Categories and General Algebraic Structures with Applications

In press.

Characterization of Monoids by Condition (PWP_S) of right acts

Hossein Mohammadzadeh Saany* and Zohre Khaki

Abstract. In [8] Valdis Laan introduced Condition (PWP). Golchin and Mohammadzadeh in [3] introduced Condition (PWP_E) , where Condition (PWP) implies Condition (PWP_E) , but the converse is not true in general. In this paper at first we introduce a generalization of Condition (PWP_E) , called Condition (PWP_S) . Then will give some general properties and a characterization of monoids for which all right acts satisfy this condition. Also, we give a characterization of monoids, by comparing this property of their right acts with some others. Finally, we will give a characterization of monoid S, for which S_S^I , for any non-empty set I and $S_S^{S\times S}$, satisfy Condition (PWP_S) .

1 Introduction

For a monoid S, with 1 as its identity, a non-empty set A is called a right Sact, usually denoted by A_S (or simply A), if on which S acts unitarian from the right, that is, there exists a mapping $A \times S \to A$, $(a, s) \mapsto as$, satisfying the conditions a(st) = (as)t and a1 = a, for all $a \in A$ and $s, t \in S$. Let A

^{*} Corresponding author

Keywords: Right S-act, Condition (PWP_S) , left PP monoid.

Mathematics Subject Classification [2010]: 20M30.

Received: 20 February 2024, Accepted: 10 June 2024.

ISSN: Print 2345-5853, Online 2345-5861.

[©] Shahid Beheshti University

and B be two right S-acts. A mapping $f : A \to B$ is called a homomorphism of right S-acts or just an S-homomorphism if f(as) = f(a)s, for $a \in A$ and $s \in S$. The set of all S-homomorphisms from A into B is denoted by Hom(A, B). Also **Act-**S is the category of right S-acts.

In [8], Condition (PWP) is defined as the principal weak form of Condition (P). In [3], Condition (PWP_E) is defined as the weak form of Condition (PWP).

In this paper at first we introduce a generalization of Condition (PWP_E) , called Condition (PWP_S) and will give some general properties, we also show that Condition (PWP_E) implies Condition (PWP_S) but the converse is not true in general. Then, we will give a characterization of monoids Sover which all right S-acts satisfy Condition (PWP_S) and also a characterization of monoids S for which this condition of right S-acts has some other properties and vice versa. Finally, we give a characterization of monoid S, for which S_S^I , for any non-empty set I and $S_S^{S\times S}$, satisfy Condition (PWP_S) .

We refer the reader to [5, 6], for basic definitions and terminologies relating to semigroups and acts over monoids and to [2, 8, 9], for definitions and results on flatness which are used here.

2 General Properties

In this section we introduce Condition (PWP_S) and give some results on it.

Recall from [3, 6, 8] the following:

The right S-act A satisfies Condition (P), if for all $a, a' \in A, s, s' \in S$,

$$as = a's' \Rightarrow (\exists a'' \in A)(\exists u, v \in S)(a = a''u, a' = a''v \text{ and } us = vs').$$

The right S-act A satisfies Condition (PWP), if for all $a, a' \in A, s \in S$,

$$as = a's \Rightarrow (\exists a'' \in A)(\exists u, v \in S)(a = a''u, a' = a''v \text{ and } us = vs).$$

The right S-act A satisfies Condition (PWP_E) , if for all $a, a' \in A, s \in S$,

$$as = a's \Rightarrow (\exists a'' \in A)(\exists u, v \in S)(\exists e, f \in E(S))$$

$$(ae = a''ue, a'f = a''vf, es = s = fs \text{ and } us = vs).$$

The right S-act A satisfies Condition (PWP_e) , if for all $a, a' \in A, e \in E(S)$,

$$ae = a'e \Rightarrow (\exists a'' \in A)(\exists u, v \in S)(a = a''u, a' = a''v \text{ and } ue = ve).$$

We can easily see that the right S-act A satisfies Condition (PWP_E) if and only if as = a's, for $a, a' \in A$, $s \in S$, implies that there exist $a'' \in A$, $u, v \in S$ and $e, f \in E(S)$ such that ae = a''u, a'f = a''v, es = s = fs and us = vs.

Definition 2.1. The right S-act A satisfies Condition (PWP_S) , if for all $a, a' \in A, s \in S$,

$$as = a's \Rightarrow (\exists a'' \in A)(\exists u, v, r, r' \in S)$$
$$(ar = a''u, a'r' = a''v, rs = s = r's \text{ and } us = vs).$$

Clearly, Condition (PWP_E) implies Condition (PWP_S) but the converse is not true in general, see example 2.4.

Theorem 2.2. Let S be a monoid and A be a right S-act. Then:

- (1) S_S and Θ_S satisfy Condition (PWP_S).
- (2) Condition (PWP_E) and Condition (PWP_S) are equivalent in idempotent monoids.
- (3) I is a non-empty set and $A = \prod_{i \in I} A_i$, where A_i , $i \in I$, is right S-act. If A satisfies Condition (PWP_S), then A_i satisfies Condition (PWP_S), for every $i \in I$.
- (4) If I is a non-empty set and $A = \prod_{i \in I} A_i$, where A_i , $i \in I$, is right S-act, then A satisfies Condition (PWP_S) if and only if A_i satisfies Condition (PWP_S), for every $i \in I$.
- (5) Let $\{B_i | i \in I\}$ be a non-empty family of subacts of A. If for any $i_1, i_2 \in I$ there exists $i_0 \in I$ such that $B_{i_1} \cup B_{i_2} \subseteq B_{i_0}$ and B_{i_0} satisfies Condition (PWP_S) , then $\bigcup_{i \in I} B_i$ as a subact of A satisfies Condition (PWP_S) .
- (6) Let {B_i|i ∈ I} be a non-empty chain of subacts of A. If every B_i, i ∈ I, satisfies Condition (PWP_S), then ∪ B_i as a subact of A satisfies Condition (PWP_S).

(7) Any retract of an act satisfying Condition (PWP_S) satisfies Condition (PWP_S) .

Proof. Parts (1), (2), (3), (4) and (7) are obvious.

(5): Suppose that as = a's, for $a, a' \in \bigcup_{i \in I} B_i$ and $s \in S$. Then there exist $i_1, i_2 \in I$ such that $a \in B_{i_1}$ and $a' \in B_{i_2}$, and so, by assumption, there exists $i_0 \in I$ such that $B_{i_1} \cup B_{i_2} \subseteq B_{i_0}$ and B_{i_0} satisfies Condition (PWP_S) . Therefore

$$(\exists a'' \in B_{i_0})(\exists u, v, r, r' \in S); ar = a''u, a'r' = a''v, rs = s = r's, us = vs.$$

Since $B_{i_0} \subseteq \bigcup_{i \in I} B_i$ thus $a'' \in \bigcup_{i \in I} B_i$, and so $\bigcup_{i \in I} B_i$ satisfies Condition (PWP_S) .

(6): is a special case of (5). Let $a \in B_{i_1}$ and $a' \in B_{i_2}$. Without lose of generality, let $B_{i_1} \subseteq B_{i_2}$. Then $a, a' \in B_{i_1} \cup B_{i_2} = B_{i_2}$. By assumption, B_{i_2} satisfies Condition (PWP_S) , and so, by (5), $\bigcup_{i \in I} B_i$ satisfies Condition (PWP_S) .

Recall from [6, 8, 10, 11, 15] the following:

An element s of a monoid S is called right cancellable if ts = t's, for $t, t' \in S$, implies t = t' and monoid S is called right cancellative if every element s of S is right cancellable. A right S-act A is called torsion free (TF) if ac = a'c, for $a, a' \in A$ and right cancellable element $c \in S$, implies a = a'.

A right S-act A is called principally weakly flat (PWF) if the functor $A \otimes_S -$, preserves all embeddings of principal left ideals into S. Also, an element s of a monoid S is called left almost regular if there exist elements $r, r_1, ..., r_m, s_1, ..., s_m \in S$ and right cancellable elements $c_1, ..., c_m \in S$ such that

$$s_1c_1 = sr_1$$

$$s_2c_2 = s_1r_2$$

$$\dots$$

$$s_mc_m = s_{m-1}r_m$$

$$s = s_mrs.$$

If all elements of S are left almost regular then S is called left almost regular monoid.

A right S-act A is called GP-flat, if $a \otimes s = a' \otimes s$ in $A \otimes_S S$ for $s \in S$ and $a, a' \in A$, implies the existence of a natural number n such that $a \otimes s^n = a' \otimes s^n$ in $A \otimes_S S s^n$. It is obvious that every principally weakly flat act is GP-flat and it is proved that every GP-flat act is torsion free, but the converse of both implications are not true in general.

A monoid S is called left PP if every principal left ideal of S is projective, or equivalently for every $s \in S$ there exists an idempotent e of S such that $ker\rho_s = ker\rho_e$. It is left PSF if every principal left ideal of S is strongly flat, as a left S-act. This is equivalent to saying that S is right semi-cancellative, that is, whenever su = s'u, for $s, s', u \in S$, there exists $r \in S$ such that u = ru and sr = s'r. Obviously every left PP monoid is left PSF.

An act A_S is called strongly torsion free (STF) if as = bs, for any $a, b \in A$ and any $s \in S$, implies a = b.

Theorem 2.3. Let S be a monoid. Then for a right S-act A the following statements hold:

- (1) $(PWP) \Rightarrow (PWP_E) \Rightarrow (PWP_S) \Rightarrow PWF.$
- (2) If S is left PSF, then

$$(PWP_S) \Leftrightarrow PWF.$$

(3) If S is left PP, then

$$(PWP_E) \Leftrightarrow (PWP_S) \Leftrightarrow PWF.$$

(4) If S is left almost regular, then

$$(PWP_E) \Leftrightarrow (PWP_S) \Leftrightarrow PWF \Leftrightarrow GP\text{-}flat \Leftrightarrow TF.$$

(5) If S is right cancellative, then

$$STF \Leftrightarrow (PWP) \Leftrightarrow (PWP_E) \Leftrightarrow (PWP_S) \Leftrightarrow PWF \Leftrightarrow GP-$$
$$flat \Leftrightarrow TF.$$

Proof. (1): Clearly $(PWP) \Rightarrow (PWP_E) \Rightarrow (PWP_S)$. Now let A satisfies Condition (PWP_S) and as = a's for $a, a' \in A$ and $s \in S$ then there exist $a'' \in A$ and $u, v, r, r' \in S$ such that ar = a''u, a'r' = a''v, rs = s = r's and us = vs. So

$$a \otimes s = a \otimes rs = ar \otimes s = a''u \otimes s = a'' \otimes us = a'' \otimes vs = a''v \otimes s = a'r' \otimes s = a' \otimes r's = a' \otimes s$$

in $A_S \otimes Ss$. Thus A is PWF.

(2): Suppose the right S-act A is PWF and let as = a's for $a, a' \in A$ and $s \in S$. By assumption, there exist $n \in \mathbb{N}$ and elements $a_1, a_2, ..., a_n \in A$, $s_1, ..., s_n, t_1, ..., t_n \in S$ such that

$$a = a_1 s_1$$

 $a_1 t_1 = a_2 s_2$ $s_1 s = t_1 s$
 $a_2 t_2 = a_3 s_3$ $s_2 s = t_2 s$
... ...
 $a_n t_n = a'$ $s_n s = t_n s.$

Since S is left PSF, $s_1s = t_1s$ implies the existence of $r_1 \in S$ such that $r_1s = s$ and $s_1r_1 = t_1r_1$. Also $s_2s = t_2s$ implies $s_2r_1s = t_2r_1s$, and so, there exists $r_2 \in S$ such that $r_2s = s$, $s_2r_1r_2 = t_2r_1r_2$ then $r_1r_2s = s$, $s_ir_1r_2 = t_ir_1r_2$, for i = 1, 2.

Continuing this procedure, there exist $r_1, r_2, ..., r_n \in S$ such that $r_1r_2...r_ns = s$, $s_ir_1r_2...r_n = t_ir_1r_2...r_n$, for $1 \le i \le n$. Let $r_1r_2...r_n = r$. Thus rs = s and $s_ir = t_ir$, for $1 \le i \le n$. So $ar = a_1s_1r = a_1t_1r = a_2s_2r = ... = a_ns_nr = a_nt_nr = a'r$. Let u = v = r = r' and a'' = a. So A satisfies Condition (PWP_S) .

(3): Suppose S be a left PP monoid. Then by [3, Theorem 2.5], A is principally weakly flat if and only if A satisfies Condition (PWP_E) and by (1),(3) is true.

(4): Suppose S be a left almost regular monoid. Then by [6, IV, Theorem 6.5] every torsion free right S-act is principally weakly flat. Therefore for a right S-act A, torsion freeness and principal weak flatness are equivalent. Also $PWF \Rightarrow GP\text{-}flat \Rightarrow TF$ then for a right S-act A, we will have, $PWF \Leftrightarrow GP\text{-}flat \Leftrightarrow TF$. On the other hand, according to the doual

of [6, IV, Proposition 1.3] every left almost regular monoid is left PP. So by (3) for a right S-act A, we will have $(PWP_E) \Leftrightarrow (PWP_S) \Leftrightarrow PWF$. Thus (4) is obtained.

(5): By (1) and definition, we will have $STF \Rightarrow (PWP) \Rightarrow (PWP_E) \Rightarrow (PWP_S) \Rightarrow PWF \Rightarrow GP-flat \Rightarrow TF$. Since S is a right cancellative monoid for a right S-act A, we will have $STF \Leftrightarrow TF$. Thus (5) is true. \Box

We recall from [6] that a right ideal K of S satisfies Condition (LU) if for every $k \in K$ there exists $l \in K$ such that lk = k.

Example 2.4. Consider the commutative monoid $S = \{x_i^m | i \in \mathbb{R}, m \in \mathbb{N}\} \cup \{1\}$ such that

$$x_i^m x_j^n = \begin{cases} x_j^n & i < j \\ x_i^{m+n} & i = j. \end{cases}$$

Let $K = \{x_i^m | i \in \mathbb{R}, m \in \mathbb{N}\}$. It is evident that K is an ideal of S. Let $x_i^m \in K$ and j < i. Then $x_j^m x_i^m = x_i^m$, and so K satisfies Condition (LU).

Hence, by [6, III, Proposition 12.19], $A = S \coprod S$ is weakly flat and so is principally weakly flat. Since S is left PSF (refer to [12, Example 1.6]), according to Theorem 2.3, A satisfies Condition (PWP_S) , Now, we proceed to show that A does not satisfy Condition (PWP_E) . Since

$$(1,x)x_i^m = (1,y)x_i^m$$

and e = 1 is the only idempotent such that $ex_i^m = x_i^m$, there must exist $a'' \in A$ and $u, u' \in S$ such that (1, x) = a''u, (1, y) = a''u' and $ux_i^m = u'x_i^m$. Notice that (1, x) = a''u implies a'' = (1, x) and u = 1 but there is no element $u' \in S$ such that (1, y) = (1, x)u'.

In this section we give a characterization of monoids by Condition (PWP_S) of right S-acts. Also, we give a characterization of monoids, by comparing Condition (PWP_S) of their acts with some others.

Theorem 3.1. Let S be a left almost regular monoid. Then for a right S-act A, the following statements are equivalent:

- (1) A satisfies Condition (PWP).
- (2) A satisfies Conditions (PWP_E) and (PWP_e) .
- (3) A satisfies Conditions (PWP_S) and (PWP_e) .
- (4) A is PWF and satisfies Condition (PWP_e) .
- (5) A is GP-flat and satisfies Condition (PWP_e) .
- (6) A is torsion free and satisfies Condition (PWP_e) .

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ are obvious.

(6) \Rightarrow (1): Let as = a's, for $a, a' \in A$ and $s \in S$. Since S is left almost regular, there exist elements $r, r_1, r_2, ..., r_m, s_1, s_2, ..., s_m \in S$ and right cancellable elements $c_1, c_2, ..., c_m \in S$ such that

$$s_1c_1 = sr_1$$

$$s_2c_2 = s_1r_2$$

$$\dots$$

$$s_mc_m = s_{m-1}r_m$$

$$s = s_mrs.$$

Therefore $as_1c_1 = asr_1 = a'sr_1 = a's_1c_1$, and so, by assumption, $as_1 = a's_1$ because A is torsion free. Also

$$as_2c_2 = as_1r_2 = a's_1r_2 = a's_2c_2,$$

which implies $as_2 = a's_2$. Continuing this procedure $as_i = a's_i$, for $1 \le i \le m$. On the other hand $s_1c_1 = sr_1 = s_mrsr_1 = s_mrs_1c_1$ which implies $s_1 = s_mrs_1$. Continuing this procedure, $s_i = s_mrs_i$, for $1 \le i \le m$. Therefore $s_m = s_mrs_m$, and so, $s_mr, rs_m \in E(S)$. Now $as_m = a's_m$ implies $as_mr = a's_mr$. Since A satisfies Condition (PWP_e) , there exist $a'' \in A$ and $u, v \in S$ such that a = a''u, a' = a''v, $us_mr = vs_mr$. Also $s = s_mrs$ implies $us = us_mrs = vs_mrs = vs$, that is, A satisfies Condition (PWP).

Now, an equivalent condition for a cyclic S-act satisfying Condition (PWP_S) is given.

Theorem 3.2. Let S be a monoid and ρ be a right congruence on S. Then the cyclic right S-act S/ρ satisfies Condition (PWP_S) if and only if $(xt)\rho(yt)$, for $x, y, t \in S$, implies the existence of elements $u, v, r, r' \in S$ such that ut = vt, $(xr)\rho u$, $(yr')\rho v$ and rt = t = r't. *Proof.* Necessity: Suppose that S/ρ satisfies Condition (PWP_S) and let $(xt)\rho(yt)$, for $x, y, t \in S$. Then $[x]_{\rho}t = [y]_{\rho}t$, and so there exist $r, r', w, w_1, w_2 \in S$ such that rt = t = r't, $[x]_{\rho}r = [w]_{\rho}w_1$, $[y]_{\rho}r' = [w]_{\rho}w_2$ and $w_1t = w_2t$. If $ww_1 = u$ and $ww_2 = v$ then $[x]_{\rho}r = [1]_{\rho}u$ and $[y]_{\rho}r' = [1]_{\rho}v$ and so, $(xr)\rho u$, $(yr')\rho v$ and ut = vt.

Sufficiency: Let $[x]_{\rho}t = [y]_{\rho}t$, for $x, y, t \in S$. Thus $(xt)\rho(yt)$ and so, by assumption, there exist $u, v, r, r' \in S$ such that ut = vt, $(xr)\rho u$, $(yr')\rho v$ and rt = t = r't. Hence $[x]_{\rho}r = [1]_{\rho}u$ and $[y]_{\rho}r' = [1]_{\rho}v$. So S/ρ satisfies Condition (PWP_S) .

Corollary 3.3. Let $z \in S$. Then the principal right ideal zS satisfies Condition (PWP_S) if and only if zxt = zyt, for $x, y, t \in S$, implies the existence of elements $u, v, r, r' \in S$ such that ut = vt, zxr = zu, zyr' = zvand rt = t = r't.

Proof. Since $zS \cong S/ker\lambda_z$, the result follows from Theorem 3.2 if we put $\rho = ker\lambda_z$.

Theorem 3.4. For any monoid S the following statements are equivalent:

- (1) All right S-acts satisfy Condition (PWP_S) .
- (2) All finitely generated right S-acts satisfy Condition (PWP_S) .
- (3) All cyclic right S-acts satisfy Condition (PWP_S) .
- (4) All monocyclic right S-acts satisfy Condition (PWP_S).
- (5) All monocyclic right S-acts of the form $S/\rho(s, s^2)$, $s \in S$, satisfy Condition (PWP_S).
- (6) All right Rees factor acts of S satisfy Condition (PWP_S) .
- (7) All right Rees factor acts of S of the form S/sS, $s \in S$, satisfy Condition (PWP_S) .
- (8) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ and $(3) \Rightarrow (6) \Rightarrow (7)$ are obvious.

 $(5) \Rightarrow (8)$: All monocyclic right S-acts of the form $S/\rho(s, s^2), s \in S$, are principally weakly flat, by Theorem 2.3(1). Thus by [6, IV, Theorem 6.6], S is regular.

 $(7) \Rightarrow (8)$: All right Rees factor acts of the form S/sS, $s \in S$, are principally weakly flat, by Theorem 2.3(1). Thus by [6, IV, Theorem 6.6], S is regular.

 $(8) \Rightarrow (1)$: Since S is regular then it is left PP. So by [6, IV, Theorem 6.6] and by Theorem 2.3(3), all right S-acts satisfy Condition (PWP_S). \Box

Recall from [10], that a right S-act A satisfies Condition (EP), if for all $a \in A, s, s' \in S$,

$$as = as' \Rightarrow (\exists a' \in A)(\exists u, v \in S)(a = a'u = a'v \text{ and } us = vs')$$

It satisfies Condition (E'P), if for all $a \in A$, $s, s', z \in S$,

$$(as = as', sz = s'z) \Rightarrow (\exists a' \in A)(\exists u, v \in S)(a = a'u = a'v \text{ and } us = vs').$$

Recall from [3], that a right S-act A satisfies Condition (E), if for all $a \in A$, $s, s' \in S$,

$$as = as' \Rightarrow (\exists a' \in A)(\exists u \in S)(a = a'u \text{ and } us = us').$$

It satisfies Condition (E'), if for all $a \in A$, $s, s', z \in S$,

$$(as = as', sz = s'z) \Rightarrow (\exists a' \in A)(\exists u \in S)(a = a'u \text{ and } us = us').$$

Example 3.5. Condition (E) does not imply Condition (PWP_S) in general, because if $S = (\mathbb{N}, \cdot)$ then $A_{\mathbb{N}} = \mathbb{N} \coprod^{2\mathbb{N}} \mathbb{N} = (1, x)\mathbb{N} \cup (1, y)\mathbb{N}$. Clearly, $(1, x)\mathbb{N} \cong$ $\mathbb{N}_{\mathbb{N}} \cong (1, y)\mathbb{N}$. Since, $\mathbb{N}_{\mathbb{N}}$ satisfies Condition (E) then subacts $(1, x)\mathbb{N}$ and $(1, y)\mathbb{N}$ satisfy Condition (E). So $A_{\mathbb{N}} = (1, x)\mathbb{N} \cup (1, y)\mathbb{N}$ satisfy Condition (E). But $A_{\mathbb{N}}$ does not satisfy Condition (PWP_S) , because on the other hand (1, x)2 = (1, y)2 implies that there exist $\alpha \in A_{\mathbb{N}}$ and $r, r', u, v \in S$ such that $(1, x)r = \alpha u, (1, y)r' = \alpha v, r.2 = 2 = r'.2$ and u2 = v2. Since r.2 = 2 = r'.2implies r = r' = 1 so $(1, x) = \alpha u$ and $(1, y) = \alpha v$. Now, $(1, x) = \alpha u$ implies that there exists $l \in \mathbb{N} \setminus 2\mathbb{N}$ such that $\alpha = (l, x)$. So $(1, y) = \alpha v = (l, x)v$, which is contradiction. So $A_{\mathbb{N}}$ does not satisfy Condition (PWP_S) .

Theorem 3.6. For any monoid S the following statements are equivalent:

- (1) All right S-acts satisfy Condition (PWP_S) .
- (2) All right S-acts satisfying Condition (E'P) satisfy Condition (PWP_S) .
- (3) All right S-acts satisfying Condition (E') satisfy Condition (PWP_S) .

- (4) All right S-acts satisfying Condition (EP) satisfy Condition (PWP_S) .
- (5) All right S-acts satisfying Condition (E) satisfy Condition (PWP_S).
- (6) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5)$ and $(2) \Rightarrow (4) \Rightarrow (5)$ are obvious.

 $(5) \Rightarrow (6)$: Let $s \in S$. If sS = S, then there exists $x \in S$ such that sx = 1. Thus sxs = s, and so, s is regular. Now let $sS \neq S$. Then

$$A = S \coprod^{sS} S = \{(l, x) | l \in S \setminus sS\} \ \dot{\cup} \ sS \ \dot{\cup} \ \{(t, y) | t \in S \setminus sS\}$$

is a right S-act and

$$B = \{(l,x) | l \in S \setminus sS\} \ \dot{\cup} \ sS \cong S_S \cong \{(t,y) | t \in S \setminus sS\} \ \dot{\cup} \ sS = C.$$

where B and C are subacts of A. Also, $A = B \bigcup C$ is generated by two elements (1, x) and (1, y). Since S satisfies Condition (E), B and C satisfy Condition (E), and so, A satisfies Condition (E). Hence, by assumption, A satisfies Condition (PWP_S). Since (1, x)s = (1, y)s, then there exist $a \in A$ and $u, v, r, r' \in S$ such that (1, x)r = au, (1, y)r' = av, rs = s = r's and us = vs. Now (1, x)r = au and (1, y)r' = av imply either $r \in sS$ or $r' \in sS$. If $r \in sS$ there exists $s' \in S$ such that r = ss', and so, s = rs = ss's. Thus s is regular. If $r' \in sS$, then Similarly s is regular. Therefore S is regular.

 $(6) \Rightarrow (1)$: It is obvious, by Theorem 3.4.

If $s \in S$ such that $sS \neq S$, then, by [6, III, Proposition 12.19], the right S-act $S \coprod^{sS} S$ is principally weakly flat if and only if sS satisfies Condition (LU) and this is equivalent to saying that s is regular. On the other hand if S is regular, then S is left PP, and so, by Theorem 2.3(3) for every right S-act, Condition (PWP_S) is equivalent to principally weakly flat. Hence Theorem 3.6 is true, if we substitute Condition (PWP_S) by principally weakly flat. Moreover, for finitely generated right S-acts and for right S-acts generated by at most (exactly) two elements Theorem 3.6 is also true.

Theorem 3.7. A right S-act A satisfies Condition (PWP_S) if and only if for $a, a' \in A$, $s \in S$ and homomorphism $f : {}_{S}S \to {}_{S}S$, af(s) = a'f(s)implies that there exist $a'' \in A$, $u, v, r, r' \in S$ such that f(u) = f(v), f(r) =f(1) = f(r') and $a \otimes sr = a'' \otimes u$, $a' \otimes sr' = a'' \otimes v$ in $A \otimes_S S$.

Proof. Necessity: Let af(s) = a'f(s), for homomorphism $f : {}_{S}S \to {}_{S}S$, $a, a' \in A$ and $s \in S$. Then, asf(1) = a'sf(1), and so, there exist $a'' \in A$, $u, v, r, r' \in S$ such that asr = a''u, a'sr' = a''v, rf(1) = f(1) = r'f(1) and uf(1) = vf(1). Thus f(r) = f(1) = f(r') and f(u) = f(v). Now, by [6, II, Proposition 5.13], asr = a''u and a'sr' = a''v imply $a \otimes sr = a'' \otimes u$ and $a' \otimes sr' = a'' \otimes v$ in $A \otimes_S S$, as required.

Sufficiency: Let as = a's, for $a, a' \in A$ and $s \in S$. Define

$$f = \rho_s : {}_SS \to {}_SS$$
$$x \mapsto xs.$$

It is obvious that f is a homomorphism and af(1) = a'f(1). Thus, by assumption, there exist $a'' \in A$, $u, v, r, r' \in S$ such that $a \otimes r = a'' \otimes u$, $a' \otimes r' = a'' \otimes v$ in $A \otimes_S S$, f(u) = f(v) and f(r) = f(1) = f(r'). By [6, II, Proposition 5.13], $a \otimes r = a'' \otimes u$ and $a' \otimes r' = a'' \otimes v$ imply ar = a''uand a'r' = a''v respectively. Also, f(u) = f(v) implies us = vs and f(r) =f(1) = f(r') implies rs = s = r's, by definition f. Hence A satisfies Condition (PWP_S) , as required. \Box

By putting r = r' = 1 in the above theorem, we have the following corollary.

Corollary 3.8. A right S-act A satisfies Condition (PWP) if and only if for $a, a' \in A$, $s \in S$ and homomorphism $f : {}_{S}S \to {}_{S}S$, af(s) = a'f(s), implies that there exist $a'' \in A$ and $u, v \in S$ such that f(u) = f(v) and $a \otimes s = a'' \otimes u$, $a' \otimes s = a'' \otimes v$ in $A \otimes_{S}S$.

Theorem 3.9. For any monoid S the following statements are equivalent:

- (1) All right S-acts satisfy Condition (PWP_S) .
- (2) All generators in right S-acts satisfy Condition (PWP_S) .
- (3) All finitely generated generators in right S-acts satisfy Condition (PWP_S) .
- (4) All generators generated by at most three elements in right S-acts satisfy Condition (PWP_S) .
- (5) $S \times A_S$ satisfies Condition (PWP_S), for every generator right S-act A.
- (6) $S \times A_S$ satisfies Condition (PWP_S), for every finitely generated generator right S-act A.

- (7) $S \times A_S$ satisfies Condition (PWP_S), for every generator right S-act A generated by at most three elements.
- (8) $S \times A_S$ satisfies Condition (PWP_S), for every right S-act A.
- (9) $S \times A_S$ satisfies Condition (PWP_S), for every finitely generated right S-act A.
- (10) $S \times A_S$ satisfies Condition (PWP_S), for every right S-act A generated by at most two elements.
- (11) A right S-act A satisfies Condition (PWP_S), if $Hom(A_S, S_S) \neq \emptyset$.
- (12) A finitely generated right S-act A satisfies Condition (PWP_S), if $Hom(A_S, S_S) \neq \emptyset$.
- (13) A right S-act A generated by at most two elements satisfies Condition (PWP_S) , if $Hom(A_S, S_S) \neq \emptyset$.
- (14) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$, $(5) \Rightarrow (6) \Rightarrow (7)$, $(8) \Rightarrow (9) \Rightarrow (10)$, $(11) \Rightarrow (12) \Rightarrow (13)$, $(1) \Rightarrow (5)$ and $(1) \Rightarrow (11)$ are obvious.

(1) \Leftrightarrow (14): It is obvious, by Theorem 3.4.

(2) \Rightarrow (8): It is obvious that the mapping $\pi : S \times A_S \to S_S$, where $\pi(s, a) = s$, for $a \in A$ and $s \in S$, is an epimorphism in Act-S, and so, by [6, II, Theorem 3.16], $S \times A_S$ is a generator. Thus by assumption, $S \times A_S$ satisfies Condition (*PWP*_S).

 $(10) \Rightarrow (1)$: Suppose as = a's for $a, a' \in A$ and $s \in S$. If $B_S = aS \bigcup a'S$. It is obvious that B_S is a subact of A_S and B_S is generated by at most two elements. Then by assumption, right S-act $S \times B_S$ satisfies Condition (PWP_S) . Since, as = a's implies (1, a)s = (1, a')s, there exist $(w, b) \in$ $S \times B_S, u, v, r, r' \in S$ such that (1, a)r = (w, b)u, (1, a')r' = (w, b)v, us = vsand rs = s = r's. Then ar = bu and a'r' = bv and so A_S satisfies Condition (PWP_S) .

 $(13) \Rightarrow (2)$: Suppose A be a generator right S-act, and as = a's for $a, a' \in A$ and $s \in S$. Let $B_S = aS \bigcup a'S$. It is obvious that B_S is a subact of A_S generated by at most two elements. Since A_S is a generator, there exists an epimorphism $\pi : A_S \to S_S$. Obviously $\pi^* = \pi|_{B_S} : B_S \to S_S$ is a homomorphism, then $Hom(B_S, S_S) \neq \emptyset$. Thus, by assumption, B_S satisfies Condition (PWP_S) . Now as = a's in B_S implies that there exist

 $a'' \in B_S \subseteq A_S, u, v, r, r' \in S$ such that ar = a''u, a'r' = a''v, us = vs and rs = s = r's. Hence, A_S satisfies Condition (*PWPs*), as required.

 $(7) \Rightarrow (2)$: Suppose A be a generator right S-act and as = a's for $a, a' \in A$ and $s \in S$. Since A_S is a generator there exists an epimorphism $\pi : A_S \to S_S$. Let $\pi(z) = 1$. If $B_S = aS \bigcup a'S \bigcup zS$. It is obvious that B_S is a subact of A_S which is generated by at most three elements. Obviously the mapping $\pi^* = \pi|_{B_S} : B_S \to S_S$ is an epimorphism, and so B_S is a generator. Therefore by assumption, right S-act $S \times B_S$, satisfies Condition (PWP_S) . Now as = a's in B_S implies (1, a)s = (1, a')s in $S \times B_S$ and so, there exist $(w, a'') \in S \times B_S$, $u, v, r, r' \in S$ such that (1, a)r = (w, a'')u, (1, a')r' = (w, a'')v, us = vs and rs = s = r's. Thus ar = a''u and a'r' = a''v. Hence, A_S satisfies Condition (PWP_S) , as required.

(4) \Rightarrow (2): Suppose A be a generator right S-act and as = a's for $a, a' \in A$ and $s \in S$. Since A_S is a generator there exists an epimorphism $\pi : A_S \to S_S$. Let $\pi(z) = 1$. If $B_S = aS \bigcup a'S \bigcup zS$, then B_S is a subact of A_S generated by at most three elements. It is obvious that the mapping $\pi^* = \pi|_{B_S} : B_S \to S_S$ is an epimorphism, then B_S is a generator, and so, by assumption, B_S satisfies Condition (*PWPs*). Now as = a's in B_S implies that there exist $a'' \in B_S \subseteq A_S$, $u, v, r, r' \in S$ such that ar = a''u, a'r' = a''v, us = vs and rs = s = r's. Hence, A_S satisfies Condition (*PWPs*), as required.

A right S-act A is called \mathfrak{R} -torsion free if for any $a, b \in A$ and $c \in S, c$ right cancellable, ac = bc and $a \mathfrak{R} b$ (\mathfrak{R} is the Green's equivalence) imply that a = b.

Theorem 3.10. For any monoid S the following statements are equivalent:

- (1) All right S-acts satisfy Condition (PWP_S) .
- (2) All \Re -torsion free right S-acts satisfy Condition (PWP_S).
- (3) All \mathfrak{R} -torsion free finitely generated right S-acts satisfy Condition (PWP_S) .
- (4) All R-torsion free right S-acts generated by at most two elements satisfy Condition (PWP_S).
- (5) All \mathfrak{R} -torsion free right S-acts generated by exactly two elements satisfy Condition (PWP_S).

(6) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are obvious.

 $(5) \Rightarrow (6)$: Every right S-act satisfies Condition (EP) is \Re -torsion free, by [14, Proposition 1.2]. Therefore by assumption, all right S-acts satisfying Condition (EP) generated by exactly two elements satisfies Condition (PWP_S) . Since Theorem 3.6, for right S-acts generated by exactly two elements is true, S is a regular monoid.

 $(6) \Rightarrow (1)$: It is obvious, by Theorem 3.4.

Notation: $C_l(C_r)$ is the set of all left (right) cancellable elements of S. It is clear that $C_l(C_r)$ is not empty. because $1 \in C_l(C_r)$.

We recall from [6] that a right S-act A is (strongly) faithful if for $s, t \in S$ the equality as = at for (some) all $a \in A$ implies that s = t. It is straightforward that every strongly faithful right S-act is faithful, but the converse is not true in general.

By [1, Lemma 2.10], there exists at least one strongly faithful cyclic right (left) S-act if and only if S_S ($_SS$) is a strongly faithful right (left) S-act, which it is equivalent to saying that S is a left (right) cancellative monoid.

Lemma 3.11. For any monoid S the following statements are equivalent:

- (1) There exists at least one strongly faithful right(left) S-act.
- (2) There exists at least one strongly faithful finitely generated right(left) S-act.
- (3) There exists at least one strongly faithful cyclic right(left) S-act.
- (4) There exists at least one strongly faithful monocyclic right(left) S-act.
- (5) For every $s \in S$, sS(Ss) is a strongly faithful right(left) S-act.
- (6) There exists $s \in S$ such that sS(Ss) is a strongly faithful right(left) S-act.
- (7) $S_S(S)$ is a strongly faithful right(left) S-act.
- (8) For every $s \in S$, $sS \subseteq C_l(Ss \subseteq C_r)$.
- (9) There exists $s \in S$ such that $sS \subseteq C_l(Ss \subseteq C_r)$.
- (10) S is a left(right) cancellative monoid, that is, $S = C_l(S = C_r)$.

Proof. By [1, Lemma 2.10], it is suffices to show that statements (4) and (7) are equivalent.

(7) \Rightarrow (4): Since $S/\rho(s,s) = S/\Delta_S \cong S_S$; $(s \in S)$, the result is obvious.

 $(4) \Rightarrow (7)$: Suppose there exists at least one strongly faithful monocyclic right(left) S-act, then there exists at least one strongly faithful right(left) S-act. Let A be a strongly faithful right(left) S-act, and let ls = lt(sl = tl), for $l, t, s \in S$. Then for every $a \in A$, als = alt(sla = tla). Since A is strongly faithful, the last equality implies that s = t. Hence S is a left(right) cancellative monoid and so the result follows.

Theorem 3.12. For any monoid S the following statements are equivalent:

- (1) All strongly faithful right S-acts satisfy Condition (PWP_S) .
- (2) All finitely generated strongly faithful right S-acts satisfy Condition (PWP_S).
- (3) All strongly faithful right S-acts generated by at most two elements satisfy Condition (PWP_S) .
- (4) All strongly faithful right S-acts generated by exactly two elements satisfy Condition (PWP_S) .
- (5) Either S is not left cancellative or S is regular.
- (6) Either S is not left cancellative or S is a group.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$: If S is not left cancellative, then we are done proved. Otherwise, if sS = S, for $s \in S$, then s is regular. Now let $sS \neq S$. Then

$$A = S \coprod^{sS} S = \{(l, x) | l \in S \setminus sS\} \stackrel{.}{\cup} sS \stackrel{.}{\cup} \{(t, y) | t \in S \setminus sS\}$$

is a right S-act and

$$B = \{(l, x) | l \in S \setminus sS\} \ \dot{\cup} \ sS \cong S_S \cong \{(t, y) | t \in S \setminus sS\} \ \dot{\cup} \ sS = C.$$

Since S is left cancellative, it is strongly faithful, by Lemma 3.11. Therefore B and C are strongly faithful as subacts of A. Thus A is strongly faithful, and so, by assumption, it satisfies Condition (PWP_S) . Now by the proof $(5) \Rightarrow (6)$ of Theorem 3.6, S is regular.

 $(5) \Rightarrow (6)$: If S is left cancellative, then it is regular. Thus for every $s \in S$, there exists $x \in S$ such that sxs = s, which implies xs = 1. Hence Ss = S, for every $s \in S$ and so S is group.

 $(6) \Rightarrow (1)$: If S is not left cancellative, by Lemma 3.11, we obtain the result. Otherwise, S is regular because it is group, and so, by Theorem 3.4, the result is proved.

Using a similar argument as in the proof of above theorem and that S_S is always a faithful right S-act, we have the following theorem.

Theorem 3.13. For any monoid S the following statements are equivalent:

- (1) All right S-acts satisfy Condition (PWP_S) .
- (2) All faithful right S-acts satisfy Condition (PWP_S) .
- (3) All finitely generated faithful right S-acts satisfy Condition (PWP_S) .
- (4) All faithful right S-acts generated by at most two elements satisfy Condition (PWP_S).
- (5) All faithful right S-acts generated by exactly two elements satisfy Condition (PWP_S).
- (6) S is regular.

For fixed elements $u, v \in S$, a binary relation $P_{u,v}$ on S can be defined as follows:

$$(x,y) \in P_{u,v} \Leftrightarrow ux = vy(x,y \in S).$$

For $s, t \in S$, let $\mu_{s,t} = ker\lambda_s \lor ker\lambda_t$ and for any right ideal I of S, let ρ_I denote the right Rees congruence on S, i.e., for $x, y \in S$,

$$(x,y) \in \rho_I \Leftrightarrow (x = y \lor x, y \in I).$$

For $x, y \in S$

$$L(x,y) = \{(a,b) \in S \times S | ax = by\}$$

is either empty or a subact of $_{S}(S \times S)$. Similarly, we define

$$R(x,y) = \{(a,b) \in S \times S | xa = yb\}.$$

Therefore $P_{u,v} = R(u, v)$, for every $u, v \in S$.

Recall from [6] that a right S-act is called cofree if it is isomorphic to the act $X^S = \{f | f \text{ is a mapping from } S \text{ to } X\}$, where fs is defined by fs(t) = f(st), for $f \in X^S$ and $s, t \in S$.

An S-act Q_S is called injective (Inj), if for any monomorphism $\iota : A_S \to B_S$ and any homomorphism $f : A_S \to Q_S$ there exists a homomorphism $\overline{f} : B_S \to Q_S$ such that $f = \overline{f}\iota$. It is called (fg-) weakly injective ((fg-)WI), if it is injective relative to all embeddings of (finitely generated) right ideals into S.

Theorem 3.14. For any monoid S the following statements are equivalent:

- (1) All fg-weakly injective right S-acts satisfy Condition (PWP_S) .
- (1) All weakly injective right S-acts satisfy Condition (PWP_S) .
- (2) All injective right S-acts satisfy Condition (PWP_S) .
- (3) All cofree right S-acts satisfy Condition (PWP_S) .
- (4) $(\forall s \in S) \ (\exists u, v, r, r' \in S)(rs = s = r's \land us = vs)$ and the following conditions hold:
 - (i) $P_{u,v} \subseteq P_{r,s} \circ ker \lambda_s \circ P_{s,r'}$
 - (ii) $ker\lambda_u \subseteq ker\lambda_r$
 - (iii) $ker\lambda_v \subseteq ker\lambda_{r'}$.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious, because $cofree \Rightarrow Inj \Rightarrow WI \Rightarrow fg - WI$.

(4) \Rightarrow (5): Let $s \in S$ and S_1, S_2 be two distinct sets, where $|S_1| = |S_2| = |S|$ and $\alpha : S \to S_1, \beta : S \to S_2$ are bijections. Put $X = (S/ker\lambda_s) \cup S_1 \cup S_2$, and define the mappings $f, g : S \to X$ as follows:

$$f(x) = \begin{cases} [y]_{ker\lambda_s} & \text{if there exists } y \in S; \ x = sy \\ \alpha(x) & \text{if } x \in S \setminus sS \end{cases}$$

$$g(x) = \begin{cases} [y]_{ker\lambda_s} & \text{if there exists } y \in S; \ x = sy \\ \\ \beta(x) & \text{if } x \in S \setminus sS \end{cases}$$

If there exist $y_1, y_2 \in S$, such that $sy_1 = sy_2$, then $(y_1, y_2) \in ker\lambda_s$, and so, $[y_1]_{ker\lambda_s} = [y_2]_{ker\lambda_s}$, that is, $f(sy_1) = f(sy_2)$. So f is well-defined. Similarly, g is well-defined. According to our definition of f and g, we clearly have fs = gs. By assumption, the cofree right S-act $X^S = \{h : S \to X\}$ satisfies Condition (PWP_S) , and so, there exist mapping $h : S \to X$, $u, v, r, r' \in S$ such that fr = hu, gr' = hv, rs = s = r's and us = vs. Let $(l_1, l_2) \in P_{u,v}$, for $l_1, l_2 \in S$, then

$$f(rl_1) = (fr)l_1 = (hu)l_1 = h(ul_1) = h(vl_2) = (hv)l_2 = (gr')l_2 = g(r'l_2).$$

Thus there exist $y_1, y_2 \in S$ such that $rl_1 = sy_1$ and $r'l_2 = sy_2$, and so $f(rl_1) = [y_1]_{ker\lambda_s}$ and $g(r'l_2) = [y_2]_{ker\lambda_s}$, which imply $sy_1 = sy_2$. Also

$$\begin{aligned} rl_1 &= sy_1 \Rightarrow (l_1, y_1) \in P_{r,s} \\ sy_1 &= sy_2 \Rightarrow (y_1, y_2) \in ker\lambda_s \quad \Rightarrow (l_1, l_2) \in P_{r,s} \circ ker\lambda_s \circ P_{s,r} \\ sy_2 &= r'l_2 \Rightarrow (y_2, l_2) \in P_{s,r'} \end{aligned}$$

that is, $P_{u,v} \subseteq P_{r,s} \circ ker\lambda_s \circ P_{s,r'}$, and so (i) is proved. Now let $(t_1, t_2) \in ker\lambda_u$, for $t_1, t_2 \in S$. Then $ut_1 = ut_2$ and so

$$f(rt_1) = (fr)t_1 = (hu)t_1 = h(ut_1) = h(ut_2) = (hu)t_2 = (fr)t_2 = f(rt_2).$$

From definition f, we consider two cases as follows:

Case 1. $rt_1, rt_2 \in S \setminus sS$, then $\alpha(rt_1) = \alpha(rt_2)$, which implies $(t_1, t_2) \in ker\lambda_r$.

Case 2. $rt_1, rt_2 \in sS$ then there exist $y_1, y_2 \in S$ such that $rt_1 = sy_1$ and $rt_2 = sy_2$. Therefore $f(rt_1) = f(rt_2)$ implies $rt_1 = sy_1 = sy_2 = rt_2$, that is $(t_1, t_2) \in ker\lambda_r$. Similarly, (iii) is proved.

 $(5) \Rightarrow (1)$: Suppose that A is a fg-weakly injective right S-act and as = a's, for $a, a' \in A$ and $s \in S$. By assumption, there exist $u, v, r, r' \in S$ such that rs = s = r's, us = vs and conditions (i), (ii), and (iii) hold. Define

$$\begin{aligned} \varphi : uS \cup vS \to A \\ x \mapsto \begin{cases} arp & \exists p \in S : \ x = up \\ a'r'q & \exists q \in S : \ x = vq \end{cases} \end{aligned}$$

First we show that φ is well-defined. If there exist $p, q \in S$ such that up = vq, then $(p,q) \in P_{u,v}$. By (i), there exist $y_1, y_2 \in S$ such that $(p, y_1) \in P_{r,s}$, $(y_1, y_2) \in ker\lambda_s$ and $(y_2, q) \in P_{s,r'}$. Thus $rp = sy_1$, $sy_1 = sy_2$ and $sy_2 = r'q$. Therefore $arp = asy_1 = a'sy_1 = a'sy_2 = a'r'q$. If there exist $p_1, p_2 \in S$ such that $up_1 = up_2$ then $(p_1, p_2) \in ker\lambda_u$, and so by (ii), $rp_1 = rp_2$, which implies $arp_1 = arp_2$. If there exist $q_1, q_2 \in S$ such that $vq_1 = vq_2$, by (iii), similar to the pervious case, $a'r'q_1 = a'r'q_2$. Thus, φ is well-defined, and obviously it is a homomorphism. Since, by assumption, A is fg-weakly injective, there exists a homomorphism $\psi : S \to A$ such that $\psi|_{uS\cup vS} = \varphi$. Let $a'' = \psi(1)$. Then

$$\begin{cases} ar = \varphi(u) = \psi(u) = \psi(1)u = a''u \\ , \\ a'r' = \varphi(v) = \psi(v) = \psi(1)v = a''v \end{cases}$$

that is, A satisfies Condition (PWP_S) .

In the following, we give a classification of monoids when Condition (PWP_S) of their acts implies some other flatness properties.

Theorem 3.15. For any monoid S the following statements are equivalent:

- (1) All right S-acts satisfying Condition (PWP_S) are generator.
- (2) All finitely generated right S-acts satisfying Condition (PWP_S) are generator.
- (3) All cyclic right S-acts satisfying Condition (PWP_S) are generator.
- (4) All right Rees factor acts of S satisfying Condition (PWP_S) are generator.
- (5) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5): $\Theta_S \cong S/S_S$ satisfies Condition (*PWP_S*), by Theorem 2.2, and so, by assumption, $\Theta_S \cong S/S_S$ is generator. Hence there exists an epimorphism $\pi : \Theta_S \to S_S$, which implies $S = \{1\}$.

 $(5) \Rightarrow (1)$: Since $S = \{1\}$, all right S-acts are generator.

Recall from [2, 4], the following:

A right S-act A is called principally weakly kernel flat (PWKF) if the mapping φ is bijective for every pullback diagram $P(Ss, Ss, f, f, S), s \in S$ and it is translation kernel flat (TKF) if the mapping φ is bijective for every pullback diagram P(S, S, f, f, S).

A right S-act A satisfies Condition (P'), if for all $a, a' \in A, s, s', z \in S$,

$$(as = a's', sz = s'z) \Rightarrow (\exists a'' \in A)(\exists u, v \in S)(a = a''u, a' = a''v \text{ and } us = vs').$$

Theorem 3.16. For any monoid S the following statements are equivalent:

- (1) S is left PSF and every right S-act satisfying Condition (PWP_S) is PWKF.
- (2) S is left PSF and every right S-act satisfying Condition (PWP_S) is TKF.
- (3) S is left PSF and every right S-act satisfying Condition (PWP_S) satisfy Condition (PWP).
- (4) S is left PSF and every right S-act satisfying Condition (PWP_S) satisfy Condition (P').
- (5) S is right cancellative.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (3)$ are obvious, since $PWKF \Rightarrow TKF \Rightarrow (PWP)$ and $(P') \Rightarrow (PWP)$.

(3) \Rightarrow (5): Suppose S is not right cancellative. If $I = S \setminus C_r$ then, by [7, Lemma 3.12], I is a proper right ideal of monoid S. Let

$$A = S \coprod^{I} S = \{(l, x) | l \in S \setminus I\} \ \dot{\cup} \ I \ \dot{\cup} \ \{(t, y) | t \in S \setminus I\}.$$

and

$$B = \left\{ (l, x) | l \in S \setminus I \right\} \ \dot{\cup} \ I \cong S_S \cong \left\{ (t, y) | t \in S \setminus I \right\} \ \dot{\cup} \ I = C,$$

So $A = B \cup C$ is generated by two elements (1, x) and (1, y). Since S is left PSF, by [7, Lemma 3.12], I satisfies Condition (LU). Thus, by [6, III, Proposition 12.19], A is PWF. Also, by Theorem 2.3(2), A satisfies Condition (PWP_S), and so, by assumption A satisfies Condition (PWP). Therefore (1, x)i = (1, y)i for $i \in I$, implies that there exist $a'' \in A$ and $u, v \in S$ such that (1, x) = a''u, (1, y) = a''v and ui = vi. But (1, x) = a''uand (1, y) = a''v imply that there exist $w_1, w_2 \in S \setminus I$ such that $a'' = (w_1, x) = (w_2, y)$, which is a contradiction.

 $(5) \Rightarrow (4)$: Since S is right cancellative, by [4, Theorem 2.2], all torsion free right S-acts satisfy Condition (P'), but by Theorem 2.3(1), $(PWP_S) \Rightarrow$ $PWF \Rightarrow TF$. Thus all right S-acts satisfying Condition (PWP_S) satisfy Condition (P'). Also, every right cancellative monoid is left *PSF*.

 $(5) \Rightarrow (1)$: Since S is right cancellative, by [7, Lemma 3.13] and Theorem 2.3(5), Condition (*PWP_S*) and *PWKF* are equivalent. Also, every right cancellative monoid is left *PSF*.

It is clear that the above theorem is also true for finitely generated right S-acts and right S-acts generated by at most (exactly) two elements.

We recall from [7] that a right S-act A satisfies Condition (PWP_{ssc}) if for all $a, a' \in A, s \in S$,

$$as = a's \Rightarrow (\exists r \in S)(ar = a'r \text{ and } rs = s).$$

Corollary 3.17. For any monoid S the following statements are equivalent:

- All right S-acts satisfying Condition (PWP_S) are PWKF and satisfy Condition (PWP_{ssc}).
- (2) All right S-acts satisfying Condition (PWP_S) are TKF and satisfy Condition (PWP_{ssc}).
- (3) All right S-acts satisfying Condition (PWP_S) satisfy Conditions (PWP) and (PWP_{ssc}).
- (4) All right S-acts satisfying Condition (PWP_S) satisfy Conditions (P') and (PWP_{ssc}).
- (5) S is right cancellative.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (5)$: S_S satisfies Condition (PWP_S), by Theorem 2.2(1). Thus by assumption, S_S satisfies Condition (PWP_{ssc}), and so, S is left PSF. Also, all right S-acts satisfying Condition (PWP_S) satisfy Condition (PWP). Thus S is right cancellative, by Theorem 3.16.

 $(5) \Rightarrow (4)$: All right S-acts satisfying Condition (PWP_S) satisfy Condition (P'), by Theorem 3.16. Now let A satisfies Condition (PWP_S) and

as = a's for $a, a' \in A$ and $s \in S$. Since A satisfies Condition (PWP_S) , there exist $a'' \in A$, $u, v, r, r' \in S$ such that ar = a''u, a'r' = a''v, rs = s = r's and us = vs. Since S is right cancellative, r = r' = 1 and u = v. Hence a = a', and so, A satisfies Condition (PWP_{ssc}) .

 $(5) \Rightarrow (1)$: All right *S*-acts satisfying Condition (PWP_S) are principally weakly kernel flat, by Theorem 3.16. Also by the proof of $(5) \Rightarrow (4)$, all right *S*-acts satisfying Condition (PWP_S) satisfy Condition (PWP_{ssc}) . \Box

By the proof of Theorem 3.16, we conclude that the above corollary is true for finitely generated right S-acts and also right S-acts generated by at most (exactly) two elements.

Theorem 3.18. For any monoid S the following statements are equivalent:

- (1) All right S-acts satisfying Condition (PWP_S) are (strongly) faithful.
- (2) All finitely generated right S-acts satisfying Condition (PWP_S) are (strongly) faithful.
- (3) All cyclic right S-acts satisfying Condition (PWP_S) are (strongly) faithful.
- (4) All right Rees factor acts of S satisfying Condition (PWP_S) are (strongly) faithful.
- (5) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ and $(5) \Rightarrow (1)$ are obvious.

 $(4) \Rightarrow (5): \Theta_S \cong S/S_S$ satisfies Condition (PWP_S) , by Theorem 2.2(1). Thus, by assumption, it is (strongly) faithful, and so $S = \{1\}$.

We recall from [6] that a right S- act A is called divisible if Ac = A, for any left cancellable element $c \in S$.

Theorem 3.19. For any monoid S the following statements are equivalent:

- (1) All right S-acts are divisible.
- (2) All right S-acts satisfying Condition (PWP_S) are divisible.
- (3) All finitely generated right S-acts satisfying Condition (PWP_S) are divisible.

- (4) All cyclic right S-acts satisfying Condition (PWP_S) are divisible.
- (5) All monocyclic right S-acts satisfying Condition (PWP_S), are divisible.
- (6) Sc = S, for every $c \in C_l$.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are obvious.

(5) \Rightarrow (6): The monocyclic right S-act $S_S \cong S/\Delta_S = S/\rho_{(x,x)}, x \in S$, satisfies Condition (PWP_S) , and so, it is divisible, that is Sc = S, for every $c \in C_l$.

 $(6) \Rightarrow (1)$: It is obvious, by [6, III, Proposition 2.2].

Theorem 3.20. For any monoid S the following statements are equivalent:

- (1) All right S-acts satisfying Condition (PWP_S) satisfy Condition (PWP_{ssc}).
- (2) All finitely generated right S-acts satisfying Condition (PWP_S) satisfy Condition (PWP_{ssc}).
- All cyclic right S-acts satisfying Condition (PWP_S) satisfy Condition (PWP_{ssc}).
- (4) All monocyclic right S-acts satisfying Condition (PWP_S) satisfy Condition (PWP_{ssc}).
- (5) S is left PSF.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5): The monocyclic right S-act $S_S \cong S/\Delta_S = S/\rho_{(x,x)}, x \in S$, satisfies Condition (PWP_S) , and so, it satisfies Condition (PWP_{ssc}) . Thus S is left PSF, by [7, Theorem 2.2].

 $(5) \Rightarrow (1)$: Suppose A satisfies Condition (PWP_S) . Thus A is PWF, by Theorem 2.3(1), and so, A satisfies Condition (PWP_{ssc}) , by [7, Theorem 2.8].

$\begin{array}{ll} 4 & Characterization \ of \ monoid \ S \ by \ Condition \ (PWP_S) \ of \ S_S^I \\ & \text{ and } \ S_S^{S \times S} \end{array}$

In this section, we give equivalent conditions that S_S^I , for any nonempty set I and $S_S^{S \times S}$, satisfy Condition (PWP_S) .

Recall that for any nonempty set I, S_S^I is the product of a family of S in Act-S.

Recall from [1, 10, 13] following:

The right S-act $S \times S$ equipped with the right S-action (s, t)u = (su, tu), for $s, t, u \in S$ is called the diagonal act of S and will be denoted by D(S)or S_S^2 .

A monoid S is called left PCP, if all principal left ideals of S satisfy Condition (P) or equivalently sz = tz, for $s, t, z \in S$, implies that there exist $u, v \in S$ such that z = uz = vz and su = tv. Note that in some papers, such as [13], left PCP is denoted by left P(P).

A monoid S is called weakly left P(P) if as = bs, xb = yb, for $s, x, y, a, b \in S$, imply the existence of $r \in S$, such that xar = yar and rs = s. It is obvious that left $PP \Rightarrow$ left $PSF \Rightarrow$ left PCP and by [13, Proposition 2.2] it is proved that every left PCP monoid is weakly left P(P) monoid.

Theorem 4.1. For any monoid S the following statements are equivalent:

- (1) S is left PSF.
- (2) S is left PCP and S_S^n satisfies Condition (PWP_S) for every $n \in \mathbb{N}$.
- (3) S is weakly left P(P) and S_S^n satisfies Condition (PWP_S) for every $n \in \mathbb{N}$.
- (4) S is left PCP and D(S) satisfies Condition (PWP_S).
- (5) S is weakly left P(P) and D(S) satisfies Condition (PWP_S) .

Proof. Implications $(2) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ follow from [13, Proposition 2.2].

Implications $(2) \Rightarrow (4)$ and $(3) \Rightarrow (5)$ are obvious.

 $(1) \Rightarrow (2)$: Every left *PSF* monoid is left *PCP*. Also, S_S^n is principally weakly flat for every $n \in \mathbb{N}$, by [10, Corollary 2.16]. Since *S* is left *PSF*, S_S^n satisfies Condition (*PWP*_S) for every $n \in \mathbb{N}$, by Theorem 2.3(2).

 $(5) \Rightarrow (1)$: S is weakly left P(P) and D(S) is principally weakly flat, by Theorem 2.3(1). Hence S is left PSF, by [13, Theorem 2.5].

Theorem 4.2. For any commutative monoid S the following statements are equivalent:

(1) S is left PSF.

- (2) S_S^n satisfies Condition (PWP_S), for every $n \in \mathbb{N}$.
- (3) D(S) satisfies Condition (PWP_S).
- *Proof.* Implication $(1) \Rightarrow (2)$ is obvious, by Theorem 4.1.

 $(2) \Rightarrow (3)$: It is obvious.

 $(3) \Rightarrow (1)$: D(S) is principally weakly flat, by Theorem 2.3(1), and so, S is left *PSF*, by [13, Proposition 3.2].

Theorem 4.3. For any monoid S the following statements are equivalent:

- (1) S is left PP.
- (2) S is left PSF and $[1]_{ker\rho_s}$ as a submonoid of S, $s \in S$, contains a right zero.
- (3) S is left PCP and $[1]_{ker\rho_s}$ as a submonoid of S, $s \in S$, contains a right zero.
- (4) S_S^I satisfies Condition (PWP_{ssc}), for any nonempty set I.
- (5) $S_S^{S \times S}$ satisfies Condition (PWP_{ssc}).
- (6) S is left PSF and S_S^I satisfies Condition (PWP_S), for any nonempty set I.
- (7) S is left PCP and S_S^I satisfies Condition (PWP_S), for any nonempty set I.
- (8) S is weakly left P(P) and S_S^I satisfies Condition (PWP_S), for any nonempty set I.
- (9) S is left PSF and $S_S^{S \times S}$ satisfies Condition (PWP_S).
- (10) S is left PCP and $S_S^{S \times S}$ satisfies Condition (PWP_S).
- (11) S is weakly left P(P) and $S_S^{S \times S}$ satisfies Condition (PWP_S).

Proof. Implications $(1) \Leftrightarrow (6)$, $(1) \Leftrightarrow (7)$ and $(1) \Leftrightarrow (8)$ are obvious, by [13, Corollary 2.6] and Theorem 2.3.

Implications $(2) \Rightarrow (3)$, $(9) \Rightarrow (10)$, $(4) \Rightarrow (5)$ and $(6) \Rightarrow (9)$ are obvious. (6) \Rightarrow (4): It is obvious, by Theorem 2.3(2) and [7, Theorem 2.8]. $(5) \Rightarrow (6)$: By [7, Theorem 2.8], $S_S^{S \times S}$ is PWF, then S_S^I is PWF, for any nonempty set I, by [12, Proposition 2.2]. Now let xs = ys, for $x, y, s \in S$. Put $S \times S = I$, take $i_0 \in I$ and define

$$x_{i} = \begin{cases} x & i = i_{0} \\ 1 & i \neq i_{0} \end{cases} \qquad \qquad y_{i} = \begin{cases} y & i = i_{0} \\ 1 & i \neq i_{0} \end{cases}$$

for every $i \in I$. Then $(x_i)_I s = (y_i)_I s$, and so, by assumption, there exists $r \in S$ such that $(x_i)_I r = (y_i)_I r$ and rs = s. Thus $xr = x_{i_0}r = y_{i_0}r = yr$, that is, S is left *PSF*, and so, S is left *PP*, by [13, Corollary 2.6]. Hence (PWP_S) and PWF are equivalent, by Theorem 2.3(2).

(1) \Rightarrow (2): Clearly left *PP* implies left *PSF* and $[1]_{ker\rho_s}$, $s \in S$, is a submonoid of *S*. Since *S* is left *PP*, there exists $e \in E(S)$ such that $ker\rho_s = ker\rho_e$, and so, $(1, e) \in ker\rho_e = ker\rho_s$, which implies $e \in [1]_{ker\rho_s}$. Let $t \in [1]_{ker\rho_s}$. Then $(1, t) \in ker\rho_s = ker\rho_e$ implies te = e, that is, *e* is a right zero element in submonoid $[1]_{ker\rho_s}$.

(3) \Rightarrow (1): By assumption, for $s \in S$, there exists $e \in [1]_{ker\rho_s}$ such that te = e, for any $t \in [1]_{ker\rho_s}$. Now $(l_1, l_2) \in ker\rho_e$ implies $l_1e = l_2e$. Also $e \in [1]_{ker\rho_s}$ implies s = es, and so $l_1s = l_1es = l_2es = l_2s$, that is, $ker\rho_e \subseteq ker\rho_s$. Take $(x, y) \in ker\rho_s$ which implies xs = ys. Since S is left PCP, there exist $u, v \in S$ such that xu = yv and s = us = vs so $(1, u), (1, v) \in ker\rho_s$, and so, $u, v \in [1]_{ker\rho_s}$. Therefore ue = e = ve which implies xue = xe, yve = ye, that is, $ker\rho_s \subseteq ker\rho_e$. Hence S is left PP, as required.

 $(10) \Rightarrow (11)$: It is obvious, by [13, Proposition 2.2].

 $(11) \Rightarrow (1)$: By Theorem 2.3(1), $S_S^{S \times S}$ is PWF. So S_S^I is PWF, by [12, Proposition 2.2]. Since by assumption, S is weakly left P(P), S is left PP, by [13, Corollary 2.6].

Now investigate the previous theorem for commutative monoid S.

Theorem 4.4. For any commutative monoid S the following statements are equivalent:

- (1) S is left PP.
- (2) S_S^I satisfies Condition (PWP_S), for every nonempty set I.
- (3) $S_S^{S \times S}$ satisfies Condition (PWP_S).

Proof. Implication $(1) \Rightarrow (2)$ is obvious, by Theorem 4.3.

 $(2) \Rightarrow (3)$: It is obvious.

(3) \Rightarrow (1): By Theorem 2.3(1), $S_S^{S \times S}$ is *PWF*, and so, S_S^I is *PWF*, by [12, Propositions 2.2]. Hence S is left *PP*, by [13, Proposition 3.2]. \Box

Acknowledgement

The authors would like to thank the referees for carefully reading this paper and for their comments.

References

- Arabtash, M., Golchin, A., and Mohammadzadeh, H., On Condition (G-PWP), Categ. Gen. Algebr. Struct. Appl. 5(1) (2016), 55-84.
- [2] Bulman-Fleming, S., Kilp, M., and Laan, V., Pullbacks and flatness properties of acts II, Comm. Algebra 29 (2001), 851-878.
- [3] Golchin, A. and Mohammadzadeh, H., On Condition (PWP_E) , Southeast Asian Bull. Math. 33 (2009), 245-256.
- [4] Golchin, A. and Mohammadzadeh, H., On Condition (P'), Semigroup Forum 86 (2013), 413-430.
- [5] Howie, J.M., "Fundamentals of Semigroup Theory", London Mathematical Society Monographs, 1995.
- [6] Kilp, M., Knauer, U., and Mikhalev, A., "Monoids, Acts and Categories", Walter de Gruyter, 2000.
- [7] Khamechi, P., Mohammadzadeh Saany, H., and Nouri, L., Classification of monoids by Condition (PWP_{ssc}) of right acts, Categ. Gen. Algebr. Struct. Appl. 12(1) (2020), 175-197.
- [8] Laan, V., "Pullbacks and Flatness Properties of Acts", Ph.D. Thesis, University of Tartu, Estonia, 1999.
- [9] Laan, V., Pullbacks and flatness properties of acts I, Comm. Algebra 29(2) (2001), 829-850.
- [10] Nouri, L., Golchin, A., and Mohammadzadeh, H., On properties of product acts over monoids, Comm. Algebra 43(5) (2015), 1854-1876.
- [11] Qiao, H. and Wei, C., On a generalization of principal weak flatness property, Semigroup Forum 85 (2012), 147-159.

- [12] Sedaghatjoo, M., Khosravi, R., and Ershad, M., Principally weakly and weakly coherent monoids, Comm. Algebra 37(12) (2009), 4281-4295.
- [13] Sedaghatjoo, M., Laan, V., and Ershad, M., Principal weak flatness and regularity of diagonal acts, Comm. Algebra 40(11) (2012), 4019-4030.
- [14] Zare, A., Golchin, A., and Mohammadzadeh, H., *R-torsion free acts over monoids*, J. Sci. Islam. Repub. Iran 24(3) (2013), 275-285.
- [15] Zare, A., Golchin, A., and Mohammadzadeh, H., Strongly torsion free acts over monoids, Asian-Eur. J. Math. 6 (2013), 1-22.

Hossein Mohammadzadeh Saany Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran Email: hmsdm@math.usb.ac.ir

Zohre Khaki Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran Email: zoher_khaki@yahoo.com