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On zero divisor graph of unique product
monoid rings over Noetherian reversible

ring

E. Hashemi∗, A. Alhevaz, and E. Yoonesian

Abstract. Let R be an associative ring with identity and Z∗(R) be its
set of non-zero zero divisors. The zero-divisor graph of R, denoted by Γ(R),
is the graph whose vertices are the non-zero zero-divisors of R, and two
distinct vertices r and s are adjacent if and only if rs = 0 or sr = 0. In
this paper, we bring some results about undirected zero-divisor graph of a
monoid ring over reversible right (or left) Noetherian ring R. We essentially
classify the diameter-structure of this graph and show that 0 ≤ diam(Γ(R)) ≤
diam(Γ(R[M ])) ≤ 3. Moreover, we give a characterization for the possible
diam(Γ(R)) and diam(Γ(R[M ])), when R is a reversible Noetherian ring and
M is a u.p.-monoid. Also, we study relations between the girth of Γ(R) and
that of Γ(R[M ]).

1 Introduction and definitions

The concept of a zero-divisor graph of a commutative ring was first intro-
duced by Beck in [8]. In his work all elements of the ring were vertices of the
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graph. Inspired by his study, Anderson and Livingston [4], redifined and
studied the zero-divisor graph whose vertices are the non-zero zero-divisors
of a ring. Several results concerning zero-divisor graph of a commutative
ring R are given in [4].

Recently Redmond, in [30], has extended this concept to arbitrary rings.
Let R be an associative ring with identity. The set zero-divisors of R,
denoted by Z(R), is the set of elements a ∈ R such that there exists a
non-zero element b ∈ R with ab = 0 or ba = 0. Set Z∗(R) = Z(R) \ {0}.
Redmond, in [30], considered an undirected zero-divisor graph of a non-
commutative ring R, the graph Γ(R), with vertices in the set Z∗(R) and
such that for distinct vertices a and b there is an edge connecting them if
and only if ab = 0 or ba = 0. Several papers are devoted to studying the
relationship between the zero-divisor graph and algebraic properties of rings
(cf. [1, 2, 4–6, 8, 24, 30]). Using the notion of a zero-divisor graph, it has
been proven in [31] that for any finite ring R, the sum

∑
x∈R |rR(x)− lR(x)|

is even, where rR(x) and lR(x) denote the right and left annihilator of the
element x in R, respectively.

Recall that a graph is said to be connected if for each pair of dis-
tinct vertices u and v, there is a finite sequence of distinct vertices v1 =
u, v2, . . . , vn = v such that each pair {vi, vi+1} is an edge. Such a sequence
is said to be a path and for two distinct vertices a and b in the simple (undi-
rected) graph Γ, the distance between a and b, denoted by d(a, b), is the
length of a shortest path connecting a and b, if such a path exists; otherwise
we put d(a, b) = ∞. Recall that the diameter of a graph Γ is defined as
follows:

diam(Γ) = sup{d(a, b)| a and b are distinct vertices of Γ}.

The diameter is 0 if the graph consists of a single vertex and a connected
graph with more than one vertex has diameter 1 if and only if it is complete;
i.e., each pair of distinct vertices forms an edge. The girth of a graph Γ,
denoted by gr(Γ), is the length of a shortest cycle in Γ, provided Γ contains
a cycle; otherwise, gr(Γ) =∞.

There is considerable interest in studying if and how certain graph-
theoretic properties of rings are preserved under various ring-theoretic ex-
tensions. The first such extensions that come to mind are those of poly-
nomial and power series extensions. Axtell, Coykendall and Stickles [7]
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examined the preservation of diameter and girth of zero-divisor graphs of
commutative rings under extensions to polynomial and power series rings.
Also, Lucas [24] continued the study of the diameter of zero-divisor graphs
of polynomial and power series rings over commutative rings. Moreover,
Anderson and Mulay [5], studied the girth and diameter of zero-divisor
graph of a commutative ring and investigated the girth and diameter of
zero-divisor graphs of polynomial and power series rings over commutative
rings. Since we are especially interested in non-commutative aspects of the
theory, we do not wish to restrict ourselves to commutative cases. In this
paper, we extend to non-commutative rings many results known earlier for
zero-divisor graphs of commutative rings. Nevertheless, we wish to empha-
size that some of our results about zero-divisor graph of a monoid rings over
non-commutative ring are new even for commutative rings.

According to Cohn [11], a ring R is called reversible if ab = 0 implies
that ba = 0 for each a, b ∈ R. Anderson and Camillo [3], observing the
rings whose zero products commute, used the term ZC2 for what is called
reversible; while Krempa and Niewieczerzal [21] took the term C0 for it.
Clearly, reduced rings (i.e., rings with no non-zero nilpotent elements) and
commutative rings are reversible. Kim and Lee [20], studied extensions of
reversible rings and showed that polynomial rings over reversible rings need
not be reversible in general.

In this paper, first we prove some results about zero divisors of a re-
versible ring R. Then for a u.p.-monoid M , we show that 0 ≤ diam(Γ(R)) ≤
diam(Γ(R[M ])) ≤ 3, when R is a reversible and right or left Noetherian
ring. Also we give a characterization for the possible diam(Γ(R)) and
diam(Γ(R[M ])), when R is a Noetherian reversible ring and M is a u.p.-
monoid. In closing, we give some relations between the girth of Γ(R) and
that of Γ(R[M ]).

Throughout, R denotes an associative ring with identity, unless other-
wise indicated. For X ⊆ R, the ideal generated by X is denoted by 〈X〉. For
an element a ∈ R, let `R(a) = {b ∈ R| ba = 0} and rR(a) = {b ∈ R| ab = 0}.
Note that if R is a reversible ring and a ∈ R, then `R(a) = rR(a) is an ideal
of R, and we denote it by ann(a). We write Z`(R), Zr(R) and Z(R) for the
set of all left zero-divisors of R, the set of all right zero-divisors of R and the
set Z`(R)∪Zr(R), respectively. For a non-empty subset S of R, `R(S) and
rR(S) denote the left annihilator and the right annihilator of S in R, re-
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spectively. Note that if R is a reversible ring, then Z`(R) = Zr(R) = Z(R).

2 Zero divisors of reversible rings

In this section, we study the structure of zero divisors of reversible rings.
Recall that a ring R is abelian if every idempotent of R is central. Since
reversible rings are abelian, hence by a similar way as used in the proof
of [4, Theorem 2.5], one can prove the following result.

Remark 2.1. Let R be a reversible ring. Then there exists a vertex of Γ(R)
which is adjacent to every other vertex if and only if either R ∼= Z2 × D
where D is a domain or Z(R) is an annihilator ideal.

By using Remark 2.1 and a similar way as used in the proof of [4,
Theorem 2.8], one can prove the following result.

Remark 2.2. Let R be a reversible ring. Then Γ(R) is complete if and
only if either R ∼= Z2 × Z2 or xy = 0 for all x, y ∈ Z(R).

Recall that an ideal P of R is completely prime if ab ∈ P implies a ∈ P
or b ∈ P for a, b ∈ R.

Proposition 2.3. Let R be a reversible ring and A = {ann(a)| 0 6= a ∈ R}.
If P is a maximal element of A, then P is a completely prime ideal of R.

Proof. Let xy ∈ P = ann(a) and x /∈ P. Then xa 6= 0, and hence ann(ax) ∈
A. Since P ⊆ ann(xa) and P is a maximal element of A, so ann(a) = P =
ann(ax). Since axy = 0, we have ay = 0, which implies that y ∈ P.
Therefore P is a completely prime ideal of R.

Proposition 2.4. Let R be a reversible ring. Then Γ(R) is a connected
graph with diam(Γ(R)) ≤ 3. Moreover, if Γ(R) contains a cycle, then
gr(Γ(R)) ≤ 4.

Proof. By a similar way as used in the proof of [4, Theorem 2.3], one can
show that diam(Γ(R)) ≤ 3. Also, by [30, Theorem 2.4], gr(Γ(R)) ≤ 4.

By a similar argument as used in the proof of [4, Theorem 2.2] one can
prove the following theorem.
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Theorem 2.5. Let R be a reversible ring. Then Γ(R) is finite if and only
if either R is finite or a domain.

Lemma 2.6. [14, Lemma 3.1] Let R be a reversible ring. Then Z(R) is
an union of prime ideals.

Hence the collection of zero-divisors of a reversible ring R is the set-
theoretic union of prime ideals. We write Z(R) = ∪i∈ΛPi with each Pi
prime. We will also assume that these primes are maximal with respect to
being contained in Z(R).

For a reversible ring R, rR(a) is an ideal of R for each a ∈ R. Hence by
a similar way as used in the proof of [19, Theorem 80] one can prove the
following result.

Remark 2.7. Let R be a reversible and right or left Noetherian ring. Then
we have Z(R) = ∪i∈ΛPi, where Λ is a finite set and each Pi is an annihilator
of a non-zero element in Z(R).

Kaplansky [19, Theorem 81] proved that if R is a commutative ring,
J1, . . . , Jn a finite number of ideals in R, S a subring of R that is contained
in the set-theoretic union J1 ∪ · · · ∪ Jn, and at least n − 2 of the Jk’s are
prime, then S is contained in some Jk. Here we have the following theorem,
which is proved in [14, Theorem 3.3].

Theorem 2.8. Let R be a reversible ring and Z(R) = ∪i∈ΛPi. If Λ is a
finite set (in particular if R is left or right Noetherian), and I an ideal of
R that is contained in Z(R), then I ⊆ Pk, for some k.

Note that Remark 2.7 shows that any left or right Noetherian ring sat-
isfies the hypothesis of the theorem.

Corollary 2.9. Let R be a reversible and left or right Noetherian ring. Let
P be a prime ideal of R which is maximal with respect to being contained in
Z(R). Then P is completely prime and P = ann(a) for some a ∈ R.

Proof. It follows from Remark 2.7 and Theorem 2.8.

Now, by using Theorem 2.8 in conjunction with a method similar to that
used in the proof of [7, Corollary 3.5], one can prove the following result.
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Corollary 2.10. Let R be a reversible ring with diam(Γ(R)) ≤ 2 and
Z(R) = ∪i∈ΛPi. If Λ is a finite set (in particular if R is left or right
Noetherian), then |Λ| ≤ 2.

Proposition 2.11. Let R be a reversible ring with diam(Γ(R)) = 2. If
Z(R) = P1 ∪ P2 with P1 and P2 distinct maximal primes in Z(R), then:

(1) P1 ∩ P2 = {0} (in particular, for all x ∈ P1 and y ∈ P2, xy = 0).

(2) P1 and P2 are completely prime ideals of R.

Proof. (1) By a similar way as used in the proof of [7, Proposition 3.6] one
can prove it.

(2) Since P1 ∩ P2 = 0, hence P1 = ann(x) and P2 = ann(y), for each
0 6= x ∈ P2 and 0 6= y ∈ P1. Let ab ∈ P1 and a /∈ P1. Then xa 6= 0 for some
0 6= x ∈ P2. Hence b ∈ ann(xa) = ann(x) = P1.

3 Relations between diameters of Γ(R) and Γ(R[M ])

In this section, we assume R is a reversible ring with Z(R) = ∪ni=1Pi such
that these primes are maximal with respect to being contained in Z(R) and
study relation between diam(Γ(R)) and n. Note that if R is reversible and
left or right Noetherian, then Z(R) = ∪ni=1Pi, by Remark 2.7.

Proposition 3.1. Let R be a reversible ring and Z(R) = P1 ∪ P2 with
P1 ∩ P2 6= 0. Then diam(Γ(R)) = 3.

Proof. We claim that if ab = 0 for all a ∈ P1 \ P2 and b ∈ P2 \ P1, then
P1P2 = 0. Let x ∈ P1∩P2, a ∈ P1\P2 and b ∈ P2\P1. Then a+x ∈ P1\P2

and b + x ∈ P2 \ P1. Hence a(b + x) = 0 and b(a + x) = 0, which implies
that bx = 0 = ax. Now, let x, y ∈ P1 ∩ P2. Then a + x ∈ P1 \ P2 and
b+y ∈ P2\P1, which implies that 0 = (a+x)(b+y) = ab+ay+xb+xy = xy.
Thus P1P2 = 0.

Now let x ∈ P1 ∩ P2. Then Z(R) = P1 ∪ P2 ⊆ ann(x), which is a
contradiction. Thus there exist a ∈ P1 \ P2 and b ∈ P2 \ P1 such that
ab 6= 0. If t is a mutual non-zero annihilator for a and b, then a, b ∈ ann(t).
Since ann(t) ⊆ Z(R) = P1∪P2, we have ann(t) ⊆ P1 or ann(t) ⊆ P2. Thus
a, b ∈ P1 or a, b ∈ P2, which is a contradiction. Thus d(a, b) = 3 and so
diam(Γ(R)) = 3.



On zero divisor graph of unique product monoid rings 101

Proposition 3.2. Let R be a reversible ring and Z(R) = ∪ni=1Pi. If n ≥ 3,
then diam(Γ(R)) = 3.

Proof. Let x ∈ P1 \ ∪ni=1Pi and y ∈ P2 \ ∪ni=1Pi. We claim that xy 6= 0 and
x, y don’t have mutual non-zero annihilator. If xy = 0, then xRy = 0 ⊆ P3,
and so x ∈ P3 or y ∈ P3, which is a contradiction. If a is a mutual non-zero
annihilator for x, y, then x, y ∈ ann(a). Since ann(a) ⊆ Z(R) = ∪ni=1Pi, we
have ann(a) ⊆ Pk, for some k, by Theorem 2.8. Then x, y ∈ Pk, which is a
contradiction. Therefore d(x, y) = 3, and so diam(Γ(R)) = 3.

Proposition 3.3. Let R be a reversible ring and Z(R) = P1 ∪ P2. Then
we have diam(Γ(R)) = 2 if and only if |Z(R)| ≥ 4 and P1 ∩ P2 = 0.

Proof. One can prove the forward direction by a similar way as used in the
proof [7, Proposition 3.6]. For the backward direction, let 0 6= a ∈ P1 and
0 6= b ∈ P2. Then ab ∈ P1 ∩ P2 = 0. Since |Z(R)| ≥ 4, hence |P1| ≥ 3 or
|P2| ≥ 3. We can assume that |P1| ≥ 3. If for all a, b ∈ P1, ab = 0, then
(P1 ∪ P2) ⊆ ann(x), for each 0 6= x ∈ P1, which is a contradiction. Thus
there are a, b ∈ P1 with ab 6= 0. Clearly, each non-zero element of P2 is a
mutual annihilator for a, b. Thus d(a, b) = 2, and so diam(Γ(R)) = 2, as
wanted.

Proposition 3.4. Let R be a reversible ring with diam(Γ(R)) = 2. If
Z(R) = P1∪P2 is the union of precisely two maximal primes in Z(R), then
P1 and P2 are completely prime ideals of R.

Proof. By Proposition 3.3, P1 ∩ P2 = 0. Then P1 = ann(x) and P2 =
ann(y), for each 0 6= x ∈ P2 and 0 6= y ∈ P1. Let ab ∈ P1 and a /∈ P1. Then
xa 6= 0 for some 0 6= x ∈ P2. Then b ∈ ann(xa) = ann(x) = P1.

Theorem 3.5. Let R be a reversible ring and Z(R) = ∪ni=1Pi. Then

(1) diam(Γ(R)) = 0 if and only if n = 1 and |Z(R)| = 2.

(2) diam(Γ(R)) = 1 if and only if n = 2 and |Z(R)| = 3 or n = 1 and
(Z(R))2 = 0 and |Z(R)| ≥ 3.

(3) diam(Γ(R)) = 2 if and only if |Z(R)| ≥ 4 and (i) n = 2 and P1∩P2 =
0 or (ii) n = 1 and (Z(R))2 6= 0 and for each pair of distinct non-
zero zero-divisors a, b, if ab 6= 0, then a, b have a mutual non-zero
annihilator.
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(4) diam(Γ(R)) = 3 if and only if n ≥ 3 or n = 2 and P1 ∩ P2 6= 0 or
n = 1 and there are distinct non-zero a, b ∈ Z(R) such that ab 6= 0
and a, b don’t have a mutual non-zero annihilator.

Proof. (1). If dim(Γ(R)) = 0, then Z(R) = {0, a} for some non-zero a ∈
Z(R). Hence |Z(R)| = 2. The converse is clear.

(2). For the forward direction, first notice it is easily seen that |Z(R)| ≥
3. Since diam(Γ(R)) = 1, hence Γ(R) is complete. Thus by Proposition 2.2,
R ∼= Z2 × Z2 or xy = 0 for each x, y ∈ Z(R). If R ∼= Z2 × Z2, then n = 2
and |Z(R)| = 3. If xy = 0 for each x, y ∈ Z(R), then Z(R) is an ideal (and
so n = 1) and (Z(R))2 = 0. The backward direction is clear.

(3). For the forward direction, first notice that by Proposition 3.2, we
have n ≤ 2. If n = 2 and P1∩P2 6= 0, then by Proposition 3.1, diam(Γ(R)) =
3, which is a contradiction. Thus P1 ∩ P2 = 0. If |Z(R)| = 3, then by (1),
diam(Γ(R)) = 1, which is a contradiction. Hence |Z(R)| ≥ 4.

Now, let n = 1. Since diam(Γ(R)) = 2, there are a, b ∈ Z(R) such that
ab 6= 0, which implies that (Z(R))2 6= 0. If |Z(R)| = 3, then diam(Γ(R)) =
1, which is a contradiction. Therefore |Z(R)| ≥ 4. Clearly, for each pair
of distinct non-zero zero-divisors a, b, if ab 6= 0, then a, b have a mutual
non-zero annihilator.

For the backward direction, first let |Z(R)| ≥ 4, n = 2 and P1 ∩P2 = 0.
Then by Proposition 3.3, diam(Γ(R)) = 2. Now, assume that |Z(R)| ≥ 4,
n = 1, (Z(R))2 6= 0 and for each pair of distinct non-zero zero-divisors a, b,
if ab 6= 0, then a, b have a mutual non-zero annihilator. If for each pair
of distinct non-zero divisors a, b, ab = 0, then there exists vertex adjacent
to each other vertex and so by Proposition 2.2, Z(R) is an ideal of R with
(Z(R))2 = 0, which is a contradiction. Thus there are non-zero zero-divisors
a 6= b such that ab 6= 0. Hence d(a, b) = 2 and so diam(Γ(R)) = 2.

(4). Forward direction follows from parts (1), (2) and (3), and the
backward direction follows from Propositions 3.1 and 3.2.

It is often taught in an elementary algebra course that if R is a com-
mutative ring, and f(x) is a zero-divisor in R[x], then there is a non-zero
element r ∈ R with f(x)r = 0. This was first proved by McCoy [25, Theo-
rem 2]. Based on this result, Nielsen [26] called a ring R right McCoy when
the equation f(x)g(x) = 0 implies f(x)c = 0 for some non-zero c ∈ R, where
f(x), g(x) are non-zero polynomials in R[x]. Left McCoy rings are defined
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similarly. If a ring is both left and right McCoy then the ring is called a
McCoy ring.

Let P and Q be nonempty subsets of a monoid M . An element s is called
a u.p.-element (unique product element) of PQ = {pq : p ∈ P , q ∈ Q}
if it is uniquely presented in the form s = pq where p ∈ P and q ∈ Q.
Recall that a monoid M is called a u.p.-monoid (unique product monoid)
if for any two nonempty finite subsets P,Q ⊆M there exist a u.p.-element
in PQ. Following the literature, right or left ordered monoids, submonoids
of a free group, and torsion-free nilpotent groups are all u.p.-monoids (see,
e.g., [27], [28]).

Let M be a monoid and R a ring. According to [13], R is called right M -
McCoy if whenever 0 6= α = a1g1 + · · ·+ angn, 0 6= β = b1h1 + · · ·+ bmhm ∈
R[M ], with gi, hj ∈M and ai, bj ∈ R satisfy αβ = 0, then αr = 0 for some
non-zero r ∈ R. Left M -McCoy rings are defined similarly. If R is both left
and right M -McCoy then R is called M -McCoy. Clearly R is right McCoy
if and only if R is right M -McCoy, where M is the additive monoid N∪{0}
of non-negative integers.

Lemma 3.6. [13, Proposition 1.2] If M is a u.p.-monoid and R a reversible
ring, then R is M -McCoy.

Lemma 3.7. If M is a u.p.-monoid, 1 6= u ∈M and

s11, . . . , s1m1 , s21, . . . , s2m2 , . . . , s`1, . . . , s`m` ∈M

for some positive integers `,m1, . . . ,m`, then there exist non-negative integer
elements n1, . . . , n` such that for any i 6= j, sipu

ni 6= sjqu
nj for all p and q.

Proof. Since 1 6= u, the set {1, u, u2, . . .} is infinity. Since M is cancellative,
we have for every q ∈ {1, . . . ,m2} infinity set {s2qu, s2qu

2, s2qu
3, . . .}. Thus

in particular there exists positive integer d such that s1i 6= s2ju
d for all i

and j. Now we set n1 = 0 and n2 = d. Using the above argument finite
number of times we get the result.

According to [18], a commutative ring R has Property (A) if every finitely
generated ideal of R consisting entirely of zero-divisors has a non-zero an-
nihilator. The class of commutative rings with Property (A) is quite large.
For example, the polynomial ring R[x], rings whose classical ring of quo-
tients are von Neumann regular [15], Noetherian rings [19, p. 56] and rings
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whose prime ideals are maximal [15] are examples of rings with Property
(A). Kaplansky [19, p. 56] showed the existence of the non-Noetherian rings
without Property (A). Rings with Property (A) was originally studied by
Quentel [29]. Quentel used the term Condition (C) for Property (A). Us-
ing Property (A), Hinkle and Huckaba [16] extended the concept Kronecker
function rings from integral domains to rings with zero divisors.

Hong et. al. [17], extended Property (A) to non-commutative rings as
follows: A ring R has right (left) Property (A) if every finitely generated
ideal of R consisting entirely of left (right) zero-divisors has a right (left)
non-zero annihilator. A ring R is said to have Property (A) if R has right and
left Property (A). They showed that if R is a reduced ring with finitely many
minimal prime ideals, then R has Property (A). Also, if R is a reversible
ring and every prime ideal of R is maximal, then R has Property (A).

Theorem 3.8. Let R be a reversible left (right) Noetherian ring. Then R
has right (left) Property (A).

Proof. It follows from Remark 2.7, Theorem 2.8 and Corollary 2.9.

Theorem 3.9. Let R be a reversible ring and M be a u.p.-monoid. Then
the monoid ring R[M ] has Property (A).

Proof. Let 1 6= u ∈ M and αi = si1gi1 + · · · + simigimi ∈ R[M ], for i =
1, . . . , `, such that α1R[M ] + · · · + α`R[M ] ⊆ Z`(R[M ]). By Lemma 3.7,
there exist non-negative integers n1, . . . , n` such that for any i 6= j, sipu

ni 6=
sjqu

nj for all p and q. Then β = α1u
n1 + · · · + α`u

n` ∈ Z(R[M ]), and
{s11, . . . , s1m1 , s21, . . . , s2m2 , . . . , s`1, . . . , s`m`} is the set of coefficients of β
in R. By Lemma 3.6, there exist 0 6= c ∈ R with βc = 0, and since R is
reversible we have c ∈ rR[M ](α1R[M ] + · · ·+ α`R[M ]). Therefore R[M ] has
right Property (A). By a similar argument one can show that R[M ] has left
Property (A).

Corollary 3.10. Let R be a reversible ring and M is a u.p.-monoid. Let
α = a1g1 + · · · + amgm and β = b1h1 + · · · + bnhm ∈ R[M ]. Then the
following statements are equivalent:

(1) (αR[M ] + βR[M ]) ⊆ Z`(R[M ]);

(2) α and β have a mutual non-zero annihilator in R[M ];
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(3) There is a non-zero c ∈ R such that cα = 0 = cβ;

(4) If v ∈M such that {g1, . . . , gm}∩ {h1, . . . , hn}v = φ, then α+ βv is a
left zero divisor of R[M ].

Proof. It follows from Theorem 3.9.

Theorem 3.11. Let R be a reversible ring and M a u.p.-monoid. Then
Z(R[M ]) is an ideal of R[M ] if and only if Z(R) is an ideal of R and R has
right Property (A).

Proof. For the backward direction, suppose that Z(R) is an ideal of R and R
has right Property (A). Let α = a1g1+· · ·+angn and β = b1h1+· · ·+bmhm be
non-zero zero-divisors of R[M ]. By Lemma 3.6, there are non-zero elements
r, s ∈ R such that rα = 0 = sβ. Hence {a1, . . . , an, b1, . . . , bm} ⊆ Z(R) and
so 〈a1, . . . , an, b1, . . . , bm〉 ⊆ Z(R). Since R has right Property (A), there
exists 0 6= t ∈ R with 〈a1, . . . , an, b1, . . . , bm〉t = 0. Since R is reversible,
we have 〈α, β〉t = 0 and so α + β ∈ Z(R[M ]). Now, let α ∈ Z(R[M ]) and
β ∈ R[M ]. By Lemma 3.6, there exists 0 6= r ∈ R with rα = 0. Since R is
reversible we have αβr = 0 = βαr. Thus Z(R[M ]) is an ideal of R[M ], as
wanted.

For the forward direction, first notice that clearly Z(R) ⊆ Z(R[M ]), and
hence Z(R)[M ] ⊆ Z(R[M ]). By Lemma 3.6, Z(R[M ]) ⊆ Z(R)[M ]. Thus
Z(R[M ]) = Z(R)[M ]. Now, let 〈a1, . . . , an〉 ⊆ Z(R). Let 1 6= g ∈ M , then
a1g+a2g

2 + · · ·+ang
n ∈ Z(R)[M ] = Z(R[M ]). By Lemma 3.6, there exists

0 6= r ∈ R such that (a1g+a2g
2 + · · ·+ang

n)r = 0. Then 〈a1, . . . , an〉r = 0,
since R is reversible. Thus R has right Property (A), and the proof is
complete.

Proposition 3.12. Let R be a reversible ring with diam(Γ(R)) = 2 and M
a u.p.-monoid. If Z(R) = P1 ∪ P2 is the union of precisely two maximal
primes in Z(R), then diam(Γ(R[M ])) = 2.

Proof. By Propositions 3.3 and 3.4, P1 and P2 are completely prime ideals
and P1 ∩ P2 = 0, hence R is reduced. Thus R[M ] is a reduced ring, by [23,
Proposition 1.1]. Let α = a1g1 + · · · + angn ∈ Z(R[M ]). Then αβ = 0,
for some 0 6= β = b1h1 + · · · + bmhm ∈ R[M ]. Since R is reduced and
M is a u.p.-monoid, αbj = 0, for each j, by [23, Proposition 1.1]. Then
α ∈ P1[M ] or α ∈ P2[M ], which implies that Z(R[M ]) ⊆ P1[M ] ∪ P2[M ].
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Since P1P2 = 0 = P2P1, we have P1[x] ∪ P2[M ] ⊆ Z(R[M ]). Therefore
Z(R[M ]) = P1[M ] ∪ P2[M ], which implies that diam(Γ(R[M ])) = 2.

Note that polynomial rings over reversible rings need not be reversible
in general, then so is u.p.-monoid rings.

Theorem 3.13. Let R be a reversible ring with non-zero zero-divisors, M
a u.p.-monoid and Z(R) = ∪ni=1Pi. Then

(1) diam(Γ(R[M ])) ≥ 1.

(2) diam(Γ(R[M ])) = 1 if and only if n = 1 and (Z(R))2 = 0.

In addition if R has right Property (A), then

(3) diam(Γ(R[M ])) = 2 if and only if (i) n = 2 and P1 ∩ P2 = 0 or
(ii) |Z(R)| ≥ 4, n = 1, (Z(R))2 6= 0 and for each pair of distinct
non-zero zero-divisors a, b, if ab 6= 0, then a, b have a non-zero mutual
annihilator.

(4) diam(Γ(R[M ])) = 3 if and only if n ≥ 3 or n = 2 and P1 ∩ P2 6= 0.

Proof. (1). Let 0 6= a ∈ Z(R) and 1 6= g ∈ M . Then a1g, a1g
2 are

distinct non-zero zero-divisors of R[M ]. Since d(a1g, a1g
2) ≥ 1, hence

diam(Γ(R[M ])) ≥ 1.

(2). For the forward direction, since diam(Γ(R[M ])) = 1, hence
diam(Γ(R)) = 0 or diam(Γ(R)) = 1. If diam(Γ(R)) = 0, then
Z(R) = {0, a}, for some non-zero a ∈ Z(R). Hence n = 1 and (Z(R))2 = 0.

If diam(Γ(R)) = 1, then n = 2 and |Z(R)| = 3 or n = 1, (Z(R))2 = 0
and |Z(R)| ≥ 3, by Theorem 3.5. Let n = 2 and |Z(R)| = 3. We can assume
that P1 = {0, a} and P2 = {0, b}. Let 1 6= g ∈ M , then ag, ag2 are distinct
non-zero zero divisors of R[M ] and agag2 6= 0. Hence d(ag, ag2) ≥ 2, and so
diam(Γ(R[M ])) ≥ 2, which is a contradiction. Therefore n = 1, (Z(R))2 = 0
and |Z(R)| ≥ 3.

For the backward direction, let a be a non-zero zero-divisor of R and
1 6= g ∈ M . Then ag, ag2 are distinct zero-divisors of Z(R[M ]). Hence
diam(Γ(R[M ])) ≥ 1. If α = a1g1 + · · · + amgm, β = b1h1 + · · · + bnhn ∈
Z(R[M ]), then by Lemma 3.6, a1, · · · , am, b1, · · · , bn ∈ Z(R), and since
(Z(R))2 = 0, we have αβ = 0, which implies that diam(Γ(R[M ])) = 1.
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(3). For forward direction, since diam(Γ(R[M ])) = 2, we have
diam(Γ(R)) = 0 or diam(Γ(R)) = 1 or diam(Γ(R)) = 2. Let
diam(Γ(R)) = 0, then by (1), diam(Γ(R[M ])) = 1, which is a contradiction.
Let diam(Γ(R)) = 1, then n = 2 and P1 ∩P2 = 0 or n = 1 and (Z(R))2 = 0
and |Z(R)| ≥ 3, by Theorem 3.5. If n = 1 and (Z(R))2 = 0, then by using
Lemma 3.6, we have diam(Γ(R[M ])) = 1, which is a contradiction. Thus
n = 2 and P1 ∩ P2 = 0.

Now, let diam(Γ(R)) = 2. Then |Z(R)| ≥ 4 and (i) n = 2 and P1∩P2 =
0 or (ii) n = 1, (Z(R))2 6= 0 and for each pair of distinct non-zero zero-
divisors a, b, if ab 6= 0, then a, b have a non-zero mutual annihilator, by
Theorem 3.5.

For the backward direction, first let n = 2 and P1 ∩ P2 = 0. Then
diam(R[M ]) = 2, by Proposition 3.12. Now, let |Z(R)| ≥ 4, n = 1,
(Z(R))2 6= 0 and for each pair of distinct non-zero zero-divisors a, b, if
ab 6= 0, then a, b have a non-zero mutual annihilator. By Theorem 3.5,
diam(Γ(R)) = 2, hence diam(Γ(R[M ])) ≥ 2. Since R has right Property
(A), hence Z(R[M ]) is an ideal of R[M ] and Z(R[M ]) = Z(R)[M ], by Theo-
rem 3.11. Let α = a1g1 + · · ·+amgm and β = b1h1 + · · ·+ bnhn ∈ Z(R[M ]).
Let v ∈ M such that {g1, . . . , gm} ∩ {h1, . . . , hn}v = ∅. Then α + βv ∈
Z(R[M ]), since Z(R[M ]) is an ideal of R[M ]. There is a non-zero δ ∈ R[M ]
such that (α + βv)δ = 0, hence δ is a mutual annihilator for α and β, by
Corollary 3.10. Thus d(α, β) ≤ 2, which implies that diam(Γ(R[M ])) = 2.

(4). For proving the forward direction, first we claim that diam(Γ(R)) =
3. Assume that diam(Γ(R)) = 2. Since R has right Property (A), hence
n = 2 and P1∩P2 = 0, by Theorems 3.5 and 3.11. Then diam(Γ(R[M ])) = 2,
by Proposition 3.12, which is a contradiction. Thus diam(Γ(R)) = 3, and
so (i) n ≥ 3 or (ii) n = 2 and P1 ∩ P2 6= 0, by Theorem 3.5.

For the backward direction, assume that n ≥ 3 or n = 2 and P1∩P2 6= 0.
There exist a ∈ P1 \P2 and b ∈ P2 \P1 such that ab 6= 0 and a, b don’t have
mutual non-zero annihilator. If α = a1g1 + · · ·+ amgm ∈ R[M ] is a mutual
annihilator of a, b, then a 6= ai 6= b, for each i, since ab 6= 0. Thus α = 0,
since a, b don’t have mutual non-zero annihilator. Therefore d(a, b) = 3 in
Γ(R[M ]), which implies that diam(Γ(R[M ])) = 3.

Corollary 3.14. Let M be a u.p.-monoid and R a reversible and right or
left Noetherian ring. Then 0 ≤ diam(Γ(R)) ≤ diam(Γ(R[M ])) ≤ 3.
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Proof. It follows from Remark 2.7, Theorem 3.5 and Theorem 3.13.

Corollary 3.15. Let M be a u.p.-monoid and R a reversible and right or
left Noetherian ring with diam(Γ(R)) = 2. Then diam(Γ(R[M ])) = 2.

Proof. Since R is reversible and right or left Noetherian, R has right Prop-
erty (A), by Theorem 3.8. Now the result follows from Theorems 3.5 and
3.13.

Proposition 3.16. Let R be a reversible ring and M a u.p.-monoid. If, for
some n ∈ Z with n > 2, (Z(R))n = 0, then diam(Γ(R[M ])) = diam(Γ(R)) =
2.

Proof. The proof is essentially same as that of [7, Proposition 3.12]. We
assume n is the minimal number such that (Z(R))n = 0. By hypothesis
and Proposition 2.2, Γ(R) is not complete. Hence, there exist distinct a, b ∈
Z(R) with ab 6= 0. Since (Z(R))n−1 6= 0, there exist c1, . . . , cn−1 ∈ Z(R)
with c =

∏n−1
i=1 ci 6= 0. However, ac = bc = 0, so diam(Γ(R)) = 2. Since

(Z(R))n = 0 and the collection of zero-divisors of R is the set-theoretic
union of prime ideals by Theorem 2.7, hence Z(R) = P for some prime
ideal P. By Lemma 3.6, R is M -McCoy, hence Z(R[M ])) ⊆ P[M ]. Now,
let α, β ∈ Z∗(R[M ]). Then all coefficients of α and β belong to Z(R). Thus
either α − β or β − α or α − c − β. Therefore we get diam(Γ(R[M ])) = 2,
as desired.

Corollary 3.17. Let R be a reversible ring. If for some n ∈ Z with n > 2,
(Z(R))n = 0, then diam(Γ(R[x, x−1])) = diam(Γ(R[x])) = diam(Γ(R)) =
2.

Theorem 3.18. If R 6∼= Z2×Z2 is a reversible ring and M is a u.p.-monoid,
then the following statements are equivalent:

(1) Γ(R[M ]) is complete.

(2) Γ(R) is complete.

Proof. (1)⇒ (2) is clear. For (2)⇒ (1), since R 6= Z2 ×Z2 we have xy = 0
for every x, y ∈ Z∗(R), by Proposition 2.2. Therefore Γ(R) complete implies
(Z(R))2 = 0. Let α, β ∈ Z∗(R[M ]). By Lemma 3.5, R is M -McCoy, hence
all coefficients of α and β are zero-divisors in R. Since Γ(R) is complete,
αβ = 0, and hence Γ(R[M ]) is complete, as wanted.
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Corollary 3.19. If R 6∼= Z2 × Z2 is a reversible ring, then the following
conditions are equivalent:

(1) Γ(R[x]) is complete;

(2) Γ(R[x, x−1]) is complete;

(3) Γ(R) is complete.

Proof. It follows from Theorem 3.18.

Lemma 3.20. [23, Lemma 1.13] Let M and N be u.p.-monoids. Then so
is the M ×N .

Now, we bring a remark which will be used frequently in the sequel; we
include it and its proof for the sake of completeness.

Remark 3.21. Let M and N be u.p.-monoids and R a ring. Then

(R[M ])[N ] ∼= R[M ×N ].

Proof. Suppose that
∑s

i=1 ai(mi, ni) is in R[M×N ]. Without loss of gener-
ality, we assume that {n1, n2, · · · , ns} = {n1, n2, · · · , nt} with ni 6= nj , when
1 ≤ i 6= j ≤ t. For any 1 ≤ p ≤ t, denote Ap = {i|1 ≤ i ≤ s, ni 6= np}. Then∑t

p=1(
∑

i∈Ap aimi)np ∈ R[M ][N ]. Note that mi 6= mi′ for any i, i
′ ∈ Ap

with i 6= i
′
. Now it is easy to see that there exists an isomorphism of rings

R[M ×N ] −→ R[M ][N ] defined by∑s
i=1 ai(mi, ni) −→

∑t
p=1(

∑
i∈Ap aimi)np.

Theorem 3.22. Let R 6∼= Z2×Z2 be a reversible and right or left Noetherian
ring with non-trivial zero-divisors. Let M,N be u.p.-monoids. The following
conditions are equivalent:

(1) diam(Γ(R)) = 2;

(2) diam(Γ(R[M ])) = 2;

(3) diam(Γ((R[M ])[N ])) = 2;
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(4) Z(R) is either the union of two primes with intersection {0} and
|Z(R)| ≥ 4, or Z(R) is prime and (Z(R))2 6= 0.

Proof. (1)⇒(2). It was proven in Corollary 3.15.

(2)⇒(1). Assume that diam(Γ(R)) 6= 2. If diam(Γ(R)) = 1, then by
Theorems 3.5 and 3.13, diam(Γ(R[M ])) = 1, which is a contradiction.

Since M and N are u.p.-monoids, hence by Lemma 3.20, M ×N is u.p.-
monoid and by Remark 3.21, (R[M ])[N ] ∼= R[M × N ]. Now by a similar
way as used in the proof of (1)⇔(2) one can prove (1)⇔(3).

(1)⇒(4). It follows from Theorem 3.5.

(4)⇒(1). First suppose that Z(R) is the union of two primes P1 and P2

such that P1∩P2 = {0} and |Z(R)| ≥ 4. Then diam(Γ(R)) = 2, by Theorem
3.5. If Z(R) is prime, there exists z ∈ Z(R) such that Z(R) = ann(z). Let
a, b be distinct non-zero zero divisors and ab 6= 0. Then az = 0 = bz = 0;
so z is a mutual non-zero annihilator for a, b. Thus diam(Γ(R)) = 2, by
Theorem 3.5.

Corollary 3.23. Let R 6∼= Z2 × Z2 be a reversible and right or left Noethe-
rian ring with non-trivial zero-divisors. Then the following statements are
equivalent:

(1) diam(Γ(R)) = 2;

(2) diam(Γ(R[x])) = 2;

(3) diam(Γ(R[x1, . . . , xn])) = 2, for all n > 0;

(4) diam(Γ(R[x1, x
−1
1 , . . . , xn, x

−1
n ])) = 2, for all n > 0;

(5) Z(R) is either the union of two primes with intersection {0} and
|Z(R)| ≥ 4, or Z(R) is prime and (Z(R))2 6= 0.

We conclude the paper by giving some results about the girth of a zero
divisor graph of u.p.-monoid rings over reversible rings.

4 Relations between the girths of Γ(R) and Γ(R[M ])

Proposition 4.1. Let M be a u.p.-monoid and R a reversible ring not
necessarily with identity. If α, β ∈ Z∗(R[M ]) are distinct non-constant
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elements with αβ = 0, then there exist a, b ∈ Z∗(R) such that a−α−β−b−a
is a cycle in Γ(R[M ]), or b− α− β − b is a cycle in Γ(R[M ]).

Proof. If α, β ∈ Z∗(R[M ]), then there exist a, b ∈ Z∗(R) such that aα =
0 = bβ, by Lemma 3.6. Now, by a similar argument as used in the proof
of [7, Proposition 4.1], one can prove it.

Corollary 4.2. Let M be a u.p.-monoid and R a reversible ring and α ∈
Z∗(R[M ]) a non-constant element. Then there exists a cycle of length 3 or
4 in Γ(R[M ]) with α as one vertex and some a ∈ Z∗(R) as another.

Theorem 4.3. Let M be a u.p.-monoid and R is a reversible ring not
necessarily with identity. Then gr(Γ(R)) ≥ gr(Γ(R[M ])). In addition, if R
is a reduced ring and Γ(R) contains a cycle, then gr(Γ(R)) = gr(Γ(R[M ])).

Proof. By using Corollary 4.2 and a similar argument as used in the proof
of [7, Theorem 4.3] one can prove it.

Corollary 4.4. Let M be a u.p.-monoid, R be a reduced ring, and
gr(Γ(R[M ])) = 3. Then gr(Γ(R)) = 3.
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