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Characterization of Monoids by
Condition (PWPS) of right acts

Hossein Mohammadzadeh Saany∗ and Zohre Khaki

Abstract. In [8] Valdis Laan introduced Condition (PWP ). Golchin and
Mohammadzadeh in [3] introduced Condition (PWPE), where Condition
(PWP ) implies Condition (PWPE), but the converse is not true in general.
In this paper at first we introduce a generalization of Condition (PWPE),
called Condition (PWPS). Then will give some general properties and a
characterization of monoids for which all right acts satisfy this condition.
Also, we give a characterization of monoids, by comparing this property of
their right acts with some others. Finally, we will give a characterization of
monoid S, for which SI

S , for any non-empty set I and SS×S
S , satisfy Condition

(PWPS).

1 Introduction

For a monoid S, with 1 as its identity, a non-empty set A is called a right S-
act, usually denoted by AS (or simply A), if on which S acts unitarian from
the right, that is, there exists a mapping A×S → A, (a, s) 7→ as, satisfying
the conditions a(st) = (as)t and a1 = a, for all a ∈ A and s, t ∈ S. Let A
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and B be two right S-acts. A mapping f : A→ B is called a homomorphism
of right S-acts or just an S-homomorphism if f(as) = f(a)s, for a ∈ A and
s ∈ S. The set of all S-homomorphisms from A into B is denoted by
Hom(A,B). Also Act-S is the category of right S-acts.

In [8], Condition (PWP ) is defined as the principal weak form of Condi-
tion (P ). In [3], Condition (PWPE) is defined as the weak form of Condition
(PWP ).

In this paper at first we introduce a generalization of Condition (PWPE),
called Condition (PWPS) and will give some general properties, we also
show that Condition (PWPE) implies Condition (PWPS) but the converse
is not true in general. Then, we will give a characterization of monoids S
over which all right S-acts satisfy Condition (PWPS) and also a character-
ization of monoids S for which this condition of right S-acts has some other
properties and vice versa. Finally, we give a characterization of monoid S,
for which SI

S , for any non-empty set I and SS×S
S , satisfy Condition (PWPS).

We refer the reader to [5, 6], for basic definitions and terminologies
relating to semigroups and acts over monoids and to [2, 8, 9], for definitions
and results on flatness which are used here.

2 General Properties

In this section we introduce Condition (PWPS) and give some results on it.

Recall from [3, 6, 8] the following:
The right S-act A satisfies Condition (P ), if for all a, a′ ∈ A, s, s′ ∈ S,

as = a′s′ ⇒ (∃a′′ ∈ A)(∃u, v ∈ S)(a = a′′u, a′ = a′′v and us = vs′).

The right S-act A satisfies Condition (PWP ), if for all a, a′ ∈ A, s ∈ S,

as = a′s⇒ (∃a′′ ∈ A)(∃u, v ∈ S)(a = a′′u, a′ = a′′v and us = vs).

The right S-act A satisfies Condition (PWPE), if for all a, a
′ ∈ A, s ∈ S,

as = a′s⇒ (∃a′′ ∈ A)(∃u, v ∈ S)(∃e, f ∈ E(S))
(ae = a′′ue, a′f = a′′vf, es = s = fs and us = vs).

The right S-act A satisfies Condition (PWPe), if for all a, a
′ ∈ A, e ∈ E(S),
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ae = a′e⇒ (∃a′′ ∈ A)(∃u, v ∈ S)(a = a′′u, a′ = a′′v and ue = ve).

We can easily see that the right S-act A satisfies Condition (PWPE) if and
only if as = a′s, for a, a′ ∈ A, s ∈ S, implies that there exist a′′ ∈ A,
u, v ∈ S and e, f ∈ E(S) such that ae = a′′u, a′f = a′′v, es = s = fs and
us = vs.

Definition 2.1. The right S-act A satisfies Condition (PWPS), if for all
a, a′ ∈ A, s ∈ S,

as = a′s⇒ (∃a′′ ∈ A)(∃u, v, r, r′ ∈ S)
(ar = a′′u, a′r′ = a′′v, rs = s = r′s and us = vs).

Clearly, Condition (PWPE) implies Condition (PWPS) but the converse
is not true in general, see example 2.4.

Theorem 2.2. Let S be a monoid and A be a right S-act. Then:

(1) SS and ΘS satisfy Condition (PWPS).

(2) Condition (PWPE) and Condition (PWPS) are equivalent in idem-
potent monoids.

(3) I is a non-empty set and A =
∏
i∈I

Ai, where Ai, i ∈ I, is right S-act. If

A satisfies Condition (PWPS), then Ai satisfies Condition (PWPS),
for every i ∈ I.

(4) If I is a non-empty set and A =
∐
i∈I

Ai, where Ai, i ∈ I, is right

S-act, then A satisfies Condition (PWPS) if and only if Ai satisfies
Condition (PWPS), for every i ∈ I.

(5) Let {Bi|i ∈ I} be a non-empty family of subacts of A. If for any
i1, i2 ∈ I there exists i0 ∈ I such that Bi1 ∪Bi2 ⊆ Bi0 and Bi0 satisfies
Condition (PWPS), then

⋃
i∈I

Bi as a subact of A satisfies Condition

(PWPS).

(6) Let {Bi|i ∈ I} be a non-empty chain of subacts of A. If every Bi, i ∈ I,
satisfies Condition (PWPS), then

⋃
i∈I

Bi as a subact of A satisfies

Condition (PWPS).
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(7) Any retract of an act satisfying Condition (PWPS) satisfies Condition
(PWPS).

Proof. Parts (1), (2), (3), (4) and (7) are obvious.

(5): Suppose that as = a′s, for a, a′ ∈
⋃
i∈I

Bi and s ∈ S. Then there

exist i1, i2 ∈ I such that a ∈ Bi1 and a′ ∈ Bi2 , and so, by assumption, there
exists i0 ∈ I such that Bi1 ∪Bi2 ⊆ Bi0 and Bi0 satisfies Condition (PWPS).
Therefore

(∃a′′ ∈ Bi0)(∃u, v, r, r′ ∈ S); ar = a′′u, a′r′ = a′′v,
rs = s = r′s, us = vs.

SinceBi0 ⊆
⋃
i∈I

Bi thus a
′′ ∈

⋃
i∈I

Bi, and so
⋃
i∈I

Bi satisfies Condition (PWPS).

(6): is a special case of (5). Let a ∈ Bi1 and a′ ∈ Bi2 . Without lose of
generality, let Bi1 ⊆ Bi2 . Then a, a′ ∈ Bi1 ∪ Bi2 = Bi2 . By assumption,
Bi2 satisfies Condition (PWPS), and so, by (5),

⋃
i∈I

Bi satisfies Condition

(PWPS).

Recall from [6, 8, 10, 11, 15] the following:

An element s of a monoid S is called right cancellable if ts = t′s, for
t, t′ ∈ S, implies t = t′ and monoid S is called right cancellative if every
element s of S is right cancellable. A right S-act A is called torsion free
(TF ) if ac = a′c, for a, a′ ∈ A and right cancellable element c ∈ S, implies
a = a′.

A right S-act A is called principally weakly flat (PWF ) if the functor
A⊗S−, preserves all embeddings of principal left ideals into S. Also, an
element s of a monoid S is called left almost regular if there exist elements
r, r1, ..., rm, s1, ..., sm ∈ S and right cancellable elements c1, ..., cm ∈ S such
that

s1c1 = sr1
s2c2 = s1r2

. . .
smcm = sm−1rm
s = smrs.
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If all elements of S are left almost regular then S is called left almost regular
monoid.

A right S-act A is called GP -flat, if a ⊗ s = a′ ⊗ s in A⊗SS for s ∈
S and a, a′ ∈ A, implies the existence of a natural number n such that
a⊗ sn = a′⊗ sn in A⊗SSs

n. It is obvious that every principally weakly flat
act is GP -flat and it is proved that every GP -flat act is torsion free, but
the converse of both implications are not true in general.

A monoid S is called left PP if every principal left ideal of S is projective,
or equivalently for every s ∈ S there exists an idempotent e of S such that
kerρs = kerρe. It is left PSF if every principal left ideal of S is strongly flat,
as a left S-act. This is equivalent to saying that S is right semi-cancellative,
that is, whenever su = s′u, for s, s′, u ∈ S, there exists r ∈ S such that
u = ru and sr = s′r. Obviously every left PP monoid is left PSF .

An act AS is called strongly torsion free (STF ) if as = bs, for any
a, b ∈ A and any s ∈ S, implies a = b.

Theorem 2.3. Let S be a monoid. Then for a right S-act A the following
statements hold:

(1) (PWP ) ⇒ (PWPE) ⇒ (PWPS) ⇒ PWF .

(2) If S is left PSF , then

(PWPS) ⇔ PWF .

(3) If S is left PP , then

(PWPE) ⇔ (PWPS) ⇔ PWF .

(4) If S is left almost regular, then

(PWPE) ⇔ (PWPS) ⇔ PWF ⇔ GP -flat⇔ TF .

(5) If S is right cancellative, then

STF ⇔ (PWP ) ⇔ (PWPE) ⇔ (PWPS) ⇔ PWF ⇔ GP -
flat⇔ TF .
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Proof. (1): Clearly (PWP ) ⇒ (PWPE) ⇒ (PWPS). Now let A satisfies
Condition (PWPS) and as = a′s for a, a′ ∈ A and s ∈ S then there exist
a′′ ∈ A and u, v, r, r′ ∈ S such that ar = a′′u, a′r′ = a′′v, rs = s = r′s and
us = vs. So

a⊗ s = a⊗ rs = ar ⊗ s = a′′u⊗ s = a′′ ⊗ us = a′′ ⊗ vs = a′′v ⊗ s =
a′r′ ⊗ s = a′ ⊗ r′s = a′ ⊗ s

in AS ⊗ Ss. Thus A is PWF .

(2): Suppose the right S-act A is PWF and let as = a′s for a, a′ ∈ A
and s ∈ S. By assumption, there exist n ∈ N and elements a1, a2, ..., an ∈ A,
s1, ..., sn, t1, ..., tn ∈ S such that

a = a1s1

a1t1 = a2s2 s1s = t1s

a2t2 = a3s3 s2s = t2s

. . . . . .

antn = a′ sns = tns.

Since S is left PSF , s1s = t1s implies the existence of r1 ∈ S such that
r1s = s and s1r1 = t1r1. Also s2s = t2s implies s2r1s = t2r1s, and so,
there exists r2 ∈ S such that r2s = s, s2r1r2 = t2r1r2 then r1r2s = s,
sir1r2 = tir1r2, for i = 1, 2.

Continuing this procedure, there exist r1, r2, ..., rn ∈ S such that r1r2...rns =
s, sir1r2...rn = tir1r2...rn, for 1 ≤ i ≤ n. Let r1r2...rn = r. Thus rs = s and
sir = tir, for 1 ≤ i ≤ n. So ar = a1s1r = a1t1r = a2s2r = ... = ansnr =
antnr = a′r. Let u = v = r = r′ and a′′ = a. So A satisfies Condition
(PWPS).

(3): Suppose S be a left PP monoid. Then by [3, Theorem 2.5], A is
principally weakly flat if and only if A satisfies Condition (PWPE) and by
(1),(3) is true.

(4): Suppose S be a left almost regular monoid. Then by [6, IV, Theorem
6.5] every torsion free right S-act is principally weakly flat. Therefore for
a right S-act A, torsion freeness and principal weak flatness are equivalent.
Also PWF ⇒ GP -flat ⇒ TF then for a right S-act A, we will have,
PWF ⇔ GP -flat ⇔ TF . On the other hand, according to the doual
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of [6, IV, Proposition 1.3] every left almost regular monoid is left PP . So
by (3) for a right S-act A, we will have (PWPE) ⇔ (PWPS) ⇔ PWF .
Thus (4) is obtained.

(5): By (1) and definition, we will have STF ⇒ (PWP ) ⇒ (PWPE) ⇒
(PWPS) ⇒ PWF ⇒ GP -flat ⇒ TF . Since S is a right cancellative
monoid for a right S-act A, we will have STF ⇔ TF . Thus (5) is true.

We recall from [6] that a right ideal K of S satisfies Condition (LU) if
for every k ∈ K there exists l ∈ K such that lk = k.

Example 2.4. Consider the commutative monoid S = {xmi |i ∈ R,m ∈
N} ∪ {1} such that

xmi x
n
j =

{
xnj i < j

xm+n
i i = j.

Let K = {xmi |i ∈ R,m ∈ N}. It is evident that K is an ideal of S. Let
xmi ∈ K and j < i. Then xmj x

m
i = xmi , and so K satisfies Condition (LU).

Hence, by [6, III, Proposition 12.19], A = S
K∐
S is weakly flat and so is

principally weakly flat. Since S is left PSF (refer to [12, Example 1.6]),
according to Theorem 2.3, A satisfies Condition (PWPS), Now, we proceed
to show that A does not satisfy Condition (PWPE). Since

(1, x)xmi = (1, y)xmi

and e = 1 is the only idempotent such that exmi = xmi , there must exist
a′′ ∈ A and u, u′ ∈ S such that (1, x) = a′′u, (1, y) = a′′u′ and uxmi = u′xmi .
Notice that (1, x) = a′′u implies a′′ = (1, x) and u = 1 but there is no
element u′ ∈ S such that (1, y) = (1, x)u′.

3 Characterization of monoids by Condition (PWPS) of right
acts

In this section we give a characterization of monoids by Condition (PWPS)
of right S-acts. Also, we give a characterization of monoids, by comparing
Condition (PWPS) of their acts with some others.

Theorem 3.1. Let S be a left almost regular monoid. Then for a right
S-act A, the following statements are equivalent:
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(1) A satisfies Condition (PWP ).

(2) A satisfies Conditions (PWPE) and (PWPe).

(3) A satisfies Conditions (PWPS) and (PWPe).

(4) A is PWF and satisfies Condition (PWPe).

(5) A is GP -flat and satisfies Condition (PWPe).

(6) A is torsion free and satisfies Condition (PWPe).

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) are obvious.
(6) ⇒ (1): Let as = a′s, for a, a′ ∈ A and s ∈ S. Since S is left

almost regular, there exist elements r, r1, r2, ..., rm, s1, s2, ..., sm ∈ S and
right cancellable elements c1, c2, ..., cm ∈ S such that

s1c1 = sr1
s2c2 = s1r2

. . .
smcm = sm−1rm
s = smrs.

Therefore as1c1 = asr1 = a′sr1 = a′s1c1, and so, by assumption, as1 = a′s1
becuase A is torsion free. Also

as2c2 = as1r2 = a′s1r2 = a′s2c2,

which implies as2 = a′s2. Continuing this procedure asi = a′si, for 1 ≤ i ≤
m. On the other hand s1c1 = sr1 = smrsr1 = smrs1c1 which implies s1 =
smrs1. Continuing this procedure, si = smrsi, for 1 ≤ i ≤ m. Therefore
sm = smrsm, and so, smr, rsm ∈ E(S). Now asm = a′sm implies asmr =
a′smr. Since A satisfies Condition (PWPe), there exist a

′′ ∈ A and u, v ∈ S
such that a = a′′u, a′ = a′′v, usmr = vsmr. Also s = smrs implies us =
usmrs = vsmrs = vs, that is, A satisfies Condition (PWP ).

Now, an equivalent condition for a cyclic S-act satisfying Condition
(PWPS) is given.

Theorem 3.2. Let S be a monoid and ρ be a right congruence on S.
Then the cyclic right S-act S/ρ satisfies Condition (PWPS) if and only
if (xt)ρ(yt), for x, y, t ∈ S, implies the existence of elements u, v, r, r′ ∈ S
such that ut = vt, (xr)ρu, (yr′)ρv and rt = t = r′t.
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Proof. Necessity: Suppose that S/ρ satisfies Condition (PWPS) and let
(xt)ρ(yt), for x, y, t ∈ S. Then [x]ρt = [y]ρt, and so there exist r, r′, w, w1, w2 ∈
S such that rt = t = r′t, [x]ρr = [w]ρw1, [y]ρr

′ = [w]ρw2 and w1t = w2t. If
ww1 = u and ww2 = v then [x]ρr = [1]ρu and [y]ρr

′ = [1]ρv and so, (xr)ρu,
(yr′)ρv and ut = vt.

Sufficiency: Let [x]ρt = [y]ρt, for x, y, t ∈ S. Thus (xt)ρ(yt) and so,
by assumption, there exist u, v, r, r′ ∈ S such that ut = vt, (xr)ρu, (yr′)ρv
and rt = t = r′t. Hence [x]ρr = [1]ρu and [y]ρr

′ = [1]ρv. So S/ρ satisfies
Condition (PWPS).

Corollary 3.3. Let z ∈ S. Then the principal right ideal zS satisfies
Condition (PWPS) if and only if zxt = zyt, for x, y, t ∈ S, implies the
existence of elements u, v, r, r′ ∈ S such that ut = vt, zxr = zu, zyr′ = zv
and rt = t = r′t.

Proof. Since zS ∼= S/kerλz, the result follows from Theorem 3.2 if we put
ρ = kerλz.

Theorem 3.4. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfy Condition (PWPS).

(2) All finitely generated right S-acts satisfy Condition (PWPS).

(3) All cyclic right S-acts satisfy Condition (PWPS).

(4) All monocyclic right S-acts satisfy Condition (PWPS).

(5) All monocyclic right S-acts of the form S/ρ(s, s2), s ∈ S, satisfy Con-
dition (PWPS).

(6) All right Rees factor acts of S satisfy Condition (PWPS).

(7) All right Rees factor acts of S of the form S/sS, s ∈ S, satisfy Con-
dition (PWPS).

(8) S is regular.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) and (3) ⇒ (6) ⇒ (7) are
obvious.

(5) ⇒ (8): All monocyclic right S-acts of the form S/ρ(s, s2), s ∈ S, are
principally weakly flat, by Theorem 2.3(1). Thus by [6, IV, Theorem 6.6],
S is regular.
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(7) ⇒ (8): All right Rees factor acts of the form S/sS, s ∈ S, are
principally weakly flat, by Theorem 2.3(1). Thus by [6, IV, Theorem 6.6],
S is regular.

(8) ⇒ (1): Since S is regular then it is left PP . So by [6, IV, Theorem
6.6] and by Theorem 2.3(3), all right S-acts satisfy Condition (PWPS).

Recall from [10], that a right S-act A satisfies Condition (EP ), if for all
a ∈ A, s, s′ ∈ S,

as = as′ ⇒ (∃a′ ∈ A)(∃u, v ∈ S)(a = a′u = a′v and us = vs′).

It satisfies Condition (E′P ), if for all a ∈ A, s, s′, z ∈ S,

(as = as′, sz = s′z) ⇒ (∃a′ ∈ A)(∃u, v ∈ S)(a = a′u = a′v and us = vs′).

Recall from [3], that a right S-act A satisfies Condition (E), if for all a ∈ A,
s, s′ ∈ S,

as = as′ ⇒ (∃a′ ∈ A)(∃u ∈ S)(a = a′u and us = us′).

It satisfies Condition (E′), if for all a ∈ A, s, s′, z ∈ S,

(as = as′, sz = s′z) ⇒ (∃a′ ∈ A)(∃u ∈ S)(a = a′u and us = us′).

Example 3.5. Condition (E) does not imply Condition (PWPS) in general,

because if S = (N, ·) then AN = N
2N∐

N = (1, x)N∪(1, y)N. Clearly, (1, x)N ∼=
NN ∼= (1, y)N. Since, NN satisfies Condition (E) then subacts (1, x)N and
(1, y)N satisfy Condition (E). So AN = (1, x)N ∪ (1, y)N satisfy Condition
(E). But AN does not satisfy Condition (PWPS), because on the other hand
(1, x)2 = (1, y)2 implies that there exist α ∈ AN and r, r′, u, v ∈ S such that
(1, x)r = αu, (1, y)r′ = αv, r.2 = 2 = r′.2 and u2 = v2. Since r.2 = 2 = r′.2
implies r = r′ = 1 so (1, x) = αu and (1, y) = αv. Now, (1, x) = αu implies
that there exists l ∈ N\2N such that α = (l, x). So (1, y) = αv = (l, x)v,
which is contradiction. So AN does not satisfy Condition (PWPS).

Theorem 3.6. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfy Condition (PWPS).

(2) All right S-acts satisfying Condition (E′P ) satisfy Condition (PWPS).

(3) All right S-acts satisfying Condition (E′) satisfy Condition (PWPS).
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(4) All right S-acts satisfying Condition (EP ) satisfy Condition (PWPS).

(5) All right S-acts satisfying Condition (E) satisfy Condition (PWPS).

(6) S is regular.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) are
obvious.

(5) ⇒ (6): Let s ∈ S. If sS = S, then there exists x ∈ S such that
sx = 1. Thus sxs = s, and so, s is regular. Now let sS ̸= S. Then

A = S
sS∐
S =

{
(l, x)|l ∈ S \ sS

}
∪̇ sS ∪̇

{
(t, y)|t ∈ S \ sS

}
is a right S-act and

B =
{
(l, x)|l ∈ S \ sS

}
∪̇ sS ∼= SS ∼=

{
(t, y)|t ∈ S \ sS

}
∪̇ sS = C.

where B and C are subacts of A. Also, A = B
⋃
C is generated by two

elements (1, x) and (1, y). Since S satisfies Condition (E), B and C satisfy
Condition (E), and so, A satisfies Condition (E). Hence, by assumption, A
satisfies Condition (PWPS). Since (1, x)s = (1, y)s, then there exist a ∈ A
and u, v, r, r′ ∈ S such that (1, x)r = au, (1, y)r′ = av, rs = s = r′s and
us = vs. Now (1, x)r = au and (1, y)r′ = av imply either r ∈ sS or r′ ∈ sS.
If r ∈ sS there exists s′ ∈ S such that r = ss′, and so, s = rs = ss′s. Thus
s is regular. If r′ ∈ sS, then Similarly s is regular. Therefore S is regular.

(6) ⇒ (1): It is obvious, by Theorem 3.4.

If s ∈ S such that sS ̸= S, then, by [6, III, Proposition 12.19], the right

S-act S
sS∐
S is principally weakly flat if and only if sS satisfies Condition

(LU) and this is equivalent to saying that s is regular. On the other hand if S
is regular, then S is left PP , and so, by Theorem 2.3(3) for every right S-act,
Condition (PWPS) is equivalent to principally weakly flat. Hence Theorem
3.6 is true, if we substitute Condition (PWPS) by principally weakly flat.
Moreover, for finitely generated right S-acts and for right S-acts generated
by at most (exactly) two elements Theorem 3.6 is also true.

Theorem 3.7. A right S-act A satisfies Condition (PWPS) if and only
if for a, a′ ∈ A, s ∈ S and homomorphism f : SS → SS, af(s) = a′f(s)
implies that there exist a′′ ∈ A, u, v, r, r′ ∈ S such that f(u) = f(v), f(r) =
f(1) = f(r′) and a⊗ sr = a′′ ⊗ u, a′ ⊗ sr′ = a′′ ⊗ v in A⊗SS.
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Proof. Necessity: Let af(s) = a′f(s), for homomorphism f : SS → SS,
a, a′ ∈ A and s ∈ S. Then, asf(1) = a′sf(1), and so, there exist a′′ ∈ A,
u, v, r, r′ ∈ S such that asr = a′′u, a′sr′ = a′′v, rf(1) = f(1) = r′f(1) and
uf(1) = vf(1). Thus f(r) = f(1) = f(r′) and f(u) = f(v). Now, by [6, II,
Proposition 5.13], asr = a′′u and a′sr′ = a′′v imply a ⊗ sr = a′′ ⊗ u and
a′ ⊗ sr′ = a′′ ⊗ v in A⊗SS, as required.

Sufficiency: Let as = a′s, for a, a′ ∈ A and s ∈ S. Define

f = ρs : SS → SS
x 7→ xs.

It is obvious that f is a homomorphism and af(1) = a′f(1). Thus, by
assumption, there exist a′′ ∈ A, u, v, r, r′ ∈ S such that a ⊗ r = a′′ ⊗ u,
a′ ⊗ r′ = a′′ ⊗ v in A⊗SS, f(u) = f(v) and f(r) = f(1) = f(r′). By [6, II,
Proposition 5.13], a ⊗ r = a′′ ⊗ u and a′ ⊗ r′ = a′′ ⊗ v imply ar = a′′u
and a′r′ = a′′v respectively. Also, f(u) = f(v) implies us = vs and f(r) =
f(1) = f(r′) implies rs = s = r′s, by definition f . Hence A satisfies
Condition (PWPS), as required.

By putting r = r′ = 1 in the above theorem, we have the following
corollary.

Corollary 3.8. A right S-act A satisfies Condition (PWP ) if and only if
for a, a′ ∈ A, s ∈ S and homomorphism f : SS → SS, af(s) = a′f(s),
implies that there exist a′′ ∈ A and u, v ∈ S such that f(u) = f(v) and
a⊗ s = a′′ ⊗ u, a′ ⊗ s = a′′ ⊗ v in A⊗SS.

Theorem 3.9. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfy Condition (PWPS).

(2) All generators in right S-acts satisfy Condition (PWPS).

(3) All finitely generated generators in right S-acts satisfy Condition (PWPS).

(4) All generators generated by at most three elements in right S-acts
satisfy Condition (PWPS).

(5) S × AS satisfies Condition (PWPS), for every generator right S-act
A.

(6) S ×AS satisfies Condition (PWPS), for every finitely generated gen-
erator right S-act A.
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(7) S × AS satisfies Condition (PWPS), for every generator right S-act
A generated by at most three elements.

(8) S ×AS satisfies Condition (PWPS), for every right S-act A.

(9) S×AS satisfies Condition (PWPS), for every finitely generated right
S-act A.

(10) S×AS satisfies Condition (PWPS), for every right S-act A generated
by at most two elements.

(11) A right S-act A satisfies Condition (PWPS), if Hom(AS , SS) ̸= ∅.

(12) A finitely generated right S-act A satisfies Condition (PWPS), if
Hom(AS , SS) ̸= ∅.

(13) A right S-act A generated by at most two elements satisfies Condition
(PWPS), if Hom(AS , SS) ̸= ∅.

(14) S is regular.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4), (5) ⇒ (6) ⇒ (7), (8) ⇒ (9) ⇒
(10), (11) ⇒ (12) ⇒ (13), (1) ⇒ (5) and (1) ⇒ (11) are obvious.

(1) ⇔ (14): It is obvious, by Theorem 3.4.

(2) ⇒ (8): It is obvious that the mapping π : S × AS → SS , where
π(s, a) = s, for a ∈ A and s ∈ S, is an epimorphism in Act-S, and so,
by [6, II, Theorem 3.16], S × AS is a generator. Thus by assumption,
S ×AS satisfies Condition (PWPS).

(10) ⇒ (1): Suppose as = a′s for a, a′ ∈ A and s ∈ S. If BS = aS
⋃
a′S.

It is obvious that BS is a subact of AS and BS is generated by at most
two elements. Then by assumption, right S-act S × BS satisfies Condition
(PWPS). Since, as = a′s implies (1, a)s = (1, a′)s, there exist (w, b) ∈
S×BS , u, v, r, r

′ ∈ S such that (1, a)r = (w, b)u, (1, a′)r′ = (w, b)v, us = vs
and rs = s = r′s. Then ar = bu and a′r′ = bv and so AS satisfies Condition
(PWPS).

(13) ⇒ (2): Suppose A be a generator right S-act, and as = a′s for
a, a′ ∈ A and s ∈ S. Let BS = aS

⋃
a′S. It is obvious that BS is a subact

of AS generated by at most two elements. Since AS is a generator, there
exists an epimorphism π : AS → SS . Obviously π∗ = π|BS

: BS → SS
is a homomorphism, then Hom(BS , SS) ̸= ∅. Thus, by assumption, BS

satisfies Condition (PWPS). Now as = a′s in BS implies that there exist
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a′′ ∈ BS ⊆ AS , u, v, r, r
′ ∈ S such that ar = a′′u, a′r′ = a′′v, us = vs and

rs = s = r′s. Hence, AS satisfies Condition (PWPS), as required.

(7) ⇒ (2): Suppose A be a generator right S-act and as = a′s for
a, a′ ∈ A and s ∈ S. Since AS is a generator there exists an epimorphism
π : AS → SS . Let π(z) = 1. If BS = aS

⋃
a′S

⋃
zS. It is obvious that BS

is a subact of AS which is generated by at most three elements. Obviously
the mapping π∗ = π|BS

: BS → SS is an epimorphism, and so BS is a
generator. Therefore by assumption, right S-act S×BS , satisfies Condition
(PWPS). Now as = a′s in BS implies (1, a)s = (1, a′)s in S × BS and so,
there exist (w, a′′) ∈ S × BS , u, v, r, r

′ ∈ S such that (1, a)r = (w, a′′)u,
(1, a′)r′ = (w, a′′)v, us = vs and rs = s = r′s. Thus ar = a′′u and
a′r′ = a′′v. Hence, AS satisfies Condition (PWPS), as required.

(4) ⇒ (2): Suppose A be a generator right S-act and as = a′s for
a, a′ ∈ A and s ∈ S. Since AS is a generator there exists an epimorphism
π : AS → SS . Let π(z) = 1. If BS = aS

⋃
a′S

⋃
zS, then BS is a subact

of AS generated by at most three elements. It is obvious that the mapping
π∗ = π|BS

: BS → SS is an epimorphism, then BS is a generator, and
so, by assumption, BS satisfies Condition (PWPS). Now as = a′s in BS

implies that there exist a′′ ∈ BS ⊆ AS , u, v, r, r
′ ∈ S such that ar = a′′u,

a′r′ = a′′v, us = vs and rs = s = r′s. Hence, AS satisfies Condition
(PWPS), as required.

A right S-act A is called R-torsion free if for any a, b ∈ A and c ∈ S, c
right cancellable, ac = bc and a R b (R is the Green’s equivalence) imply
that a = b.

Theorem 3.10. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfy Condition (PWPS).

(2) All R-torsion free right S-acts satisfy Condition (PWPS).

(3) All R-torsion free finitely generated right S-acts satisfy Condition
(PWPS).

(4) All R-torsion free right S-acts generated by at most two elements sat-
isfy Condition (PWPS).

(5) All R-torsion free right S-acts generated by exactly two elements sat-
isfy Condition (PWPS).
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(6) S is regular.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) are obvious.

(5) ⇒ (6): Every right S-act satisfies Condition (EP ) is R-torsion free,
by [14, Proposition 1.2]. Therefore by assumption, all right S-acts satisfy-
ing Condition (EP ) generated by exactly two elements satisfies Condition
(PWPS). Since Theorem 3.6, for right S-acts generated by exactly two
elements is true, S is a regular monoid.

(6) ⇒ (1): It is obvious, by Theorem 3.4.

Notation: Cl (Cr) is the set of all left (right) cancellable elements of S.
It is clear that Cl (Cr) is not empty. because 1 ∈ Cl(Cr).

We recall from [6] that a right S-act A is (strongly) faithful if for s, t ∈
S the equality as = at for (some) all a ∈ A implies that s = t. It is
straightforward that every strongly faithful right S-act is faithful, but the
converse is not true in general.

By [1, Lemma 2.10], there exists at least one strongly faithful cyclic right
(left) S-act if and only if SS (SS) is a strongly faithful right (left) S-act,
which it is equivalent to saying that S is a left (right) cancellative monoid.

Lemma 3.11. For any monoid S the following statements are equivalent:

(1) There exists at least one strongly faithful right(left) S-act.

(2) There exists at least one strongly faithful finitely generated right(left)
S-act.

(3) There exists at least one strongly faithful cyclic right(left) S-act.

(4) There exists at least one strongly faithful monocyclic right(left) S-act.

(5) For every s ∈ S, sS(Ss) is a strongly faithful right(left) S-act.

(6) There exists s ∈ S such that sS(Ss) is a strongly faithful right(left)
S-act.

(7) SS(SS) is a strongly faithful right(left) S-act.

(8) For every s ∈ S, sS ⊆ Cl(Ss ⊆ Cr).

(9) There exists s ∈ S such that sS ⊆ Cl(Ss ⊆ Cr).

(10) S is a left(right) cancellative monoid, that is, S = Cl(S = Cr).
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Proof. By [1, Lemma 2.10], it is suffices to show that statements (4) and
(7) are equivalent.

(7) ⇒ (4): Since S/ρ(s, s) = S/∆S
∼= SS ; (s ∈ S), the result is obvious.

(4) ⇒ (7): Suppose there exists at least one strongly faithful monocyclic
right(left) S-act, then there exists at least one strongly faithful right(left)
S-act. Let A be a strongly faithful right(left) S-act, and let ls = lt(sl = tl),
for l, t, s ∈ S. Then for every a ∈ A, als = alt(sla = tla). Since A is
strongly faithful, the last equality implies that s = t. Hence S is a left(right)
cancellative monoid and so the result follows.

Theorem 3.12. For any monoid S the following statements are equivalent:

(1) All strongly faithful right S-acts satisfy Condition (PWPS).

(2) All finitely generated strongly faithful right S-acts satisfy Condition
(PWPS).

(3) All strongly faithful right S-acts generated by at most two elements
satisfy Condition (PWPS).

(4) All strongly faithful right S-acts generated by exactly two elements
satisfy Condition (PWPS).

(5) Either S is not left cancellative or S is regular.

(6) Either S is not left cancellative or S is a group.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.

(4) ⇒ (5): If S is not left cancellative, then we are done proved. Other-
wise, if sS = S, for s ∈ S, then s is regular. Now let sS ̸= S. Then

A = S
sS∐
S =

{
(l, x)|l ∈ S \ sS

}
∪̇ sS ∪̇

{
(t, y)|t ∈ S \ sS

}
is a right S-act and

B =
{
(l, x)|l ∈ S \ sS

}
∪̇ sS ∼= SS ∼=

{
(t, y)|t ∈ S \ sS

}
∪̇ sS = C.

Since S is left cancellative, it is strongly faithful, by Lemma 3.11. Therefore
B and C are strongly faithful as subacts of A. Thus A is strongly faithful,
and so, by assumption, it satisfies Condition (PWPS). Now by the proof
(5) ⇒ (6) of Theorem 3.6, S is regular.
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(5) ⇒ (6): If S is left cancellative, then it is regular. Thus for every
s ∈ S, there exists x ∈ S such that sxs = s, which implies xs = 1. Hence
Ss = S, for every s ∈ S and so S is group.

(6) ⇒ (1): If S is not left cancellative, by Lemma 3.11, we obtain the
result. Otherwise, S is regular because it is group, and so, by Theorem 3.4,
the result is proved.

Using a similar argument as in the proof of above theorem and that SS
is always a faithful right S-act, we have the following theorem.

Theorem 3.13. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfy Condition (PWPS).

(2) All faithful right S-acts satisfy Condition (PWPS).

(3) All finitely generated faithful right S-acts satisfy Condition (PWPS).

(4) All faithful right S-acts generated by at most two elements satisfy Con-
dition (PWPS).

(5) All faithful right S-acts generated by exactly two elements satisfy Con-
dition (PWPS).

(6) S is regular.

For fixed elements u, v ∈ S, a binary relation Pu,v on S can be defined
as follows:

(x, y) ∈ Pu,v ⇔ ux = vy(x, y ∈ S).

For s, t ∈ S, let µs,t = kerλs ∨ kerλt and for any right ideal I of S, let ρI
denote the right Rees congruence on S, i.e., for x, y ∈ S,

(x, y) ∈ ρI ⇔ (x = y ∨ x, y ∈ I).

For x, y ∈ S

L(x, y) = {(a, b) ∈ S × S|ax = by}

is either empty or a subact of S(S × S). Similarly, we define

R(x, y) = {(a, b) ∈ S × S|xa = yb}.
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Therefore Pu,v = R(u, v), for every u, v ∈ S.
Recall from [6] that a right S-act is called cofree if it is isomorphic to

the act XS = {f |f is a mapping from S to X}, where fs is defined by
fs(t) = f(st), for f ∈ XS and s, t ∈ S.

An S-act QS is called injective (Inj), if for any monomorphism ι : AS →
BS and any homomorphism f : AS → QS there exists a homomorphism
f : BS → QS such that f = fι. It is called (fg-) weakly injective ((fg-)WI),
if it is injective relative to all embeddings of (finitely generated) right ideals
into S.

Theorem 3.14. For any monoid S the following statements are equivalent:

(1) All fg-weakly injective right S-acts satisfy Condition (PWPS).

(1) All weakly injective right S-acts satisfy Condition (PWPS).

(2) All injective right S-acts satisfy Condition (PWPS).

(3) All cofree right S-acts satisfy Condition (PWPS).

(4) (∀s ∈ S) (∃u, v, r, r′ ∈ S)(rs = s = r′s ∧ us = vs) and the following
conditions hold:

(i) Pu,v ⊆ Pr,s ◦ kerλs ◦ Ps,r′

(ii) kerλu ⊆ kerλr

(iii) kerλv ⊆ kerλr′.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious, because cofree ⇒
Inj ⇒WI ⇒ fg −WI.

(4) ⇒ (5): Let s ∈ S and S1, S2 be two distinct sets, where |S1| = |S2| =
|S| and α : S → S1, β : S → S2 are bijections. Put X = (S/kerλs) ∪̇ S1 ∪̇
S2, and define the mappings f, g : S → X as follows:

f(x) =

{
[y]kerλs if there exists y ∈ S; x = sy

α(x) if x ∈ S \ sS

g(x) =


[y]kerλs if there exists y ∈ S; x = sy

.

β(x) if x ∈ S \ sS
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If there exist y1, y2 ∈ S, such that sy1 = sy2, then (y1, y2) ∈ kerλs, and so,
[y1]kerλs = [y2]kerλs , that is, f(sy1) = f(sy2). So f is well-defined. Similarly,
g is well-defined. According to our definition of f and g, we clearly have
fs = gs. By assumption, the cofree right S-act XS =

{
h : S → X

}
satisfies

Condition (PWPS), and so, there exist mapping h : S → X, u, v, r, r′ ∈ S
such that fr = hu, gr′ = hv, rs = s = r′s and us = vs. Let (l1, l2) ∈ Pu,v,
for l1, l2 ∈ S, then

f(rl1) = (fr)l1 = (hu)l1 = h(ul1) = h(vl2) = (hv)l2 = (gr′)l2 = g(r′l2).

Thus there exist y1, y2 ∈ S such that rl1 = sy1 and r′l2 = sy2, and so
f(rl1) = [y1]kerλs and g(r′l2) = [y2]kerλs , which imply sy1 = sy2. Also

rl1 = sy1 ⇒ (l1, y1) ∈ Pr,s

sy1 = sy2 ⇒ (y1, y2) ∈ kerλs ⇒ (l1, l2) ∈ Pr,s ◦ kerλs ◦ Ps,r′

sy2 = r′l2 ⇒ (y2, l2) ∈ Ps,r′

that is, Pu,v ⊆ Pr,s ◦ kerλs ◦ Ps,r′ , and so (i) is proved.
Now let (t1, t2) ∈ kerλu, for t1, t2 ∈ S. Then ut1 = ut2 and so

f(rt1) = (fr)t1 = (hu)t1 = h(ut1) = h(ut2) = (hu)t2 = (fr)t2 = f(rt2).

From definition f , we consider two cases as follows:

Case 1. rt1, rt2 ∈ S \ sS, then α(rt1) = α(rt2), which implies (t1, t2) ∈
kerλr.

Case 2. rt1, rt2 ∈ sS then there exist y1, y2 ∈ S such that rt1 = sy1 and
rt2 = sy2. Therefore f(rt1) = f(rt2) implies rt1 = sy1 = sy2 = rt2, that is
(t1, t2) ∈ kerλr. Similarly, (iii) is proved.

(5) ⇒ (1): Suppose that A is a fg-weakly injective right S-act and
as = a′s, for a, a′ ∈ A and s ∈ S. By assumption, there exist u, v, r, r′ ∈ S
such that rs = s = r′s, us = vs and conditions (i), (ii), and (iii) hold.
Define

φ : uS ∪ vS → A

x 7→


arp ∃p ∈ S : x = up

.

a′r′q ∃q ∈ S : x = vq
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First we show that φ is well-defined. If there exist p, q ∈ S such that up = vq,
then (p, q) ∈ Pu,v. By (i), there exist y1, y2 ∈ S such that (p, y1) ∈ Pr,s,
(y1, y2) ∈ kerλs and (y2, q) ∈ Ps,r′ . Thus rp = sy1, sy1 = sy2 and sy2 = r′q.
Therefore arp = asy1 = a′sy1 = a′sy2 = a′r′q. If there exist p1, p2 ∈ S
such that up1 = up2 then (p1, p2) ∈ kerλu, and so by (ii), rp1 = rp2, which
implies arp1 = arp2. If there exist q1, q2 ∈ S such that vq1 = vq2, by
(iii), similar to the pervious case, a′r′q1 = a′r′q2. Thus, φ is well-defined,
and obviously it is a homomorphism. Since, by assumption, A is fg-weakly
injective, there exists a homomorphism ψ : S → A such that ψ|uS∪vS = φ.
Let a′′ = ψ(1). Then

ar = φ(u) = ψ(u) = ψ(1)u = a′′u

,

a′r′ = φ(v) = ψ(v) = ψ(1)v = a′′v

that is, A satisfies Condition (PWPS).

In the following, we give a classification of monoids when Condition
(PWPS) of their acts implies some other flatness properties.

Theorem 3.15. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfying Condition (PWPS) are generator.

(2) All finitely generated right S-acts satisfying Condition (PWPS) are
generator.

(3) All cyclic right S-acts satisfying Condition (PWPS) are generator.

(4) All right Rees factor acts of S satisfying Condition (PWPS) are gen-
erator.

(5) S = {1}.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.

(4) ⇒ (5): ΘS
∼= S/SS satisfies Condition (PWPS), by Theorem 2.2,

and so, by assumption, ΘS
∼= S/SS is generator. Hence there exists an

epimorphism π : ΘS → SS , which implies S = {1}.
(5) ⇒ (1): Since S = {1}, all right S-acts are generator.
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Recall from [2, 4], the following:

A right S-act A is called principally weakly kernel flat (PWKF ) if the
mapping φ is bijective for every pullback diagram P (Ss, Ss, f, f, S), s ∈ S
and it is translation kernel flat (TKF ) if the mapping φ is bijective for every
pullback diagram P (S, S, f, f, S).

A right S-act A satisfies Condition (P ′), if for all a, a′ ∈ A, s, s′, z ∈ S,

(as = a′s′, sz = s′z) ⇒ (∃a′′ ∈ A)(∃u, v ∈ S)(a = a′′u, a′ = a′′v and
us = vs′).

Theorem 3.16. For any monoid S the following statements are equivalent:

(1) S is left PSF and every right S-act satisfying Condition (PWPS) is
PWKF .

(2) S is left PSF and every right S-act satisfying Condition (PWPS) is
TKF .

(3) S is left PSF and every right S-act satisfying Condition (PWPS)
satisfy Condition (PWP ).

(4) S is left PSF and every right S-act satisfying Condition (PWPS)
satisfy Condition (P ′).

(5) S is right cancellative.

Proof. Implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (3) are obvious, since
PWKF ⇒ TKF ⇒ (PWP ) and (P ′) ⇒ (PWP ).

(3) ⇒ (5): Suppose S is not right cancellative. If I = S \ Cr then,
by [7, Lemma 3.12], I is a proper right ideal of monoid S. Let

A = S
I∐
S =

{
(l, x)|l ∈ S \ I

}
∪̇ I ∪̇

{
(t, y)|t ∈ S \ I

}
.

and

B =
{
(l, x)|l ∈ S \ I

}
∪̇ I ∼= SS ∼=

{
(t, y)|t ∈ S \ I

}
∪̇ I = C,

So A = B ∪ C is generated by two elements (1, x) and (1, y). Since S is
left PSF , by [7, Lemma 3.12], I satisfies Condition (LU). Thus, by [6,
III, Proposition 12.19], A is PWF . Also, by Theorem 2.3(2), A satisfies
Condition (PWPS), and so, by assumption A satisfies Condition (PWP ).
Therefore (1, x)i = (1, y)i for i ∈ I, implies that there exist a′′ ∈ A and
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u, v ∈ S such that (1, x) = a′′u, (1, y) = a′′v and ui = vi. But (1, x) = a′′u
and (1, y) = a′′v imply that there exist w1, w2 ∈ S \ I such that a′′ =
(w1, x) = (w2, y), which is a contradiction.

(5) ⇒ (4): Since S is right cancellative, by [4, Theorem 2.2], all torsion
free right S-acts satisfy Condition (P ′), but by Theorem 2.3(1), (PWPS) ⇒
PWF ⇒ TF . Thus all right S-acts satisfying Condition (PWPS) satisfy
Condition (P ′). Also, every right cancellative monoid is left PSF .

(5) ⇒ (1): Since S is right cancellative, by [7, Lemma 3.13] and Theorem
2.3(5), Condition (PWPS) and PWKF are equivalent. Also, every right
cancellative monoid is left PSF .

It is clear that the above theorem is also true for finitely generated right
S-acts and right S-acts generated by at most (exactly) two elements.

We recall from [7] that a right S-act A satisfies Condition (PWPssc) if
for all a, a′ ∈ A, s ∈ S,

as = a′s⇒ (∃r ∈ S)(ar = a′r and rs = s).

Corollary 3.17. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfying Condition (PWPS) are PWKF and satisfy
Condition (PWPssc).

(2) All right S-acts satisfying Condition (PWPS) are TKF and satisfy
Condition (PWPssc).

(3) All right S-acts satisfying Condition (PWPS) satisfy Conditions (PWP )
and (PWPssc).

(4) All right S-acts satisfying Condition (PWPS) satisfy Conditions (P ′)
and (PWPssc).

(5) S is right cancellative.

Proof. Implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (3) are obvious.
(3) ⇒ (5): SS satisfies Condition (PWPS), by Theorem 2.2(1). Thus by

assumption, SS satisfies Condition (PWPssc), and so, S is left PSF . Also,
all right S-acts satisfying Condition (PWPS) satisfy Condition (PWP ).
Thus S is right cancellative, by Theorem 3.16.

(5) ⇒ (4): All right S-acts satisfying Condition (PWPS) satisfy Con-
dition (P ′), by Theorem 3.16. Now let A satisfies Condition (PWPS) and
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as = a′s for a, a′ ∈ A and s ∈ S. Since A satisfies Condition (PWPS), there
exist a′′ ∈ A, u, v, r, r′ ∈ S such that ar = a′′u, a′r′ = a′′v, rs = s = r′s and
us = vs. Since S is right cancellative, r = r′ = 1 and u = v. Hence a = a′,
and so, A satisfies Condition (PWPssc).

(5) ⇒ (1): All right S-acts satisfying Condition (PWPS) are principally
weakly kernel flat, by Theorem 3.16. Also by the proof of (5) ⇒ (4), all
right S-acts satisfying Condition (PWPS) satisfy Condition (PWPssc).

By the proof of Theorem 3.16, we conclude that the above corollary is
true for finitely generated right S-acts and also right S-acts generated by
at most (exactly) two elements.

Theorem 3.18. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfying Condition (PWPS) are (strongly) faithful.

(2) All finitely generated right S-acts satisfying Condition (PWPS) are
(strongly) faithful.

(3) All cyclic right S-acts satisfying Condition (PWPS) are (strongly)
faithful.

(4) All right Rees factor acts of S satisfying Condition (PWPS) are (strongly)
faithful.

(5) S = {1}.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) and (5) ⇒ (1) are obvious.
(4) ⇒ (5): ΘS

∼= S/SS satisfies Condition (PWPS), by Theorem 2.2(1).
Thus, by assumption, it is (strongly) faithful, and so S = {1}.

We recall from [6] that a right S- act A is called divisible if Ac = A, for
any left cancellable element c ∈ S.

Theorem 3.19. For any monoid S the following statements are equivalent:

(1) All right S-acts are divisible.

(2) All right S-acts satisfying Condition (PWPS) are divisible.

(3) All finitely generated right S-acts satisfying Condition (PWPS) are
divisible.
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(4) All cyclic right S-acts satisfying Condition (PWPS) are divisible.

(5) All monocyclic right S-acts satisfying Condition (PWPS), are divisi-
ble.

(6) Sc = S, for every c ∈ Cl.

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) are obvious.

(5) ⇒ (6): The monocyclic right S-act SS ∼= S/∆S = S/ρ(x,x), x ∈ S,
satisfies Condition (PWPS), and so, it is divisible, that is Sc = S, for every
c ∈ Cl.

(6) ⇒ (1): It is obvious, by [6, III, Proposition 2.2].

Theorem 3.20. For any monoid S the following statements are equivalent:

(1) All right S-acts satisfying Condition (PWPS) satisfy Condition (PWPssc).

(2) All finitely generated right S-acts satisfying Condition (PWPS) satisfy
Condition (PWPssc).

(3) All cyclic right S-acts satisfying Condition (PWPS) satisfy Condition
(PWPssc).

(4) All monocyclic right S-acts satisfying Condition (PWPS) satisfy Con-
dition (PWPssc).

(5) S is left PSF .

Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.

(4) ⇒ (5): The monocyclic right S-act SS ∼= S/∆S = S/ρ(x,x), x ∈ S,
satisfies Condition (PWPS), and so, it satisfies Condition (PWPssc). Thus
S is left PSF , by [7, Theorem 2.2].

(5) ⇒ (1): Suppose A satisfies Condition (PWPS). Thus A is PWF ,
by Theorem 2.3(1), and so, A satisfies Condition (PWPssc), by [7, Theorem
2.8].

4 Characterization of monoid S by Condition (PWPS) of S
I
S

and SS×S
S

In this section, we give equivalent conditions that SI
S , for any nonempty set

I and SS×S
S , satisfy Condition (PWPS).
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Recall that for any nonempty set I, SI
S is the product of a family of S

in Act-S.
Recall from [1, 10, 13] following:
The right S-act S×S equipped with the right S-action (s, t)u = (su, tu),

for s, t, u ∈ S is called the diagonal act of S and will be denoted by D(S)
or S2

S .
A monoid S is called left PCP , if all principal left ideals of S satisfy

Condition (P ) or equivalently sz = tz, for s, t, z ∈ S, implies that there
exist u, v ∈ S such that z = uz = vz and su = tv. Note that in some
papers, such as [13], left PCP is denoted by left P (P ).

A monoid S is called weakly left P (P ) if as = bs, xb = yb, for s, x, y, a, b ∈
S, imply the existence of r ∈ S, such that xar = yar and rs = s. It is ob-
vious that left PP ⇒ left PSF ⇒ left PCP and by [13, Proposition 2.2] it
is proved that every left PCP monoid is weakly left P (P ) monoid.

Theorem 4.1. For any monoid S the following statements are equivalent:

(1) S is left PSF .

(2) S is left PCP and Sn
S satisfies Condition (PWPS) for every n ∈ N.

(3) S is weakly left P (P ) and Sn
S satisfies Condition (PWPS) for every

n ∈ N.
(4) S is left PCP and D(S) satisfies Condition (PWPS).

(5) S is weakly left P (P ) and D(S) satisfies Condition (PWPS).

Proof. Implications (2) ⇒ (3) and (4) ⇒ (5) follow from [13, Proposition
2.2].

Implications (2) ⇒ (4) and (3) ⇒ (5) are obvious.
(1) ⇒ (2): Every left PSF monoid is left PCP . Also, Sn

S is principally
weakly flat for every n ∈ N, by [10, Corollary 2.16]. Since S is left PSF ,
Sn
S satisfies Condition (PWPS) for every n ∈ N, by Theorem 2.3(2).
(5) ⇒ (1): S is weakly left P (P ) and D(S) is principally weakly flat, by

Theorem 2.3(1). Hence S is left PSF , by [13, Theorem 2.5].

Theorem 4.2. For any commutative monoid S the following statements
are equivalent:

(1) S is left PSF .
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(2) Sn
S satisfies Condition (PWPS), for every n ∈ N.

(3) D(S) satisfies Condition (PWPS).

Proof. Implication (1) ⇒ (2) is obvious, by Theorem 4.1.
(2) ⇒ (3): It is obvious.
(3) ⇒ (1): D(S) is principally weakly flat, by Theorem 2.3(1), and so,

S is left PSF , by [13, Proposition 3.2].

Theorem 4.3. For any monoid S the following statements are equivalent:

(1) S is left PP .

(2) S is left PSF and [1]kerρs as a submonoid of S, s ∈ S, contains a
right zero.

(3) S is left PCP and [1]kerρs as a submonoid of S, s ∈ S, contains a
right zero.

(4) SI
S satisfies Condition (PWPssc), for any nonempty set I.

(5) SS×S
S satisfies Condition (PWPssc).

(6) S is left PSF and SI
S satisfies Condition (PWPS), for any nonempty

set I.

(7) S is left PCP and SI
S satisfies Condition (PWPS), for any nonempty

set I.

(8) S is weakly left P (P ) and SI
S satisfies Condition (PWPS), for any

nonempty set I.

(9) S is left PSF and SS×S
S satisfies Condition (PWPS).

(10) S is left PCP and SS×S
S satisfies Condition (PWPS).

(11) S is weakly left P (P ) and SS×S
S satisfies Condition (PWPS).

Proof. Implications (1) ⇔ (6), (1) ⇔ (7) and (1) ⇔ (8) are obvious, by [13,
Corollary 2.6] and Theorem 2.3.

Implications (2) ⇒ (3), (9) ⇒ (10), (4) ⇒ (5) and (6) ⇒ (9) are obvious.
(6) ⇒ (4): It is obvious, by Theorem 2.3(2) and [7, Theorem 2.8].
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(5) ⇒ (6): By [7, Theorem 2.8], SS×S
S is PWF , then SI

S is PWF , for any
nonempty set I, by [12, Proposition 2.2]. Now let xs = ys, for x, y, s ∈ S.
Put S × S = I, take i0 ∈ I and define

xi =

{
x i = i0

1 i ̸= i0
yi =

{
y i = i0

1 i ̸= i0

for every i ∈ I. Then (xi)Is = (yi)Is, and so, by assumption, there exists
r ∈ S such that (xi)Ir = (yi)Ir and rs = s. Thus xr = xi0r = yi0r = yr,
that is, S is left PSF , and so, S is left PP , by [13, Corollary 2.6]. Hence
(PWPS) and PWF are equivalent, by Theorem 2.3(2).

(1) ⇒ (2): Clearly left PP implies left PSF and [1]kerρs , s ∈ S, is
a submonoid of S. Since S is left PP , there exists e ∈ E(S) such that
kerρs = kerρe, and so, (1, e) ∈ kerρe = kerρs, which implies e ∈ [1]kerρs .
Let t ∈ [1]kerρs . Then (1, t) ∈ kerρs = kerρe implies te = e, that is, e is a
right zero element in submonoid [1]kerρs .

(3) ⇒ (1): By assumption, for s ∈ S, there exists e ∈ [1]kerρs such
that te = e, for any t ∈ [1]kerρs . Now (l1, l2) ∈ kerρe implies l1e = l2e.
Also e ∈ [1]kerρs implies s = es, and so l1s = l1es = l2es = l2s, that is,
kerρe ⊆ kerρs. Take (x, y) ∈ kerρs which implies xs = ys. Since S is
left PCP , there exist u, v ∈ S such that xu = yv and s = us = vs so
(1, u), (1, v) ∈ kerρs, and so, u, v ∈ [1]kerρs . Therefore ue = e = ve which
implies xue = xe, yve = ye, that is, kerρs ⊆ kerρe. Hence S is left PP , as
required.

(10) ⇒ (11): It is obvious, by [13, Proposition 2.2].

(11) ⇒ (1): By Theorem 2.3(1), SS×S
S is PWF . So SI

S is PWF , by [12,
Proposition 2.2]. Since by assumption, S is weakly left P (P ), S is left PP ,
by [13, Corollary 2.6].

Now investigate the previous theorem for commutative monoid S.

Theorem 4.4. For any commutative monoid S the following statements
are equivalent:

(1) S is left PP .

(2) SI
S satisfies Condition (PWPS), for every nonempty set I.

(3) SS×S
S satisfies Condition (PWPS).
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Proof. Implication (1) ⇒ (2) is obvious, by Theorem 4.3.
(2) ⇒ (3): It is obvious.
(3) ⇒ (1): By Theorem 2.3(1), SS×S

S is PWF , and so, SI
S is PWF ,

by [12, Propositions 2.2]. Hence S is left PP , by [13, Proposition 3.2].
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