts satisfying Condition (E′P ) satisfy Condition (G-PWP );

(3) all right S-acts satisfying Condition (EP ) satisfy Condition (G-PWP );

(4) all right S-acts satisfying Condition (E′) satisfy Condition (G-PWP );

(5) all right S-acts satisfying Condition (E) satisfy Condition (G-PWP );

(6) all generators in Act-S satisfy Condition (G-PWP );

(7) S ×AS satisfies Condition (G-PWP ), for every right S-act AS;

(8) a right S-act AS satisfies Condition (G-PWP ) if Hom(AS , SS) ̸= ∅;
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(9) S is a group.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (5), (1)⇒ (4)⇒ (5), (9)⇒ (1) and
(1)⇒ (6) are obvious.
(5)⇒ (9). Suppose that I is a proper right ideal of S and let AS = S

⨿I S.
Then

AS = {(α, x)| α ∈ S \ I} ∪̇ I ∪̇ {(β, y)| β ∈ S \ I},

where BS = {(α, x)| α ∈ S \ I} ∪̇ I and DS = {(β, x)| β ∈ S \ I} ∪̇ I are
subacts of AS isomorphic to SS . Since SS satisfies Condition (E), BS and
DS satisfy Condition (E), too, and so AS = BS ∪ DS satisfies Condition
(E) and so, by assumption, AS satisfies Condition (G-PWP ). Hence, the
equality (1, x)t = (1, y)t, for t ∈ I, implies that there exist a ∈ AS , u, v ∈ S
and n ∈ N such that (1, x) = au, (1, y) = av and utn = vtn. Then equalities
(1, x) = au and (1, y) = av imply, , that there exist l, l′ ∈ S \ I such that
a = (l, x) and a = (l′, y), which is a contradiction. Thus S has no proper
right ideal, and so aS = S, for every a ∈ S. That is, S is a group, as
required.
(6)⇒ (7). It is obvious that the mapping π : S×AS → SS , where π(s, a) =
s, for all s ∈ S and a ∈ AS , is an epimorphism in Act-S, and so S×AS is a
generator, by [8, II, 3.16], thus, by assumption, S × AS satisfies Condition
(G-PWP ).
(7) ⇒ (8). Suppose Hom(AS , SS) ̸= ∅, for the right S-act AS . We have
to show that AS satisfies Condition (G-PWP ). Let f ∈ Hom(AS , SS),
as = a′s, for a, a′ ∈ AS and s ∈ S. Then f(as) = f(a′s) and so (f(a), a)s =
(f(a′), a′)s in S × AS . Thus there exist (w, a′′) ∈ S × AS , u, v ∈ S and
n ∈ N such that (f(a), a) = (w, a′′)u, (f(a′), a′) = (w, a′′)v and usn = vsn.
Therefore, a = a′′u, a′ = a′′v and usn = vsn, and so AS satisfies Condition
(G-PWP ), as required.
(8) ⇒ (1). Let AS be a right S-act. It is obvious that the mapping π :
S ×AS → SS , where π(s, a) = s, for s ∈ S and a ∈ AS is a homomorphism
and so Hom(S×AS , SS) ̸= ∅. Let as = a′s, for a, a′ ∈ AS and s ∈ S. Then
(1, a)s = (1, a′)s in S × AS , and so, by assumption, there exist (w, a′′) ∈
S × AS , u, v ∈ S and n ∈ N such that (1, a) = (w, a′′)u, (1, a′) = (w, a′′)v
and usn = vsn. Then a = a′′u, a′ = a′′v and usn = vsn, and so AS satisfies
Condition (G-PWP ), as required.

We recall from [8] that a right S-act AS is torsion free if for a, b ∈ AS and



On condition (G-PWP ) 61

a right cancellable element c of S, the equality ac = bc implies that a = b.
AS is strongly torsion free if the equality as = bs for all a, b ∈ AS and all
s ∈ S implies that a = b (see [14]). Also we recall from [8] that an element
a ∈ AS is called act-regular if there exists a homomorphism f : aS → S
such that af(a) = a, and AS is called a regular act if every a ∈ AS is an
act-regular element.

An element s ∈ S is called generally left almost regular if there exist
elements r, r1, ..., rm, s1, ..., sm ∈ S, right cancellable elements c1, ..., cm ∈ S
and a natural number n ∈ N such that

s1c1 = sr1

s2c2 = s1r2

...

smcm = sm−1rm

sn = smrs
n.

A monoid S is called generally left almost regular if all its elements are gen-
erally left almost regular (see [7]).

An element u ∈ S is called right semi-cancellable if for every x, y ∈ S,
xu = yu implies for some r ∈ S, ru = u and xr = yr. A monoid S is left
PSF if and only if every element of S is right semi-cancellative.

Definition 2.8. We say that a right ideal K of a monoid S is G-left sta-
bilizing if for every s ∈ S and r ∈ S \ K, rs ∈ K implies that there exist
k ∈ K and n ∈ N, such that rsn = ksn.

Proposition 2.5, [7, Proposition 2.6] and Example 2.6 show that Condi-
tion (G-PWP ) of acts implies torsion freeness, but not the converse.

For the converse see the following proposition.

Proposition 2.9. For any monoid S, the following statements are equiva-
lent:

(1) all torsion free right S-acts satisfy Condition (G-PWP );
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(2) all finitely generated torsion free right S-acts satisfy Condition (G-
PWP );

(3) all torsion free right S-acts generated by at most two elements satisfy
Condition (G-PWP );

(4) S is generally left almost regular and all GP -flat right S-acts satisfy
Condition (G-PWP );

(5) S is generally left almost regular and all finitely generated GP -flat
right S-acts satisfy Condition (G-PWP );

(6) S is generally left almost regular and all GP -flat right S-acts generated
by at most two elements satisfy Condition (G-PWP );

(7) S is left PSF and all GP -flat right S-acts satisfy Condition (G-
PWP );

(8) S is left PSF and all principally weakly flat right S-acts satisfy Con-
dition (G-PWP );

(9) S is left PSF and all weakly flat right S-acts satisfy Condition (G-
PWP );

(10) S is left PSF and all flat right S-acts satisfy Condition (G-PWP );

(11) there exists a regular left S-act and all GP -flat right S-acts satisfy
Condition (G-PWP );

(12) there exists a regular left S-act and all principally weakly flat right
S-acts satisfy Condition (G-PWP );

(13) there exists a regular left S-act and all weakly flat right S-acts satisfy
Condition (G-PWP );

(14) there exists a regular left S-act and all flat right S-acts satisfy Condi-
tion (G-PWP );

(15) there exists a regular left S-act and |E(S)| = 1;

(16) S is right cancellative.
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Proof. Implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) ⇒ (6), (7) ⇒ (8) ⇒ (9) ⇒
(10) and (11)⇒ (12)⇒ (13)⇒ (14) are obvious.
(3) ⇒ (6). Suppose that all torsion free right S-acts generated by at most
two elements satisfy Condition (G-PWP ). Since Condition (G-PWP ) im-
plies GP -flatness, all torsion free cyclic right S-acts are GP -flat and so S is
generally left almost regular, by [7, Theorem 3.9]. Since GP -flatness implies
torsion freeness, the second part is also true.
(1)⇒ (4). A similar argument as in (3)⇒ (6) can be used.
(16)⇒ (1). Suppose that S is a right cancellative monoid. Then all torsion
free right S-acts are strongly torsion free, by [14, Corollary 3.1], and so we
are done, because strong torsion freeness implies Condition (G-PWP ).
(6)⇒ (16). Let Cr be the set of all right cancellable elements of S. If S is
not right cancellative, then Cr ̸= S. Let I = S \ Cr. Then I ̸= ∅ and since
1 ∈ Cr, I ⊂ S. Let l ∈ I and s ∈ S, then there exist l1, l2 ∈ S such that
l1 ̸= l2 and l1l = l2l, which implies that l1ls = l2ls. If ls ∈ Cr = S \ I, then
the equality l1ls = l2ls implies that l1 = l2, which is a contradiction. Thus
ls ∈ I = S \Cr, and so I is a right ideal of S. Now we show that I is G-left
stabilizing. Let rs ∈ I, for s ∈ S and r ∈ S \ I = Cr. Then rs ∈ I implies
that there exist t1, t2 ∈ S such that t1 ̸= t2 and t1rs = t2rs. By assumption,
for s ∈ S, there exist elements r∗, r1, ..., rm, s1, ..., sm ∈ S, right cancellable
elements c1, ..., cm ∈ S and a natural number n ∈ N such that

s1c1 = sr1

s2c2 = s1r2

...

smcm = sm−1rm

sn = smr
∗sn.

Since t1rs = t2rs, we have t1rsr1 = t2rsr1, using the first equality we have
t1rs1c1 = t2rs1c1, and so t1rs1 = t2rs1.
Similarly, t1rs2 = t2rs2, ..., t1rsm = t2rsm. The last equality implies that
t1rsmr

∗ = t2rsmr
∗. If smr

∗ = l, then

t1rl = t2rl, ls
n = smr

∗sn = sn ⇒ rsn = (rl)sn.
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If rl ∈ S \ I = Cr, then the equality t1rl = t2rl implies t1 = t2, which is
a contradiction. Thus rl ∈ I = S \ Cr, and so rsn = (rl)sn implies that
I = S \ Cr is G-left stabilizing. Thus the right S-act

AS = S
I⨿
S = {(α, x)| α ∈ S \ I} ∪̇ I ∪̇ {(β, y)| β ∈ S \ I}

is GP -flat, by [7, Lemma 2.4], and so it satisfies Condition (G-PWP ).
Therefore the equality (1, x)t = (1, y)t, for t ∈ I implies that there exist
a ∈ AS , u, v ∈ S and n ∈ N such that (1, x) = au, (1, y) = av and utn = vtn.
Then the equalities (1, x) = au and (1, y) = av imply, respectively, that
there exist l, l′ ∈ S \ I such that a = (l, x) and a = (l′, y), which is a
contradiction. Thus S is a right cancellative monoid, as required.
(1)⇒ (7). It is true, because of (1)⇔ (16) and that every right cancellative
monoid is left PSF .
(10) ⇒ (16). Let S be a left PSF monoid, all flat right S-acts satisfy
Condition (G-PWP ), but S is not right cancellative. Let I be the set of all
non cancellable elements of S. It is easy to see that I is a proper right ideal
of S, where i ∈ Ii, for every i ∈ I . Then the right S-act

AS = S

I⨿
S = {(α, x)| α ∈ S \ I} ∪̇ I ∪̇ {(β, y)| β ∈ S \ I}

is flat, by [8, III, 12.19]. Thus, by assumption, AS satisfies Condition (G-
PWP ), which a similar argument as in the proof of (6)⇒ (16) shows that
this is a contradiction. Thus S is a right cancellative monoid, as required.
(15)⇔ (16). It is true, by [6, Theorem 3.12].
(1)⇒ (11). It is true, since (1)⇔ (16)⇔ (15).
(14) ⇒ (15). Suppose that there exist a regular left S-act, all flat right
S-act satisfy Condition (G-PWP ) and let e ∈ E(S). If eS = S, then there
exists u ∈ S such that eu = 1, thus the equality e(eu) = e implies that
e = 1. If eS ̸= S, then for every i ∈ eS there exists x ∈ S such that i = ex.
Then i = e(ex) = ei ∈ (eS)i, and so the right S-act

S
eS⨿
S = {(α, x)| α ∈ S \ eS} ∪̇ eS ∪̇ {(β, x)| β ∈ S \ eS}

is flat, by [8, III, 12.19]. Thus, by assumption, it satisfies Condition (G-
PWP ), but a similar argument as in the proof of (6) ⇒ (16) shows that
this is a contradiction. Hence E(S) = {1}, as required.
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We recall from [8] that a right S-act AS is faithful if for s, t ∈ S the
equality as = at, for all a ∈ A implies that s = t, and AS is strongly faithful
if for s, t ∈ S the equality as = at, for some a ∈ A implies that s = t. It is
obvious that every strongly faithful right S−act is faithful.

Lemma 2.10. For any monoid S, the following statements are equivalent:

(1) there exists a strongly faithful cyclic right (left) S-act;

(2) there exists a strongly faithful finitely generated right (left) S-act;

(3) there exists a strongly faithful right (left) S-act;

(4) for every s ∈ S, sS (Ss) is a strongly faithful right (left) S-act;

(5) there exists s ∈ S such that sS (Ss) is a strongly faithful right (left)
S-act;

(6) SS (SS) is a strongly faithful right (left) S-act;

(7) for every s ∈ S, sS ⊆ Cl (Ss ⊆ Cr);

(8) there exists s ∈ S, sS ⊆ Cl (Ss ⊆ Cr);

(9) S is a left (right) cancellative monoid, that is, S = Cl (S = Cr)
(Cl (Cr) is the set of all left (right) cancellable elements of S).

Proof. Implications (1)⇒ (2)⇒ (3), (4)⇒ (5)⇒ (1), (9)⇒ (7)⇒ (8) and
(6)⇒ (1) are obvious.
(3) ⇒ (9). Suppose that A is a strongly faithful right (left) S-act, and let
sl = st (ls = ts), for l, t, s ∈ S. Then for every a ∈ A, asl = ast (lsa = tsa).
Since A is strongly faithful, the last equality implies that l = t. Hence S is
a left (right) cancellative monoid, as required.
(9)⇒ (6). It is obvious.
(8) ⇒ (9). Let rt = rl (tr = lr), for l, t, r ∈ S. Then srt = srl (trs = lrs)
implies that t = l, and so S is a left (right) cancellative monoid, as required.
(9) ⇒ (4). Suppose that S is a left (right) cancellative monoid and let
skt = skl (tks = lks), for l, k, t ∈ S. Then t = l and so sS (Ss) is a strongly
faithful right (left) S-act, as required.
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Proposition 2.11. For any monoid S, the following statements are equiv-
alent:

(1) all strongly faithful right S-acts satisfy Condition (G-PWP );

(2) all strongly faithful finitely generated right S-acts satisfy Condition
(G-PWP );

(3) all strongly faithful right S-acts generated by at most two elements
satisfy Condition (G-PWP );

(4) S is a group or S is not a left cancellative monoid.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4). If S is not left cancellative, then we are done. Otherwise, we
suppose that there exists s ∈ S, such that sS ̸= S. Then

AS = S
sS⨿
S = {(l, x)| l ∈ S \ sS} ∪̇ sS ∪̇ {(t, y)| t ∈ S \ sS}

is a right S-act and BS = {(l, x)| l ∈ S \ sS} ∪̇ sS ∼= S ∼= {(t, y)| t ∈
S \ sS} ∪̇ sS = CS , such that AS = BS ∪ CS is generated by two elements
(1, x) and (1, y). Since S is left cancellative, it is strongly faithful, by Lemma
2.10, and so BS and CS are strongly faithful as subacts of AS . Thus AS
is strongly faithful and so, by assumption, it satisfies Condition (G-PWP ).
Thus the equality (1, x)s = (1, y)s, implies that there exist a ∈ AS , u, v ∈ S
and n ∈ N such that (1, x) = au, (1, y) = av and usn = vsn. Hence there
exist l, t ∈ S \ sS such that a = (l, x) = (t, y), which is a contradiction.
Thus sS = S, for every s ∈ S and so S is a group, as required.
(4) ⇒ (1). If S is not left cancellative, then we are done, by Lemma 2.10.
Otherwise, by Proposition 2.7, it is obvious.

Recall from [8] that a right S-act AS is said to be decomposable if there
exist two subacts BS , CS ⊆ AS such that AS = BS ∪ CS and BS ∩ CS = ∅.
A right S-act which is not decomposable is called indecomposable.

S/K in Example 2.6 does not satisfy Condition (G-PWP ), but it is in-
decomposable. Thus indecomposablity does not imply Condition (G-PWP )
in general.

Also, let S = (N, .) and consider AS = N
⨿N\{1}N. Then (1, x) ̸= (1, y),

but (1, x)2 = 2 = (1, y)2. Hence AS is not torsion free and so does not
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satisfy Condition (G-PWP ). But it can easily be seen that AS is faithful.
Thus faithfulness does not imply Condition (G-PWP ) in general.

Now we give a characterization of monoids S for which indecomposablity
or faithfulness of right S-acts implies Condition (G-PWP ).

Proposition 2.12. For any monoid S, the following statements are equiv-
alent:

(1) all indecomposable right S-acts satisfy Condition (G-PWP );

(2) all indecomposable finitely generated right S-acts satisfy Condition (G-
PWP );

(3) all indecomposable right S-acts generated by at most two elements
satisfy Condition (G-PWP );

(4) all faithful right S-acts satisfy Condition (G-PWP );

(5) all faithful finitely generated right S-acts satisfy Condition (G-PWP );

(6) all faithful right S-acts generated by at most two elements satisfy Con-
dition (G-PWP );

(7) S is a group.

Proof. Implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) ⇒ (6), (7) ⇒ (4) and
(7)⇒ (1) are obvious.
(3)⇒ (7). Suppose that I is a proper right ideal of S. Since

AS = S

I⨿
S = {(α, x)| α ∈ S \ I} ∪̇ I ∪̇ {(β, x)| β ∈ S \ I}

is an indecomposable right S-act generated by (1, x) and (1, y), it satisfies
Condition (G-PWP ), but a similar argument as in the proof of Proposition
2.7 shows that this is a contradiction. Thus S has no proper ideal, that is,
S is a group, as required.
(6)⇒ (7). Suppose that I is a proper right ideal of S and let

AS = S
I⨿
S = {(α, x)| α ∈ S \ I} ∪̇ I ∪̇ {(β, x)| β ∈ S \ I}.
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Then for s ̸= t ∈ S, there exists (1, x) ∈ AS such that (1, x)s ̸= (1, x)t, that
is, AS is a faithful right S-act. Thus, by assumption, AS satisfies Condition
(G-PWP ), but a similar argument as in the proof of Proposition 2.7 shows
that this is a contradiction. Hence, S has no proper ideal, that is, S is a
group, as required.

For elements u, v ∈ S, the relation Pu,v is defined on S as

(x, y) ∈ Pu,v ⇔ ux = vy(x, y ∈ S).

and ∆S denotes the diagonal congruence, i.e. ∆S = {(s, s)|s ∈ S}.

Lemma 2.13. Let S be a monoid. Then:

(1) (∀s ∈ S)P1,s ◦ kerλs ◦ Ps,1 = ∆S ∩ (sS × sS);

(2) (∀u, v, s ∈ S)(∀n ∈ N)

(Pu,v ⊆ P1,s ◦ kerλs ◦ Ps,1 ∧ usn = vsn)⇐⇒

((snS × snS) ∩∆S ⊆ Pu,v ⊆ (sS × sS) ∩∆S));

Proof. (1). Let l1, l2 ∈ S. Then:
((l1, l2) ∈ P1,s ◦ kerλs ◦ Ps,1) ⇐⇒

(
(∃y1, y2 ∈ S)(l1, y1) ∈ P1,s ∧ (y1, y2) ∈

kerλs ∧ (y2, l2) ∈ Ps,1) ⇐⇒ ((∃y1, y2 ∈ S) l1 = sy1 ∧ sy1 = sy2 ∧ sy2 =

l2)⇐⇒ ((∃y1, y2 ∈ S) l1 = sy1 = sy2 = l2)⇐⇒
(
(l1, l2) ∈ ∆S ∩ (sS × sS)),

as required.
(2). First we suppose that Pu,v ⊆ P1,s ◦ kerλs ◦ Ps,1 and usn = vsn, for
u, v, s ∈ S and n ∈ N, we show that:

(snS × snS) ∩∆S ⊆ Pu,v ⊆ (sS × sS) ∩∆S .

By (1), it is obvious that Pu,v ⊆ (sS × sS) ∩∆S . Now let (l1, l2) ∈ (snS ×
snS) ∩ ∆S . Then there exist y1, y2 ∈ S such that l1 = sny1 = sny2 = l2.
Thus the equality usn = vsn implies that

ul1 = usny1 = usny2 = vsny2 = vl2.

Thus (l1, l2) ∈ Pu,v, and so

(snS × snS) ∩∆S ⊆ Pu,v ⊆ (sS × sS) ∩∆S ,
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as required.
For the other side, using (1), we have Pu,v ⊆ P1,s ◦ kerλs ◦ Ps,1 and since
(sn, sn) ∈ (snS × snS) ∩∆S ⊆ Pu,v, we have usn = vsn.

Proposition 2.14. For any monoid S, the following statements are equiv-
alent:

(1) all fg-weakly injective right S-acts satisfy Condition (G-PWP );

(2) all weakly injective right S-acts satisfy Condition (G-PWP );

(3) all injective right S-acts satisfy Condition (G-PWP );

(4) all cofree right S-acts satisfy Condition (G-PWP );

(5) (∀s ∈ S)(∃u, v ∈ S)(∃n ∈ N)

kerλu = kerλv = ∆S ∧ Pu,v ⊆ P1,s ◦ kerλs ◦ Ps,1 ∧ usn = vsn;

(6) (∀s ∈ S)(∃u, v ∈ S)(∃n ∈ N)

kerλu = kerλv = ∆S ∧ P1,sn ◦ kerλsn ◦ Psn,1 ⊆ Pu,v ⊆

P1,s ◦ kerλs ◦ Ps,1;

(7) (∀s ∈ S)(∃u, v ∈ S)(∃n ∈ N)

kerλu = kerλv = ∆S ∧ (snS × snS) ∩∆S ⊆ Pu,v ⊆

(sS × sS) ∩∆S .

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.
Implications (5)⇐⇒ (6)⇐⇒ (7) are true, by Lemma 2.13.
(4)⇒ (5). Suppose that all cofree right S-acts satisfy Condition (G-PWP ),
S1, S2 are the sets, where |S1| = |S2| = |S|, and α : S −→ S1, β : S −→ S2
are bijections.
Let s ∈ S, X = S/kerλs ∪̇ S1 ∪̇ S2 and define the mappings f, g : S −→ X
as

f(x) =

{
[y]kerλs if there exists y ∈ S;x = sy
α(x) if x ∈ S \ sS.

g(x) =

{
[y]kerλs if there exists y ∈ S;x = sy
β(x) if x ∈ S \ sS.
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We show that f is well-defined. For this, we suppose that sy1 = sy2, for
y1, y2 ∈ S, hence (y1, y2) ∈ kerλs and so [y1]kerλs = [y2]kerλs , that is,
f(sy1) = f(sy2) and so f is well-defined. Similarly, g is well-defined. Since
fs = gs, and XS = {h : S −→ X| h is mapping} satisfies Condition (G-
PWP ), there exist a mapping h : S −→ X, u, v ∈ S and n ∈ N, such that
f = hu, g = hv and usn = vsn. Let (l1, l2) ∈ kerλu, for l1, l2 ∈ S, then

ul1 = ul2 ⇒ f(l1) = (hu)(l1) = h(ul1) = h(ul2) = (hu)l2 = f(l2)⇒

f(l1) = f(l2)⇒ l1, l2 ∈ sS ∨ l1, l2 ∈ S \ sS

if l1, l2 ∈ S \ sS, then

α(l1) = f(l1) = f(l2) = α(l2) ⇒ l1 = l2.

If l1, l2 ∈ sS, then there exist y1, y2 ∈ S such that l1 = sy1 and l2 = sy2,
hence

f(l1) = f(sy1) = [y1]kerλs , f(l2) = f(sy2) = [y2]kerλs

f(l1) = f(l2)⇒ [y1]kerλs = [y2]kerλs ⇒ (y1, y2) ∈ kerλs

sy1 = sy2 ⇒ l1 = l2

thus the equality f(l1) = f(l2) implies that l1 = l2, and kerλu = ∆S .
Analogously, the equality g = hv implies that kerλv = ∆S . Suppose now
that (x, y) ∈ Pu,v. Then ux = vy, and so

f(x) = (hu)(x) = h(ux) = h(vy) = (hv)y = g(y) ⇒ f(x) = g(y).

The last equality implies that x, y ∈ sS and so there exist t1, t2 ∈ S such
that x = st1, y = st2, hence f(x) = [t1]kerλs and g(y) = [t2]kerλs . Thus

f(x) = g(y) ⇒ [t1]kerλs = [t2]kerλs ⇒ (t1, t2) ∈ kerλs,

and so we have

(x, t1) ∈ P1,s ∧ (t1, t2) ∈ kerλs ∧ (t2, y) ∈ Ps,1

⇒ (x, y) ∈ P1,s ◦ kerλs ◦ Ps,1 ⇒ Pu,v ⊆ P1,s ◦ kerλs ◦ Ps,1.
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(7) ⇒ (1). Suppose that AS is an fg-weakly injective right S-act and let
as = a′s, for a, a′ ∈ AS and s ∈ S. By assumption, there exist u, v ∈ S and
n ∈ N, such that

kerλu = kerλv = ∆S , (s
nS × snS) ∩∆S ⊆ Pu,v ⊆ (sS × sS) ∩∆S .

Define the mapping φ : uS ∪ vS −→ A, such that for every x ∈ uS ∪ vS,

φ(x) =

{
ap if there exists p ∈ S; x = up
a′q if there exists p ∈ S; x = vq

First we show that φ is well-defined. If there exist p1, p2 ∈ S such that
up1 = up2, then

(p1, p2) ∈ kerλu = ∆S ⇒ p1 = p2 ⇒ ap1 = ap2

If there exist q1, q2 ∈ S, such that vq1 = vq2, then

(q1, q2) ∈ kerλv = ∆S ⇒ q1 = q2 ⇒ a′q1 = a′q2

If there exist p, q ∈ S such that up = vq, then (p, q) ∈ Pu,v ⊆ (sS×sS)∩∆S

and so there exist l1, l2 ∈ S such that p = sl1 = sl2 = q, which implies that

ap = asl1 = asl2 = a′sl2 = a′q.

Thus, φ is well-defined, and obviously it is a homomorphism. Since, by
assumption, AS is an fg-weakly injective right S-act, there exists an exten-
sion ψ : S −→ AS of φ. If a′′ = ψ(1), then a = φ(u) = ψ(u) = ψ(1)u = a′′u
and a′ = φ(v) = ψ(v) = ψ(1)v = a′′v. Also, by assumption,

(sn, sn) ∈ (snS × snS) ∩∆S ⊆ Pu,v ⇒ usn = vsn,

hence AS satisfies Condition (G-PWP ), as required.

Notice that in Proposition 2.14, kerλu = kerλv = ∆S if and only if u
and v is left cancellable.

Corollary 2.15. Let S be a monoid such that the set of all left cancellable
elements are commutative. Then all cofree right S-acts satisfy Condition
(G-PWP ) if and only if S is a group.
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Proof. Necessity. Suppose that all cofree right S-acts satisfy Condition (G-
PWP ). By Proposition 2.14, for every s ∈ S there exist u, v ∈ S and n ∈ N
such that

kerλu = kerλv = ∆S ∧ (snS × snS) ∩∆S ⊆ Pu,v ⊆ (sS × sS) ∩∆S .

Thus u and v are left cancellable and so, by assumption, uv = vu. Hence,

(v, u) ∈ Pu,v ⊆ (sS × sS) ∩∆S ⇒ u = v

∆S ⊆ kerλu = Pu,u = Pu,v ⊆ (sS × sS) ∩∆S ⊆ ∆S

⇒ kerλu = ∆S = (sS × sS) ∩∆S ⊆ sS × sS

⇒ (1, 1) ∈ ∆S ⊆ sS × sS ⇒ ∃x ∈ S, 1 = sx

Thus sS = S, and so S is a group, as required.
Sufficiency is true, by Proposition 2.7.

Notice that, Corollary 2.15 holds for any monoid S with Cl(S) ⊆ C(S)
or C(S) = S (C(S) is the center of S).

Corollary 2.16. Let S be a finite monoid. Then all cofree right S-acts
satisfy Condition (G-PWP ) if and only if S is a group.

Proof. Necessity. By Proposition 2.14, for every s ∈ S there exist u, v ∈ S
and n ∈ N such that

kerλu = kerλv = ∆S ∧ (snS × snS) ∩∆S ⊆ Pu,v ⊆ ((sS × sS) ∩∆S).

On the other hand

uS ∼= S/kerλu = S/∆S
∼= S ⇒ uS ∼= S ⇒ |uS| = |S|

Since uS ⊆ S and S is finite we have uS = S. Thus there exists x ∈ S such
that ux = v, and so we have

(x, 1) ∈ Pu,v ⊆ (sS × sS) ∩∆S ⇒ x = 1⇒ u = v.

Now a similar argument as in the proof of Corollary 2.15 shows that sS = S.
That is, S is a group, as required.
Sufficiency is obvious, by Proposition 2.7.
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Corollary 2.17. Let S be a monoid and suppose every left cancellable ele-
ment of S has a right inverse. Then all cofree right S-acts satisfy Condition
(G-PWP ) if and only if S is a group.

Proof. Since, by assumption, uS = S, for any u ∈ Cl(S), a similar argument
as in the proof of Corollary 2.16 can be used.

Notice that, for finite monoids, every left cancellable element has a right
inverse.

Corollary 2.18. Let S be an idempotent monoid. Then all cofree right
S-acts satisfy Condition (G-PWP ) if and only if S = {1}.

Proof. Necessity. If e ∈ S, then, by Proposition 2.14, there exist u, v ∈ S
such that

kerλu = kerλv = ∆S , Pu,v = (eS × eS) ∩∆S .

Thus (u, 1) ∈ kerλu = ∆S , which implies that u = 1, similarly v = 1. So
we have

∆S = kerλ1 = Pu,v = Pu,u = (eS × eS) ∩∆S ⊆ (eS × eS)

Then (1, 1) ∈ ∆S ⊆ (eS × eS) implies that there exists x ∈ S such that
ex = 1, and so e = 1, that is, S = {1}, as required.
Sufficiency is clear.

So far there is no characterization of monoids for which (fg-weak, weak)
injectivity or cofreeness imply Condition (PWP ). For a characterization of
these monoids see the following corollary.

Corollary 2.19. For any monoid S, the following statements are equiva-
lent:

(1) all fg-weakly injective right S-acts satisfy Condition (PWP );

(2) all weakly injective right S-acts satisfy Condition (PWP );

(3) all injective right S-acts satisfy Condition (PWP );

(4) all cofree right S-acts satisfy Condition (PWP );
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(5) (∀s ∈ S)(∃u, v ∈ S)

(kerλu = kerλv = ∆S ∧ Pu,v = P1,s ◦ kerλs ◦ Ps,1);

(6) (∀s ∈ S)(∃u, v ∈ S)

(kerλu = kerλv = ∆S ∧ Pu,v = (sS × sS) ∩∆S).

Proof. Apply Proposition 2.14, for n = 1.

Recall from [8] that, a right S-act AS satisfies Condition (P ) if as = a′t,
for a, a′ ∈ AS , s, t ∈ S, there exist a′′ ∈ AS , u, v ∈ S such that a = a′′u,
a′ = a′′v and us = vt. Also we recall from [4] that a right S-act AS satisfies
Condition (P ′) if as = a′t and sz = tz, for a, a′ ∈ AS , s, t, z ∈ S, imply that
there exist a′′ ∈ AS and u, v ∈ S, such that a = a′′u, a′ = a′′v and us = vt.

We know that

WPF ⇒WKF ⇒ PWKF ⇒ TKF ⇒ (PWP )⇒ (G-PWP )
WPF ⇒ (P )⇒ (WP )⇒ (PWP )⇒ (G-PWP )

(P )⇒ (P ′)⇒ (PWP )⇒ (G-PWP ).

Now, let (U) be a property of acts that can be stand for WPF , WKF ,
PWKF , TKF , (P ), (WP ), (P ′) or (PWP ), then, by Corollaries 2.15,
2.16, 2.17 and [11, Proposition 9], we have the following corollary.

Corollary 2.20. Let S be a monoid for which one of the following condi-
tions is satisfied:

(1) Cl(S) is commutative;

(2) S is finite;

(3) cS = S, for every c ∈ Cl(S).

Then all cofree right S-acts satisfy Condition (U) if and only if S is a
group.

Corollary 2.21. Let S be an idempotent monoid and let (U) be a property
of acts that can be stand for free, projective generator, projective, strongly
flat, WPF, WKF, PWKF, TKF, (P ), (WP ), (P ′) or (PWP ). Then all
cofree right S-acts satisfy Condition (U) if and only if S = {1}.
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Proof. By Corollary 2.18, it is obvious.

By Proposition 2.3, SS and ΘS satisfy Condition (G-PWP ) for any
monoid S. But ΘS is faithful if and only if S = {1}, and SS is strongly
faithful if and only if S is left cancellative. Thus Condition (G-PWP ) of acts
does not imply (strong) faithfulness in general. The following proposition
gives a characterization of monoids S for which Condition (G-PWP ) of
right S-acts implies (strong) faithfulness.

Proposition 2.22. For any monoid S, the following statements are equiv-
alent:

(1) all right S-acts satisfying Condition (G-PWP ) are (strongly) faithful;

(2) all finitely generated right S-acts satisfying Condition (G-PWP ) are
(strongly) faithful;

(3) all cyclic right S-acts satisfying Condition (G-PWP ) are (strongly)
faithful;

(4) all Rees factor right S-acts satisfying Condition (G-PWP ) are (strongly)
faithful;

(5) S = {1}.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) and (5)⇒ (1) are obvious.
(4)⇒ (5). Since ΘS = S/SS satisfies Condition (G-PWP ), it is (strongly)
faithful, and so S = {1}.

Example 2.2, shows that Condition (G-PWP ) of acts does not imply
freeness and projective generator. For a characterization of monoids when
this is the case see the following proposition.

Proposition 2.23. For any monoid S, the following statements are equiv-
alent:

(1) all right S-acts satisfying Condition (G-PWP ) are free;

(2) all right S-acts satisfying Condition (G-PWP ) are projective genera-
tors;
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(3) all finitely generated right S-acts satisfying Condition (G-PWP ) are
free;

(4) all finitely generated right S-acts satisfying Condition (G-PWP ) are
projective generators;

(5) all cyclic right S-acts satisfying Condition (G-PWP ) are free;

(6) all cyclic right S-acts satisfying Condition (G-PWP ) are projective
generators;

(7) all monocyclic right S-acts satisfying Condition (G-PWP ) are free;

(8) all monocyclic right S-acts satisfying Condition (G-PWP ) are pro-
jective generators;

(9) S = {1}.

Proof. Implications (1) ⇒ (2) ⇒ (4) ⇒ (6) ⇒ (8), (1) ⇒ (3) ⇒ (5) ⇒ (7),
(3)⇒ (4), (5)⇒ (6), (7)⇒ (8) and (9)⇒ (1) are obvious.
(8)⇒ (9): By [8, IV, 12.8], it is obvious.

We recall from [8] that an element s ∈ S is called left almost regular
if there exist r, r1, ..., rm, s1, s2, ..., sm ∈ S and right cancellable elements
c1, c2, ..., cm ∈ S such that

s1c1 = sr1

s2c2 = s1r2

...

smcm = sm−1rm

s = smrs.

A monoid S is called left almost regular if all its elements are left almost
regular.

Also recall from [3] that a right S-act AS satisfies Condition (PWPe)
if ae = a′e, for a, a′ ∈ AS and e ∈ E(S), implies that there exist a′′ ∈ AS
and u, v ∈ S, such that a = a′′u, a′ = a′′v and ue = ve. It is obvious
that Condition (PWP ) implies Condition (PWPe). Also, for idempotent
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monoids, Conditions (PWP ) and (PWPe) coincide and if E(S) = {1}, then
all right S-acts satisfy Condition (PWPe). If S = (N, .) be the monoid of
natural numbers with multiplication, then, by Proposition 2.7, there exists
at least a right S-act AS which does not satisfy Condition (G-PWP ). But
AS satisfies Condition (PWPe), because E(S) = {1}. So in general Condi-
tion (PWPe) does not imply Condition (G-PWP ).

The following proposition shows that for a (right) left almost regular monoid
S Conditions (PWP ), (G-PWP ) of (left) right S-acts are equivalent to tor-
sion freeness and Condition (PWPe) of them. That is,

(PWP )⇐⇒ (G-PWP )⇐⇒ TF ∧ (PWPe)

Proposition 2.24. Let S be a left almost regular monoid. Then for a right
S-act AS, the following statements are equivalent:

(1) AS satisfies Condition (PWP );

(2) AS satisfies Condition (G-PWP );

(3) AS is torsion free and satisfies Condition (PWPe).

Proof. Implication (1)⇒ (2) is obvious.
(2)⇒ (3): Suppose that AS satisfies Condition (G-PWP ). Then, obviously,
AS is torsion free. Now let ae = a′e, for a, a′ ∈ AS and e ∈ E(S). Then
there exist a′′ ∈ AS , u, v ∈ S and n ∈ N such that a = a′′u, a′ = a′′v
and uen = ven. The last equality implies that ue = ve, and so AS satisfies
Condition (PWPe).
(3) ⇒ (1): Let AS be a torsion free right S-act which satisfies Condition
(PWPe). Let as = a′s, for a, a′ ∈ AS and s ∈ S. Since S is left almost
regular, there exist elements r, r1, ..., rm, s1, ..., sm ∈ S and right cancellable
elements c1, ..., cm ∈ S such that

s1c1 = sr1

s2c2 = s1r2

...

smcm = sm−1rm
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s = smrs.

Hence

as1c1 = asr1 = a′sr1 = a′s1c1,

and so as1 = a′s1. Also,

as2c2 = as1r2 = a′s1r2 = a′s2c2,

which implies that as2 = a′s2. Continuing this procedure, we obtain that
asi = a′si, for 1 ≤ i ≤ m. On the other hand we have

s1c1 = sr1 = smrsr1 = smrs1c1 ⇒ s1 = smrs1.

Continuing this procedure, we have sm = smrsm and so e = smr is an
idempotent. Now the equality asm = a′sm implies that asmr = a′smr, that
is, ae = a′e and so there exist a′′ ∈ AS and u, v ∈ S such that a = a′′u,
a′ = a′′v and ue = ve. The last equality implies that ues = ves, that is,
us = vs and so AS satisfies Condition (PWP ), as required.

3 Characterization by condition (G-PWP ) on diagonal acts

Here we give a characterization of monoids coming from some special classes,
by Condition (G-PWP ) of their diagonal acts. The right S-act S × S
equipped with the right S-action (s, t)u = (su, tu), s, t, u ∈ S is called the
diagonal act of monoid S and is denoted by D(S).

Let S be a monoid and s ∈ S. Define

L(s, s) = {(u, v) ∈ D(S)|us = vs}.

It is obvious that L(s, s) is a left S-act.

Proposition 3.1. For any monoid S, the following statements are equiva-
lent:

(1) for any non-empty set I, (SI)S satisfies Condition (G-PWP );

(2) (∀s ∈ S)(∃u, v ∈ S, n ∈ N) L(s, s) ⊆ S(u, v) ⊆ L(sn, sn).
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Proof. (1) ⇒ (2): Suppose that SI satisfies Condition (G-PWP ) for any
non-empty set I and let s ∈ S. It is obvious that (s, s) ∈ L(s, s) and so
L(s, s) ̸= ∅. Thus we can assume that L(s, s) = {(xi, yi)|i ∈ I}, where
xis = yis, for i ∈ I, thus (xi)Is = (yi)Is in (SI)S and so, by assumption,
there exist (wi)I ∈ (SI)S , u, v ∈ S and n ∈ N such that (xi)I = (wi)Iu,
(yi)I = (wi)Iv and usn = vsn. Hence (xi, yi) = wi(u, v), for i ∈ I, which
implies that (xi, yi) ∈ S(u, v), for i ∈ I. Thus L(s, s) ⊆ S(u, v). On the
other hand the equality usn = vsn implies that (u, v) ∈ L(sn, sn), and so
S(u, v) ⊆ L(sn, sn).
(2) ⇒ (1): Let (xi)Is = (yi)Is, for (xi)I , (yi)I ∈ (SI)S and s ∈ S. Then
there exist u, v ∈ S and n ∈ N such that

L(s, s) ⊆ S(u, v) ⊆ L(sn, sn).

The equality xis = yis, i ∈ I, implies that (xi, yi) ∈ L(s, s), i ∈ I and so
there exist wi ∈ S, i ∈ I, such that (xi, yi) = wi(u, v). That is, xi = wiu
and yi = wiv, i ∈ I. Thus (xi)I = (wi)Iu and (yi)I = (wi)Iv. Since
(u, v) ∈ S(u, v) ⊆ L(sn, sn), we have usn = vsn and so (SI)S satisfies
Condition (G-PWP ), as required.

Corollary 3.2. For any monoid S, the following statements are equivalent:

(1) for any non-empty set I, (SI)S satisfies Condition (PWP );

(2) for every s ∈ S, L(s, s) is a cyclic left S-act.

Proof. Apply Proposition 3.1, for n = 1.

Proposition 3.3. For any monoid S, the following statements are equiva-
lent:

(1) for every k ∈ N, (Sk)S satisfies Condition (G-PWP );

(2) D(S) satisfies Condition (G-PWP );

(3) (∀s ∈ S)(∀k ∈ N)(∀(xi, yi) ∈ L(s, s), 1 ≤ i ≤ k)(∃u, v ∈ S)(∃n ∈ N)

((xi, yi) ∈ S(u, v) ⊆ L(sn, sn), 1 ≤ i ≤ k);
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(4) (∀s ∈ S)(∀(x1, y1), (x2, y2) ∈ L(s, s))(∃u, v ∈ S)(∃n ∈ N)

((xi, yi) ∈ S(u, v) ⊆ L(sn, sn), 1 ≤ i ≤ 2).

Proof. Implications (1)⇒ (2) and (3)⇒ (4) are obvious.
(2)⇒ (4): Suppose that D(S) satisfies Condition (G-PWP ) and let

(x1, y1), (x2, y2) ∈ L(s, s),

for x1, y1, x2, y2, s ∈ S. Then x1s = y1s and x2s = y2s, which imply that
(x1, x2)s = (y1, y2)s. Thus, by assumption, there exist w1, w2, u, v ∈ S and
n ∈ N such that

(x1, x2) = (w1, w2)u, (y1, y2) = (w1, w2)v, us
n = vsn

=⇒ x1 = w1u, y1 = w1v, x2 = w2u, y2 = w2v.

Thus we have

(xi, yi) = wi(u, v) ∈ S(u, v) ⊆ L(sn, sn), i = 1, 2.

(3)⇒ (1): Let (x1, x2, ..., xk)s = (y1, y2, ..., yk)s, where xi, yi ∈ S, 1 ≤ i ≤ k.
Then (xi, yi) ∈ L(s, s), 1 ≤ i ≤ k, and so, by assumption, there exist u, v ∈ S
and n ∈ N such that

(xi, yi) ∈ S(u, v) ⊆ L(sn, sn), 1 ≤ i ≤ k.

Thus there exists wi ∈ S such that

(xi, yi) = wi(u, v), us
n = vsn, 1 ≤ i ≤ k,

and so

(x1, x2, ..., xk) = (w1, w2, ..., wk)u, (y1, y2, ..., yk) = (w1, w2, ..., wk)v, us
n = vsn.

Hence (Sk)S satisfies Condition (G-PWP ), as required.
(4)⇒ (3): Let s ∈ S and k ∈ N.
If k = 1 and (x1, y1) ∈ L(s, s), then x1s = y1s. Since x1 = 1x1 and y1 = 1y1,
we have

(x1, y1) ∈ S(x1, y1) ⊆ L(s, s).
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If k = 2, then it is true, by assumption.
Now let k > 2, and suppose the assertion is valid for every value less than k.
Suppose also that (xi, yi) ∈ L(s, s), for 1 ≤ i ≤ k. Then (xi, yi) ∈ L(s, s),
for 1 ≤ i < k imply that there exist w1, w2 ∈ S and n1 ∈ N, such that
(xi, yi) ∈ S(w1, w2) ⊆ L(sn1 , sn1), 1 ≤ i < k. On the other hand, since
(xk−1, yk−1), (xk, yk) ∈ L(s, s), there exist w∗

1, w
∗
2 ∈ S and n∗1 ∈ N such that

(xk−1, yk−1), (xk, yk) ∈ S(w∗
1, w

∗
2) ⊆ L(sn

∗
1 , sn

∗
1).

First we suppose that n∗1 ≤ n1. Then obviously, L(sn
∗
1 , sn

∗
1) ⊆ L(sn1 , sn1),

which implies that

(w1, w2), (w
∗
1, w

∗
2) ∈ L(sn1 , sn1).

By assumption, there exist u, v ∈ S and n ∈ N (obviously n1 ≤ n) such that

(w1, w2), (w
∗
1, w

∗
2) ∈ S(u, v) ⊆ L(sn, sn).

Thus S(w1, w2) ∪ S(w∗
1, w

∗
2) ⊆ S(u, v) ⊆ L(sn, sn), and so

(xi, yi) ∈ S(u, v) ⊆ L(sn, sn), 1 ≤ i ≤ k.

A similar argument can be used if n1 ≤ n∗1.

Recall that a right S-act AS is locally cyclic if every finitely generated
subact of AS is contained within a cyclic subact of AS .

Corollary 3.4. For any monoid S, the following statements are equivalent:

(1) for every k ∈ N, (Sk)S satisfies Condition (PWP );

(2) D(S) satisfies Condition (PWP );

(3) for every s ∈ S, L(s, s) is locally cyclic.

Proof. Apply Proposition 3.3, for n = 1.

Proposition 3.5. Let S be a commutative monoid. Then, the following
statements are equivalent:

(1) D(S) satisfies Condition (PWP );
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(2) D(S) satisfies Condition (G-PWP );

(3) S is cancellative.

Proof. Implications (1)⇒ (2) and (3)⇒ (1) are obvious.
(2) ⇒ (3): Let xc = yc, for x, y, c ∈ S. Then (1, x)c = (1, y)c in D(S),
and so there exist a, b, u, v ∈ S and n ∈ N, such that (1, x) = (a, b)u,
(1, y) = (a, b)v and ucn = vcn. Thus x = bu, y = bv and au = av = 1 and
so

x = bu = b1u = bavu = bvau = y1 = y.

Thus S is a right cancellative monoid, as required.

Proposition 3.6. For any monoid S, the following statements are equiva-
lent:

(1) D(S) satisfies Condition (PWP ) and |E(S)| ≤ 2;

(2) D(S) satisfies Condition (G-PWP ) and |E(S)| ≤ 2;

(3) S is right cancellative.

Proof. Implication (1)⇒ (2) is obvious.
(2) ⇒ (3): Let xc = yc, for x, y, c ∈ S. Then (1, x)c = (1, y)c in D(S).
Since D(S) satisfies Condition (G-PWP ), there exist a, b, u, v ∈ S and
n ∈ N, such that (1, x) = (a, b)u, (1, y) = (a, b)v and ucn = vcn. Thus
au = av = 1, and so ua and va are idempotents. If ua = va, then uau = vau
and so u = v. Thus x = bu = bv = y. If ua ̸= va, then either ua = 1 or
va = 1. For example if ua = 1, then we have v = 1v = uav = u1 = u, and
so x = bu = bv = y. Thus S is a right cancellative monoid, as required.
(3)⇒ (1): If S is right cancellative, then obviously D(S) satisfies Condition
(PWP ) and so |E(S)| = 1.

Proposition 3.7. For an idempotent monoid S, the following statements
are equivalent:

(1) D(S) satisfies Condition (PWP );

(2) D(S) satisfies Condition (G-PWP );

(3) S = {1}.



On condition (G-PWP ) 83

Proof. Implications (1)⇒ (2) and (3)⇒ (1) are obvious.
(2) ⇒ (3): Let s ∈ S. Then (1, s)s = (s, 1)s in D(S). Since D(S) satisfies
Condition (G-PWP ) there exist a, b, u, v ∈ S and n ∈ N such that (1, s) =
(a, b)u, (s, 1) = (a, b)v and usn = vsn. Thus 1 = au and so a = u = 1.
Similarly, v = 1, and so s = av = 1. That is, S = {1}, as required.
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