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A note on the first nonzero Fitting ideal
of a module

Somayeh Hadjirezaei

Abstract. Let R be a commutative ring and M be a finitely generated
R-module. Let I(M) be the first nonzero Fitting ideal of M . In this paper
we characterize some modules over Noetherian UFDs, whose first nonzero
Fitting ideal is a prime ideal. We show that if P is a prime ideal and M is
a finitely generated R-module with I(M) = P and T(MP ) ̸= 0, then M is
isomorphic to R/P ⊕ N , for some projective R-module N of constant rank.
Also, we investigate some conditions under which M/T(M) is free.

1 Introduction

Let R be a commutative ring with identity. Given any finitely generated R-
module M , we can associate with M a sequence of ideals of R known as the
Fitting invariants or Fitting ideals of M . The Fitting ideals are named after
H. Fitting who investigated their properties in [5] in 1936. Fitting ideals
can provide us with useful information about the structure of a module. We
will see that in some cases, if we know the Fitting ideals of a module, then
we can determine the structure of the R-module completely. Even when
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this is not the case, the Fitting ideals can still help us to understand some
interesting properties of modules.
For a set {x1, . . . , xn} of generators of M there is an exact sequence

0 // N // Rn φ
//M // 0 , (1.1)

where Rn is a free R-module with basis {e1, . . . , en}, the R-homomorphism
φ is defined by φ(ej) = xj and N is the kernel of φ. Let N be generated by
uλ = a1λe1 + . . . + anλen, with λ in some index set Λ. Assume that A be
the following matrix:  . . . a1λ . . .

...
...

...
. . . anλ . . .

 .

We call A the matrix presentation of M with respect to x1, ..., xn. Let
Fitti(M) be an ideal of R generated by the minors of size n− i of matrix A.
For i ≥ n, Fitti(M) is defined R and for i < 0, Fitti(M) is defined as the
zero ideal. It is known that Fitti(M) is the invariant ideal determined by
M, that is, it is determined uniquely by M and it does not depend on the
choice of the set of generators of M [5]. The ideal Fitti(M) will be called
the i-th Fitting ideal of the module M . It follows from the definition that
Fitti(M) ⊆ Fitti+1(M), for every i. The most important Fitting ideal of
M is the first of the Fitti(M) that is nonzero. We shall denote this Fitting
ideal by I(M).

Fitting ideals are also, used in mathematical physics. M. Einsiedler
and T. Ward showed how the dynamical properties of the system may be
deduced from the Fitting ideals and they proved the entropy and expansive-
ness related with only the first Fitting ideal. This gives an easy computation
instead of computing syzygy modules [4].

D.A. Buchsbaum and D. Eisenbud showed in [2] that if R is a Noetherian
ring, then M is a finitely generated projective R-module of constant rank
if and only if I(M) = R. A lemma of J. Lipman asserts that if R is a
quasilocal ring and M = Rn/N , and I(M) is the jth Fitting ideal of M ,
then I(M) is a regular principal ideal if and only if N is finitely generated
free and M/T(M) is free of rank j [13]. This result was generalized by J.
Ohm [15, Theorem 6.2] and by S. Hadjirezaei [9, Theorem 3.2].
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At this point, a natural question arises: if I(M) is any ideal, for example
a maximal ideal, a prime ideal and a primary ideal, how much can we say
about the structure of M? In [6]- [11] these questions are answered in
some cases. A partial list of important contributors to the theory of Fitting
ideals includes H. Fitting, D. A. Buchsbaum, J. Lipman, C. Huneke, D.
Katz, D. G. Northcott, D. Eisenbud (for references for each author see
[2, 3, 5, 12–14]). Some recent works on Fitting ideals, due to author are [6]-
[11].

An element of R is regular if it is a nonzerodivisor and an ideal of R
is regular if it contains a regular element. Assume that T(M), the torsion
submodule of M , is the submodule of M consisting of all elements of M that
are annihilated by a regular element of R. An R-module M is a torsion
module if M = T(M) and is a torsionfree R-module if T(M) = 0. An
R-module M is called a regular module if I(M) is a regular ideal.

2 Modules whose first nonzero Fitting ideals is prime

Fitting ideals are strong tools to characterize and recognize some properties
of modules.

In [6], the authers characterize all modules over local Noetherian UFDs,
whose first nonzero Fitting ideal is the maximal ideal.

Theorem 2.1. [6, Theorem 2.2] Let (R,P ) be a Noetherian local UFD and
let M be a finitely generated R-module. Then I(M) = P if and only if

(1) If M is torsionfree then M is isomorphic to Rn/⟨(a1, . . . , an)t⟩, where
P = ⟨a1, . . . , an⟩ and n is a positive integer.

(2) If M is not torsionfree then M is isomorphic to Rn⊕R/P , for some
positive integer n.

In the following, we partly generalize this theorem to prime ideals.

Theorem 2.2. Let R be a Noetherian UFD and P be a prime ideal of R.
Let M be a finitely generated R-module with I(M) = P and T(MP ) ̸= 0.
Then M is isomorphic to R/P ⊕ N , for some projective R-module N of
constant rank.

Proof. Assume that P = ⟨a1, a2, ..., ak⟩, for some positive integer k. We
have I(MP ) = PRP . So by [6, Theorem 2.2], since MP is not torsion-
free, MP

∼= RP
PRP

⊕ Rt−1
P , for some positive integer t. Let T(MP ) = ⟨x11 ⟩.
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By [7, Lemma 2.5] Ann(x11 ) = PRP , so
ai
1
x1
1 = 0 and therefore there exist

elements si ∈ R \ P such that aisix1 = 0, for all 1 ≤ i ≤ k. Put s = s1...sk.
Hence P ⊆ Ann(sx1). It is easily seen that Ann(sx1) = P . Replacing x1 by
sx1, we can assume that Ann(x1) = P . Assume that M = ⟨x1, x2, ..., xn⟩,

for some x2, ..., xn ∈ M . Let Rm φ
// Rn ψ

//M // 0 be a free pre-
sentation of M such that (aij) ∈ Mn×m(R) is a matrix presentation of φ.

Therefore Rm
P

φP // Rn
P

ψP //MP
// 0 is a free presentation of MP . On

the other hand, MP
∼= RP

PRP
⊕Rt−1

P , so we have the minimal free presentation

Rk
P

φ′
// Rt

P

ψ′
//MP

// 0 , where

φ′ =


a1 . . . ak
0 . . . 0
...

...
...

0 . . . 0

 .

By [3, Theorem 20.2], φP may be put in the form of φP =

(
φ′ 0 0
0 1 0

)
,

where 1 is the (n − t) × (n − t) identity matrix. So we conclude that
a11, a12, ..., a1m all belong to P . Let r1x1 ∈ ⟨x1⟩ ∩ ⟨x2, ..., xn⟩, then there
exist some r2, ..., rn ∈ R such that r1x1+ · · ·+ rnxn = 0. So (r1, ..., rn)

t is a
linear combination of columns of (aij). Thus r1 ∈ P = Ann(x1). This means
⟨x1⟩∩⟨x2, ..., xn⟩ = 0. Hence M = ⟨x1⟩⊕⟨x2, ..., xn⟩. By [1, Exercise 15], we
have P = P I(⟨x2, ..., xn⟩). Thus there exists an element a ∈ I(⟨x2, ..., xn⟩)
such that (1 + a)P = 0 and since R is a domain, a = −1. Therefore
I(⟨x2, ..., xn⟩) = R and by [2, Lemma 1], ⟨x2, ..., xn⟩ is projective of constant
rank. So M = ⟨x1⟩ ⊕ ⟨x2, ..., xn⟩ ∼= R

P ⊕ N, for some projective module N
of constant rank.

In what follows, Min(R) is the set of all minimal prime ideals of R.

Proposition 2.3. Let R be a ring and let M be a finitely generated regular
R-module such that I(M) has a primary decomposition. Then

√
I(MP ) =

PRP for every minimal prime ideal P of R if and only if
√
I(M) = N(R)

and Min(R) is finite.

Proof. Let
√
I(M)P =

√
I(M)P =

√
I(MP ) = PRP , for every minimal

prime ideal P of R. So
√
I(M) ⊆ N(R). Assume that I(M) =

⋂t
i=1 Ii
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be a reduced primary decomposition of I(M). Let P be an arbitrary and
fixed minimal prime ideal of R. Since

√
I(MP ) =

⋂t
i=1(

√
Ii)P = PRP ,

so there exists some j, 1 ≤ j ≤ t, such that
√

Ij ⊆ P . Since P is a
minimal prime ideal of R and Ij is a primary ideal, hence

√
Ij = P . This

implies that Min(R) has at most t elements. So Min(R) is finite. It is
clear that N(R) ⊆

⋂t
i=1

√
Ii =

√
I(M). Hence

√
I(M) = N(R). Conversely,

let Min(R) = {P1, ..., Ps} and let
√

I(M) = N(R) =
⋂s
i=1 Pi. Since M is

regular, for k = 1, ..., s, we have
√
I(MPk

) =
√
I(M)Pk

= (
⋂s
i=1 Pi)Pk

=
PkRPk

.

3 T(M) splits

Let M = Rn/N be a finitely generated R-module, where N is a submodule
of Rn generated by {aλ;λ ∈ Λ}. Thus A = (aλ)λ∈Λ is a matrix presen-
tation of M . For µ = {j1, ..., jq} ⊆ Λ, Iµ(N) is the ideal generated by
subdeterminants of size q of the matrix (aij : 1 ≤ i ≤ n, j ∈ µ).

A lemma of Lipman asserts that if R is a local ring and M = Rn/N , and
I(M) is the (n − q)th Fitting ideal of M , then I(M) is a regular principal
ideal if and only if N is finitely generated free and M/T(M) is free of rank
n− q [13, Lemma 1].

In [9, Theorem 3.2], the following result is proved.

Theorem 3.1. Let R be a local ring and let N be a submodule of Rn con-
sisting of elements aλ with λ in some index set Λ. Let M ∼= Rn/N and let
I(M) be the i-th Fitting ideal of M . The following conditions are equivalent:

(1) M/T(M) is free of rank i;

(2) Iµ(N) is a principal regular ideal, for some µ = {j1, ..., jn−i} ⊆ Λ.

Now we want to generalize this theorem to global case. First we need
the following Lemmas.

Lemma 3.2. [9, Theorem 2.1] Let M be a regular R-module generated by
elements x1, . . . , xn and let A be the matrix presentation of M with respect
to x1, ..., xn. Then

T(M) = {
n∑
i=1

bixi; rank((b1, . . . , bn)
t|A) = rank(A)}.
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Lemma 3.3. Let M = Rn/N be a finitely generated R-module, where N
is a submodule of Rn generated by {aλ;λ ∈ Λ} and A = (aλ)λ∈Λ be the
matrix presentation of M . Assume that I(M) is the ith Fitting ideal of
M and Iµ(N) is a regular ideal, for some µ = {j1, ..., jn−i} ⊆ Λ. Put

M ′ = Rn/⟨aj1 , ...,ajn−i⟩. Then M
T(M)

∼= M ′

T(M ′) .

Proof. By definition, Iµ(N) is the ideal generated by minors of size n − i
of the matrix

(
aj1 . . . ajn−i

)
. Since Iµ(N) is a regular ideal, the rank

of matrix
(
aj1 . . . ajn−i

)
is n− i. So I(M ′) = Iµ(N) is a regular ideal.

For i = 1, ..., n, assume that xi = ei +N and yi = ei + ⟨aj1 , ...,ajn−i⟩ where
{e1, ..., en} is the standard basis for Rn. Thus, A is the matrix presentation
of M with respect to x1, ..., xn and (aj1 ...ajn−i) is the matrix presentation
of M ′ with respect to y1, ..., yn. Define

f : M/T(M) −→ M ′/T(M ′); f(
n∑
i=1

bixi +T(M)) =
n∑
i=1

biyi +T(M ′).

Since Iµ(N) = I(M ′) is a regular ideal, I(M) contains a regular element. By
Lemma 3.2, if

∑n
i=1 bixi ∈ T(M), then

rank((b1, . . . , bn)
t|A) = rank(A).

Since rank(aj1 . . .ajn−i) = rank(A),

rank((b1, . . . , bn)
t | aj1 . . .ajn−i) = rank(A).

Again by Lemma 3.2,
∑n

i=1 biyi ∈ T(M ′). Hence f is well-defined. The
same argument as above shows that f is injective. So we are done.

Below using Lemma 3.3 and a Theorem of J. Ohm, we give a shorter
proof for [9, Theorem 3.2].

Theorem 3.4. Let R be a ring and let N be a submodule of Rn consisting
of elements aλ with λ in some index set Λ. Let M ∼= Rn/N and let I(M)
be the i-th Fitting ideal of M . The following conditions are equivalent:

(1) M/T(M) is free of rank i;

(2) Iµ(N) is a principal regular ideal, for some µ = {j1, ..., jn−i} ⊆ Λ.
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Proof. (1) ⇒ (2) Similar to the proof of [9, Theorem 3.2].

(2) ⇒ (1) Let Iµ(N) be a regular and principal ideal, for some µ =
{j1, ..., jn−i} ⊆ Λ. Put M ′ = Rn/⟨aj1 , ...,ajn−i⟩. We have I(M ′) = Iµ(N) is

a principal regular ideal, so [15, Theorem 6.2], implies that M ′

T(M ′) is free of

rank i. By Lemma 3.3, M
T(M) is free of rank i.

4 About M/ I(M)M

In this section we obtain the first nonzero Fitting ideal of M/ I(M)M .

Lemma 4.1. Let R be a Noetherian ring and M be an R-module generated
by n elements. Let I be an ideal of R. Then for every i,

Fitti(
M

IM
) = Fitti(M) + I Fitti+1(M) + · · ·+ In−(i+1) Fittn−1(M) + In−i.

Proof. Let I = ⟨a1, . . . , ak⟩. Let A = (aij)n×m be a matrix presentation of
M and Ā be a matrix presentation of M

IM . By [7, Lemma 2.3], we have

Ā =

 a11 . . . a1m a1 . . . 0 a2 . . . 0 ak . . . 0
...

...
...

...
. . .

...
...

. . .
...

...
. . .

...
an1 . . . anm 0 . . . a1 0 . . . a2 0 . . . ak


Thus,

Fitt0(
M

IM
) = Fitt0(M)+I Fitt1(M)+I2 Fitt2(M)+· · ·+In−1 Fittn−1(M)+In.

Similarly for every i, we have

Fitti(
M

IM
) = Fitti(M) + I Fitti+1(M) + · · ·+ In−(i+1) Fittn−1(M) + In−i.

Theorem 4.2. Let R be a Noetherian ring and M be a finitely generated

regular R-module. Let I(M) = Fitti(M). Then I(
M

I(M)M
) = I(M)i+1.
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Proof. We have I(M) = Fitti(M). By Lemma 4.1,

Fitt0(
M

I(M)M
) =

Fitt0(M)+I(M) Fitt1(M)+I(M)2 Fitt2(M)+· · ·+I(M)n−1 Fittn−1(M)+I(M)n

= I(M)i Fitti(M) + · · ·+ I(M)n−1 Fittn−1(M) + I(M)n

= I(M)i+1+I(M)i+1 Fitti+1(M) · · ·+I(M)n−1 Fittn−1(M)+I(M)n = I(M)i+1.

Since I(M) is regular, Fitt0(
M

I(M)M ) = I(M)i+1 ̸= 0, So I( M
I(M)M ) = I(M)i+1.

Lemma 4.3. Let (R,Q) be a local ring and M be an R-module generated
by n elements with I(M) = Fittt(M) ̸= R. Then Fitti(M) ̸= Fittj(M), for
all i ̸= j; i, j = t, ..., n. In fact Fitti(M) ⊆ QFitti+1(M), t ≤ i ≤ n− 1.

Proof. Let (R,Q) be a local ring and F
φ
// G

ψ
//M // 0 be a min-

imal free presentation of M . Assume that (aij) ∈ Mm×n(R) be a matrix

presentation of φ. Since F
φ
// G

ψ
//M // 0 is a minimal free pre-

sentation of M , so aij ∈ Q, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. By definition of
Fitting ideals, we have Fitti(M) ⊆ QFitti+1(M), for t ≤ i ≤ n − 1. So if
Fitti(M) = Fitti+1(M), then Fitti(M) = QFitti(M) and by Nakayama’s
Lemma Fitti(M) = 0, for t ≤ i ≤ n− 1, a contradiction.

Proposition 4.4. Let (R,Q) be a local ring and M be an R-module gener-
ated by a minimal generating set with n elements and I(M) = Fitti(M) =

Q. Then I(
M

QM
) = Qn = (I(M))n.

Proof. By Lemma 4.3, Q ⊆ QFitti+1(M). Since Q is a maximal ideal,
Fitti+1(M) = R. Hence by [3, Proposition 20.6], i + 1 = n. So i = n − 1.
On the other hand we know the cardinals of generating sets of M and M

QM

are the same. As M/QM is an R/Q vector space, M
QM

∼= (RQ)
n. Thus

I( M
QM ) = Qn = (I(M))n, as Theorem 4.2 says.
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