[1] J. Adamek, Introduction to coalgebra, Theory Appl. Categ. 14(8) (2005), 157-199.
[2] J. Adamek, H.P. Gumm, and V. Trnkova, Presentation of set functors: A coalgebraic
perspective, preprint.
[3] J. Adamek, H. Herrlich, and G.E. Strecker, Abstract and Concrete Categories",
John Wiley and Sons, New York, 1990.
[4] J. Adamek and H.E. Porst, On varieties and covarieties in a category, Math. Structures
Comput. Sci. 13(2) 2003, 201-232.
[5] M. Barr, Right exact functors, J. Pure Appl. Algebra 4 (1974), 1-8.
[6] M. Barr and C.Wells, Toposes, Triples and Theories, Theory Appl. Categ. 12 (2005),
1-288.
[7] M.M. Clementino and G. Janelidze, A note on eective descent morphisms of topo-
logical spaces and relational Algebras, Topology Appl. 158(17), (2011) 2431-2436.
[8] T. Everaert, Eective descent morphisms of regular epimorphisms, J. Pure Appl.
Algebra 216 (2012), 1896-1904.
[9] M. Gran, Notes on regular, exact and additive categories", Summer School on Category
Theory and Algebraic Topology, Ecole Polythecnique Federale de Lausanne,
11-13 September 2014.
[10] H.P. Gumm, From T-coalgebras to lter structures and transition systems, Chapter:
Algebra and Coalgebra in Computer Science, Lecture Notes in Comput. Sci. 3629
(2005), 194-212.
[11] H.P. Gumm, On coalgebras and type transformations, Discuss. Math. Gen. Algebra
Appl. 27 (2007), 187-197.
[12] H.P. Gumm, Elements of the general theory of coalgebras", LUATCS'99, Rand
Africaans University, Johannesburg, South Africa, 1999.
[13] H.P. Gumm, On minimal coalgebras, Appl. Categ. Structures 16(3) (2008), 313-332.
[14] H.P. Gumm and T. Schroder, Coalgebraic structures from weak limit preserving
functors, Electron. Notes Theor. Comput. Sci. 33 (2000), 113-133.
[15] H.P. Gumm and T. Schroder, Types and coalgebraic structure, Algebra Universalis
53 (2005), 229-252.
[16] H.P. Gumm and T. Schroder, Coalgebras of bounded types, Math. Structures Comput.
Sci. 12 (2002), 565-578.
[17] H.P. Gumm and T. Schroder, Products of coalgebras, Algebra Universalis 46 (2001),
163-185.
[18] G. Janelidze and W. Tholen, Facets of descent, I, Appl. Categ. Structures 2 (1994),
245-281.
[19] G. Janelidze and W. Tholen, Facets of descent, III: Monadic descent for rings and
algebras, Appl. Categ. Structures 12 (2004), 461-477.
[20] G. Janelidze, M. Sobral, and W. Tholen, Beyond Barr exactness: eective descent
morphisms, Chapter VIII: Categorical Foundations: Special Topics in Order, Topology,
Algebra and Sheaf Theory, Encyclopedia of Math. Appl. 97, Cambridge University
Press (2004), 359-405.
[21] P. Johnstone, J. Power, T. Tsujishita, H.Watanabe, and J.Worrell, On the structure
of categories of coalgebras, Theoret. Comput. Sci. 260 (2001), 87-117.
[22] A. Joyal and M. Tierney, An extension of Galois Theory of Grothendieck, Mem.
Amer. Math. Soc. 51 (309) (1984).
[23] M. Kianpi and C. Nkuimi-Jugnia, A simplication functor for coalgebras, Int. J.
Math. Math. Sci. 2006 (2006), 1-9.
[24] M. Kianpi and C. Nkuimi-Jugnia, On simple and extensional coalgebras beyond Set,
Arab. J. Sci. Eng. 33(2C) (2008), 295-313.
[25] M. Kianpi and C. Nkuimi-Jugnia, A note on descent for coalgebras, Homology Homotopy
Appl., to appear.
[26] B. Mesablishvili, Descent in categories of (co)algebras, Homology Homotopy Appl.
7(1) (2005), 1-8.
[27] S. Lack, An embedding theorem for adhesive categories, Theory Appl. categ. 25(7)
(2011), 180-188.
[28] S. Lack and P. Sobocinski, Toposes are adhesive, Chapter: Graph transformations,
Lecture Notes in Comput. Sci. 4178 (2006), 184-198.
[29] M. Makkai, A theorem on Barr-Exact categories, with innitary generalization, Ann.
Pure Appl. Logic 47 (1990), 225-268.
[30] M. Menni, A characterization of the left exact categories whose exact completions
are toposes, J. Pure Appl. Algebra 177 (2003), 287-301.
[31] I. Moerdijk, Descent theory for toposes, Bull. Soc. Math. Belgique 41(2) (1989),
373-391.
[32] J. Reiterman and W. Tholen, Eective descent maps of topological spaces, Topology
Appl. 57 (1994), 53-69.
[33] A.H. Roque, Notes on eective descent and projectivity in quasivarieties of universal
algebras, Theory Appl. Categ. 21(9) (2008), 172-181.
[34] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci.
249 (2000), 3-80.
[35] J.D.H. Smith, Permutation representations of left quasigroups, Algebra Universalis
55 (2006), 387-406.
[36] J. Worrell, A note on coalgebras and presheaves, Math. Structures Comput. Sci.
15(3) (2005), 475-483.