[1] M. Barr. Relational algebras. In Reports of the Midwest Category Seminar, IV, volume 137 of Lect. Notes Math., pages 39–55, Berlin, 1970. Springer.
[2] M.M. Clementino, E. Colebunders, D. Hofmann, R. Lowen, R. Lucyshyn-Wright, G.J. Seal, and W. Tholen. Monoidal Topology: A Categorical Approach to Order, Metric and Topology. Cambridge University Press, Cambridge, 2014.
[3] M.M. Clementino and D. Hofmann. Topological features of lax algebras. Appl. Categ. Structures, 11(3):267–286, 2003.
[4] M.M. Clementino, D. Hofmann, and W. Tholen. One setting for all: Metric, topology, uniformity, approach structure. Appl. Categ. Structures, 12(2):127–154, 2004.
[5] M.M. Clementino and W. Tholen. Metric, topology and multicategory—a common approach. J. Pure Appl. Algebra, 179(1-2):13–47, 2003.
[6] S. Enqvist and J. Sack. A coalgebraic view of characteristic formulas in equational modal fixed point logics. In Coalgebraic methods in computer science, Lecture Notes in Comput. Sci., pages 98–117. Springer, 2014.
[7] R. Lowen and T. Vroegrijk. A new lax algebraic characterization of approach spaces. In Theory and Applications of Proximity, Nearness and Uniformity, volume 22 of Quad. Mat., pages 199–232. Dept. Math., Seconda Univ. Napoli, Caserta, 2008.
[8] J. Marti and Y. Venema. Lax extensions of coalgebra functors. In Coalgebraic methods in computer science, volume 7399 of Lecture Notes in Comput. Sci., pages 150–169. Springer, 2012.
[9] M.C. Pedicchio and W. Tholen. Multiplicative structures over sup-lattices. Arch. Math., 25(1-2):107–114, 1989.
[10] G.J. Seal. A Kleisli-based approach to lax algebras. 17(1):75–89, 2009. Appl. Categ. Structures,
[11] G.J. Seal. Order-adjoint monads and injective objects. J. Pure Appl. Algebra, 214(6):778–796, 2010.