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Bounded complexes of objects of finite
flat dimensions

Esmaiel Hosseini∗ and Kiyana Izadyar

Abstract. Let (R,⊗) be a symmetric monoidal closed Grothendieck cate-
gory which has enough flat objects. It is shown that a given object G in R has
finite flat dimension if and only if it is quasi-isomorphic to a bounded com-
plex of objects of finite flat dimension. In the case in which R has enough
projective objects, we prove that finite flat dimension in R implies finite
projective dimension if and only if any object in R that is quasi-isomorphic
to a bounded complex of objects of finite flat dimension has finite projective
dimension. This leads to a generalization of [4, Proposition 2.3] and [15, The-
orem]. Moreover, we present a wide class of n-perfect rings.

1 Introduction

Throughout this article, we will assume that (R,⊗) is a symmetric monoidal
closed Grothendieck category, i.e. there exists a bifunctor Hom(-, -) : R×
R −→ R such that for any G ∈ R, we have an adjoint pair (-⊗G,Hom(G, -))
of covariant functors. It is sid that R has enough flat (respectively, projec-
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tive) objects if every object of R is a homomorphic image of a flat (re-
spectively, projective). Assume that R has enough projective objects, then,
finite projective dimension implies finite flat dimension, but the converse
need not be true. Actually, the converse of this statement leads to the
following question.

Question: Assume that R has enough projective objects and
G ∈ R has finite flat dimension. Does G have finite projective
dimension?

The first answer to this question was given by Jensen in the category
of left modules over a ring R. He proved in [14, Proposition 6] that if the
left Big finitistic projective dimension of R is finite, then any left R-module
of finite flat dimension has finite projective dimension. Subsequently, it
was shown by Simson in [17] that if R is a ring of cardinality at most ℵn,
n ≥ 0, then any flat left R-module is of projective dimension at most n+ 1
(see also [18]). Afterwards, Foxby proved in ([3, Corollary 3.4]) that if R
is a homomorphic image of a noetherian commutative Gorenstein ring with
finite Krull dimension then finite flat dimension implies finite projective
dimension. Another answer was provided by Jørgensen who showed that
if R is a right-noetherian k-algebra (k a field) with a dualizing complex,
then finite flat dimension implies finite projective dimension ([15]). Finally,
it was shown in [4] that if R is an n-perfect ring then finite flat dimension
implies finite projective dimension. In this work, we will prove that if

X : 0 // X 0 // X 1 // · · · // X n−1 // X n // 0

is a bounded acyclic complex in R such that for each i ̸= j, X i has finite flat
(respectively, projective) dimension, then, X j has finite flat (respectively,
projective) dimension. Furthermore, if R has enough projective objects and
any flat objet has finite projective dimension, we will show that any object
which is quasi-isomorphic to a bounded complex of objects of finite flat
dimension has finite projective dimension. Consequently, we deduce that
if R has enough projective objects and any flat objet has finite projective
dimension then any object in R which is quasi-isomorphic to a bounded
complexes of flat objects has finite projective dimension. This leads to a
generalization of [4, Proposition 2.3] (see Theorem 3.6).
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Before starting, let us fix some definitions and notation that will be used
in the sequel. Let A be a Grothendieck category. The right orthogonal of a
class X in A is defined by X⊥ := {B ∈ A | Ext1A(X,B) = 0, for all X ∈ X}.
The left orthogonal is defined dually. The cotorsion pair (X,X⊥) has enough
injectives (respectively, projectives) if for any A ∈ A there is an exact
sequence 0 → A → Y′ → X′ → 0 (respectively, 0 → Y′ → X′ → A → 0),
where X′ ∈ X and Y′ ∈ X⊥. The sequence 0 → A → Y′ → X′ → 0
(respectively, 0 → Y′ → X′ → A → 0) is called a special X⊥-preenvelope
(respectively, special X-precover) of A. Moreover, (X,X⊥) is cogenerated by
a set if there is a set Y of objects in X such that Y ⊥ = X⊥. Theorem 2.1
clearly shows the role of cogenerating sets in relative homological algebra.

This paper is organized as follows. Section 2 is devoted to the flat
cotorsion pair in R. The results are applied in Section 3 where we prove
that if

X : 0 // X 0 // X 1 // · · · // X n−1 // X n // 0

is a bounded acyclic complex in R such that for any i ̸= j, X i has finite flat
(respectively, projective) dimension, then, X j has finite flat (respectively,
projective) dimension. A characterization of an n-perfect category will be
discussed in Section 4. Furthermore, for a given ring R, we show that the
ring SR (constructed by Neeman in [16]) is an n-perfect ring if and only if
R is n-perfect.

2 Flat cotorsion pair in symmetric monoidal closed Grothen-
dieck categories

This section is devoted to the flat cotorsion pair in R. Recall that, an
object F in R is said to be flat if F⊗- preserves short exact sequences
in R. Let FlatR be the class of all flat objects in R that is closed under
pure subobjects and directed colimits. An object C ∈ R is said to be
cotorsion if C ∈ FlatR⊥. Let CotR be the class of all cotorsion objects in
R. The cotorsion pair (FlatR,CotR) is known as flat cotorsion pair. Flat
cotorsion pair is a well known pair in relative homological algebra that is
first introduced by Enochs and has played an important role in the proof
of the flat cover conjecture. In this section, we will prove that the flat
cotorsion pair in R is cogenerated by a set. This ensures the existence
of flat covers and cotorsion envelopes in R. In the case in which R has
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enough flat objects, the flat cotorsion pair is complete and hereditary, i.e.
for any short exact sequence 0 // C′ // C // C′′ // 0 in R starting in the
cotorsion object C′, C is cotorsion if and only if C′′ is cotorsion.

Recall that a short exact sequence E in R is called pure if for any
G ∈ R, E ⊗ G remains exact. A subobject G0 of an object G in R is
called pure if the exact sequence 0 // G0

// G // G/G0
// 0 is pure. Recall

from [13, Theorem 2.3] that, an object F in R is flat if and only if any short
exact sequence ending in F is pure. Notice that by [9], this type of flatness
and purity are different from the categorical ones. First, we remind the
following fundamental Theorem from [1].

Theorem 2.1. (Eklof and Trlifaj). Let X be a class of objects in A such
that (X,X⊥) is cogenerated by a set. Then, (X,X⊥) has enough injectives.
In addition, if any object in A is a homomorphic image of an object in X
then (X,X⊥) has enough projectives.

Proof. See [1, Theorem 10].

In the next result, we will see that (FlatR,CotR) has enough injectives,
i.e. any object in R has a special cotorsion preenvelope. Moreover, if R
has enough flat objects, then, we deduce that (FlatR,CotR) is a hereditary
complete cotorsion pair.

Proposition 2.2. The pair (FlatR,CotR) has enough injectives. If R has
enough flat objects, then (FlatR,CotR) has enough projectives.

Proof. Let G be a non-zero flat object in R. By [2, Theorem 3], there are
infinite regular cardinals γ ≤ κ such that any γ-generated subobject of G is
contained in a κ-generated pure subobject of G. So, we can find a non-zero
κ-generated pure subobject G0 of G such that G0,G/G0 are flat objects in R.
Hence, by transfinite induction we can find an ordinal number λ and a con-
tinuous chain {Gα : α < λ} of pure subobjects of G, such that G =

⋃
α<γ Gα

(a direct union) and G0, Gα+1/Gα are κ-generated flat objects. So, if Y is a
representative set of κ-generated flat objects, then C ∈ CotR if and only if
for any G ∈ Y , Ext1R(G, C) = 0. Consequently, (FlatR,CotR) is cogenerated
by Y and so, by Theorem 2.1, for a given object X in R, there is an exact

sequence 0 // X f
// C g

// F // 0 such that C ∈ CotR and F ∈ FlatR.
Furthermore, if each object is a homomorphic image of a flat object, then
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for a given X ∈ R, we have an exact sequence 0 // H // F ′ // X // 0 in

R such that F ′ is flat. Let 0 // H // C // F ′ // 0 be a special cotorsion
preenvelope of H. By the following pushout diagram

0

��

0

��

0 // H //

��

F ′ //

��

X // 0

0 // C //

��

F //

��

X // 0

F ′′

��

F ′′

��

0 0

we obtain an exact sequence 0 // C // F // X // 0 in R where F is flat
and C is cotorsion. So, (FlatR,CotR) has enough projectives.

The above result shows that for a given object G in R, the cotorsion
dimension of G (denoted by cdG) is defined in the usual sense, i.e. cdG
equals to the length of the minimal cotorsion resolution of G. Unfortunately,
we do not know whenever flat covers in R are epimorphisms. So, we can not
talk about minimal flat resolution in the usual way. However, whether this
is the case or not, for a given object X in R, we can construct the complex

· · · // F−2 // F−1 // F0 ϵ // X // 0 (2.1)

such that F0 → X , F−1 → Ker(ϵ) and Fn → Ker(Fn+1 → Fn+2) for
n ≥ −2 are flat covers. In the case in which R has enough flat objects, (2.1)
is called the minimal flat resolution of X . The flat dimension of X (denoted
by fdX ) is defined by the length of (2.1). If R has enough projective objects,
the projective dimension of X is denoted by pdX . Recall that R is n-perfect
(n is a non-negative integer) if for any F ∈ FlatR, cdF ≤ n or equivalently
pdF ≤ n.

Before we proceed, let us fix some notation. Let C(R) be the category of
all complexes (complexes are written cohomologically) in R and Cb(R) its
full subcategory consisting of all bounded complexes. A bounded complex

G : 0 // G0 // · · · // Gi−1
∂i−1
G // Gi

∂i
G// Gi+1 // · · · // Gk // 0
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is called acyclic if for any n ∈ Z, Ker ∂n
G = Im∂n−1

G or equivalently, all
cohomologies are vanish. Let X = (X i, ∂i

X) be a bounded complex in R.
For a given integer n ∈ Z, X[n] denotes the complex X shifted n degrees to
the left. Indeed, X[n] is the following complex

X[n] : 0 // X[n]0 // · · · // X[n]i
∂i
X[n]
//

∂i
X[n]
// X[n]i+1 // · · · // X[n]k // 0

where X[n]i = X n+i and ∂i
X[n] = (−1)n∂i+n

X . A bounded acyclic complex Y
in R is called pure acyclic if for any object G ∈ R, X⊗G is acyclic. A mor-
phism α : A → B of bounded complexes is called a quasi -isomorphism if
the induced morphisms on cohomologies are isomorphisms. Let f : X −→ Y
be a morphism of bounded complexes. The cone of f , denoted by Cone(f),
is defined by the complex (X[1]⊕Y, δ) where

δ =

(
∂X[1] 0

f [1] ∂Y

)
.

It is known that f : X −→ Y is a quasi -isomorphism if and only if Cone(f)
is acyclic.

In the next result, we duplicate the same argument that used in the
proof of [11, Proposition 2.3] and deduce the following proposition.

Proposition 2.3. Let F ∈ R. Then, we have the following equivalent
conditions.

(i) cdF ≤ n.

(ii) There exists an acyclic complex

C : 0 // F ∂−1
// C0 ∂0

// C1 ∂1
// · · · // Cn−1∂

n−1
// Cn // 0

such that for any 0 ≤ k ≤ n, Ck is a special cotorsion preenvelope of
Coker∂k−2.

(iii) If

C′ : 0 // F ∂−1
// C0 ∂0

// C1 ∂1
// · · · // Cn−1∂

n−1
// Cn // · · ·

is an acyclic complex such that for each 0 ≤ k, Ck is a special cotorsion
preenvelope of Coker∂k−2, then Im∂n−1 is cotorsion.
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Corollary 2.4. Assume that any flat object in R has finite cotorsion di-
mension. Then so has any object in R.

Proof. Let X be an object in R. By Proposition 2.2, there exists an exact
sequence 0 // X // C // F // 0 in R such that C is cotorsion and F is
flat. By assumption, F admits a finite minimal cotorsion resolution. So, by
Proposition 2.3, we are done.

Lemma 2.5. Assume that 0 // X // C // C′ // 0 is an exact sequence
in R such that C and C′ are cotorsion. Then, cdX ≤ 1.

Proof. Let 0 // X // C0 // F // 0 be a special cotorsion preenvelope
of X . Then, in the following pushout diagram

0

��

0

��

0 // X //

��

C //

��

C′ // 0

0 // C0 //

��

P j
//

��

C′ // 0,

F
��

F
��

0 0

P is cotorsion and P ∼= C ⊕ F . It follows that F is cotorsion and so by
Proposition 2.3, cdX ≤ 1.

Proposition 2.6. Let 0 // X ′ // X // X ′′ // 0 be an exact sequence
of flat objects in R. Then, there exists a commutative diagram

0

��

0

��

0

��

0 // X ′ //

��

X //

��

X ′′ //

��

0

0 // C′ //

��

C //

��

C′′ //

��

0

0 // F ′ //

��

F //

��

F ′′ //

��

0

0 0 0
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with exact rows and columns such that C′, C, C′′ (respectively, F ′,F ,F ′′) are
cotorsion (respectively, flat) objects in R.

Proof. Let 0 // X ′ g′
// C′ // F ′ // 0 be a special cotorsion preenvelope

of X ′. In the following pushout diagram

0

��

0

��

0 // X ′ //

g′��

X //

h
��

X ′′ // 0

0 // C′ //

��

P j
//

��

X ′′ // 0,

F ′

��

F ′

��

0 0

we have P = C′ ⊕X ′′ because C′ is cotorsion and X ′′ is flat.

Let 0 // X ′′ g′′
// C′′ // F ′′ // 0 be a special cotorsion preenvelope of X ′′.

Then, we have the following commutative diagram

0

��

0

��

0 // C′ // P j
//

t��

X ′′ //

g′′��

0

0 // C′ // C′ ⊕ C′′ //

��

C′′ //

��

0

F ′′

��

F ′′

��

0 0

where t = idC′ ⊕ g′′. Therefore, we deduce the following commutative dia-
gram with exact rows and columns
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0

��

0

��

0

��

0 // X ′ //

g′��

X //

g
��

X ′′ //

g′′��

0

0 // C′ //

��

C′ ⊕ C′′ //

��

C′′ //

��

0

0 // F ′ //

��

F //

��

F ′′ //

��

0

0 0 0

such that g = t ◦ h and F ′,F ′′ are flat objects. Consequently, F is flat and
hence the proof completes.

Lemma 2.7. Assume that R has enough flat objects and K ∈ R is cotor-
sion. Then the cohomological functor ExtiR(−,K) vanishes over flat objects
for all i > 0.

Proof. It is a direct consequence of [12, Lemma 3.7].

Lemma 2.8. Assume that R has enough flat objects and

0 // C′ // C // C′′ // 0

is an exact sequence in R starting in a cotorsion object C′. Then C is
cotorsion if and only if so is C′′.

Proof. Let K be a cotorsion object. By Lemma 2.7, the cohomology functors
ExtiR(−,K) vanish over flat objects, for all i > 0. So, for a given flat object
F , we have the following exact sequence

ExtiR(F , C′) // ExtiR(F , C) // ExtiR(F , C′′) // Exti+1
R (F , C′).

It follows that, C is cotorsion if and only so is C′′.

Proposition 2.9. Assume that R has enough flat objects and

0 // X ′ // X // X ′′ // 0
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is an exact sequence in R. Then, there exists a commutative diagram

0

��

0

��

0

��

0 // X ′ //

��

X //

��

X ′′ //

��

0

0 // C′ //

��

C //

��

C′′ //

��

0

0 // F ′ //

��

F //

��

F ′′ //

��

0

0 0 0

with exact rows and columns such that C′, C, C′′ (respectively, F ′,F ,F ′′) are
cotorsion (respectively, flat) objects in R.

Proof. Let 0 // X ′ // C′ // F ′ // 0 be a special cotorsion preenvelope
of X ′. Consider the pushout diagram

0

��

0

��

0 // X ′ //

��

X //

��

X ′′ // 0

0 // C′ //

��

P j
//

��

X ′′ // 0,

F ′

��

F ′

��

0 0

and let 0 // P i // C // F ′′ // 0 be a special cotorsion preenvelope of P.
By the pushout of i and j, we obtain the following commutative diagram
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0

��

0

��

0 // C′ // P j
//

i
��

X ′′ //

��

0

0 // C′ // C //

��

C′′ //

��

0

F ′′

��

F ′′

��

0 0

where, by Lemma 2.8, C′′ is cotorsion. So, we deduce the following commu-
tative diagram with exact rows and columns

0

��

0

��

0

��

0 // X ′ //

��

X //

��

X ′′ //

��

0

0 // C′ //

��

C //

��

C′′ //

��

0

0 // F ′ //

��

F //

��

F ′′ //

��

0

0 0 0

such that F ′, F and F ′′ are flat objects.

In the next, by the same argument that used in the proof of [10, Lemma
2.1], we deduce the following result.

Lemma 2.10. Assume that R has enough flat objects and

0 // X ′ // X // X ′′ // 0
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is an exact sequence in R. Then, there is a commutative diagram

0

��

0

��

0

��

0 // C′ //

��

C //

��

C′′ //

��

0

0 // F ′ //

��

F //

��

F ′′ //

��

0

0 // X ′ //

��

X //

��

X ′′ //

��

0

0 0 0

with exact rows and columns such that F ′,F ,F ′′ (respectively, C′, C, C′′) are
flat (respectively, cotorsion) objects in R.

3 Finite flat and cotorsion (respectively, projective) dimen-
sion

In this section we will prove some general results on flat, projective and
cotorsion dimensions. In particular, we will show that if

X : 0 // X 0 ∂0
// X 1 ∂1

// X 2 ∂2
// · · · // X n−1∂

n−1
// X n // 0

is a bounded acyclic complex in R such that for each i ̸= j, X i has finite flat
(respectively, projective, cotorsion) dimension, then the flat (respectively,
projective, cotorsion) dimension of X j is also finite.

Theorem 3.1. Let

X : 0 // X 0 ∂0
// X 1 ∂1

// X 2 ∂2
// · · · // X n−1∂

n−1
// X n // 0

be a bounded acyclic complex of flat objects in R such that for each i ̸= j,
cdX i < +∞. Then, cdX j < +∞.

Proof. By Proposition 2.6 and Proposition 2.3, there exists a positive integer
k and the following commutative diagram
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0

��

0

��

0

��

0

��

0

��

0 // X 0 //

��

X 1 //

��

X 2

��

// · · · // X n−1 //

��

X n

��

// 0

0 // C0
0

//

��

C1
0

//

��

C2
0

��

// · · · // Cn−1
0

//

��

Cn
0

��

// 0

...

��

...

��

...

��

· · ·
...

��

...

��

0 // C0
k−1

//

��

C1
k−1

//

��

C2
k−1

��

// · · · // Cn−1
k−1

//

��

Cn
k−1

��

// 0

0 // F0
k

∂0
k //

��

F1
k

∂1
k //

��

F2
k

��

∂2
k // · · · // Fn−1

k

∂n−1
k //

��

Fn
k

//

��

0

0 0 0 0

(3.1)

with exact rows and pure exact columns such that for any 0 ≤ j ≤ k − 1
and 0 ≤ i ≤ n, Ci

j is a cotorsion flat object and F i
k is flat. Consider the

following three cases.
1: Let j = n. By Proposition 2.3, F0

k , ...,F
n−1
k are cotorsion objects in

R. Then, the bottom row of (3.1) splits and hence Fn
k is cotorsion. So by

Proposition 2.3, we have cdX n ≤ k.
2: Let j = 0. By Proposition 2.3, F1

k ,F2
k , ...,F

n−1
k ,Fn

k are cotorsion
objects and hence, the pure exact sequence

0 // X 0 // C0
0

// · · · // C0
k−1

// F1
k

// F2
k

// · · · // Fn−1
k

// Fk
// 0

(3.2)

implies that cdX 0 ≤ n+ k.
3: Let 0 < j < n. By Proposition 2.3, Ker ∂j

k in (3.1) is cotosion flat and

Im∂j
k is a flat object of finite cotrsion dimension. So, F j

k = Ker ∂j
k ⊕ Im∂j

k

has finite cotorsion dimension. Then, the pure exact sequence

0 // X j // Cj
0

// Cj
1

// · · · // F j
k

// 0 (3.3)

shows that cdX j ≤ n+ k.
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Theorem 3.2. Assume that R has enough flat objects and G is an object
in R. Then, the following conditions are equivalent

(i) cdG < +∞.

(ii) G is quasi-isomorphic to a bounded complex of cotorsion objects.

(iii) G is quasi-isomorphic to a bounded complex X such that any compo-
nent of X has finite cotorsion dimension.

Proof. (i)→(ii) and (ii)→(iii) are clear.
(iii)→(i). Assume that G is quasi-isomorphic to a bounded complex X =

(X i, ∂i
X)i=n

i=0 such that any of its component has finite cotorsion dimension.
Then, we obtain a bounded acyclic complex

0 // Y0 // Y1 // Y2 // · · · // Yr−1 // Yr // 0

such that for some 0 ≤ j ≤ r, Yj = G ⊕X s (0 ≤ s ≤ n), and for each i ̸= j,
Y i has finite cotorsion dimension. By Lemma 2.9 and Proposition 2.3, we
deduce a positive integer k and the following commutative diagram

0

��

0

��

0

��

0

��

0

��

0 // Y0 //

��

Y1 //

��

X 2

��

// · · · // Yr−1 //

��

Yr

��

// 0

0 // C0
0

//

��

C1
0

//

��

C2
0

��

// · · · // Cr−1
0

//

��

Cr
0

��

// 0

...

��

...

��

...

��

· · ·
...

��

...

��

0 // C0
k−1

//

��

C1
k−1

//

��

C2
k−1

��

// · · · // Cr−1
k−1

//

��

Cr
k−1

��

// 0

0 // F0
k

∂0
k //

��

F1
k

∂1
k //

��

F2
k

��

∂2
k // · · · // Fr−1

k

∂r−1
k //

��

Fr
k

//

��

0

0 0 0 0

(3.4)

with exact rows and pure exact columns such that for any 0 ≤ j ≤ k − 1
and 0 ≤ i ≤ r, Ci

j is a cotorsion object and F i
k is flat. By Proposition 2.3
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and a similar method used in Theorem 3.1, we have cdYj < +∞. We know
that direct sum of any pair of minimal cotorsion resolutions of G and X s is
a minimal cotorsion resolution of Yj = G ⊕ X s. Therefore, by Proposition
2.3, any minimal cotorsion resolution of G stops and hence cdGj < +∞.

Lemma 3.3. Assume that R has enough flat objects and G is an object in
R. Then, the following conditions are equivalent.

(i) fdG ≤ n.

(ii) There exists an acyclic complex

C : 0 // Fn ∂n
// Fn−1 ∂

n−1
// Fn−2 // · · · // F1 ∂1

// F0 ∂0
// G // 0

such that for any 0 ≤ k ≤ n, Fk is a special flat precover of Ker ∂k−1.

(iii) If

C′ : · · · // Fn λn
// Fn−1 λ

n−1
// Fn−2 // · · · // F1 ∂1

// F0 ∂0
// G // 0

is an acyclic complex such that for each 0 ≤ k, Fk is a special flat
precover of Kerλk−1, then Kerλn−1 is flat.

Proof. (i) ⇒ (ii) Clear.
(ii) ⇒ (i) Let

G : · · · // Kn λn
// Kn−1λ

n−1
// Kn−2λ

n−2
// · · · // K1 λ1

// K0 λ0
// G // 0

be the minimal flat resolution of G, i.e for each 1 ≤ m, Km is the flat cover
of Kerλm−1. Then, we have the following commutative diagrams

C : · · ·

��

// 0 //

��

0 //

��

Fn ∂n
//

��

Fn−1∂
n−1
//

��

Fn−2∂
n−2
//

��

· · · // F1 ∂1
//

��

F0 ∂0
//

��

G // 0

G : · · · // Kn+2λ
n+2
// Kn+1λ

n+1
// Kn λn

// Kn−1λ
n−1
// Kn−2λ

n−2
// · · · // K1 λ1

// K0 λ0
// G // 0.

and

C : · · · // 0 // 0 // Fn ∂n
// Fn−1∂

n−1
// Fn−2∂

n−2
// · · · // F1 ∂1

// F0 ∂0
// G // 0

G : · · ·

OO

// Kn+2λ
n+2
//

OO

Kn+1λ
n+1
//

OO

Kn

OO

λn
// Kn−1λ

n−1
//

OO

Kn−2λ
n−2
//

OO

· · · // K1 λ1
//

OO

K0 λ0
//

OO

G // 0.
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such that for any n ≥ 0 and any H,

Hn(H⊗C) ∼= Hn(H⊗G).

is an isomorphism. This shows that

0 // Kerλn+1 // Kn+1 // Imλn+1 // 0

is a pure exact sequence and hence Imλn+1 = Kerλn is flat. By the same
method, we deduce that Kerλn is a pure subobject of Kn. Consequently,
Imλn = Kerλn−1 is flat and so, fdG ≤ n.

(ii) ⇒ (iii) Similar to the proof of (ii) ⇒ (i).
(iii) ⇒ (i) Trivial.

Theorem 3.4. Assume that R has enough flat objects and

X : 0 // X 0 ∂0
// X 1 ∂1

// X 2 ∂2
// · · · // X n−1∂

n−1
// X n // 0

is a bounded acyclic complex in R such that for each i ̸= j, fdX i < +∞.
Then, fdX j < +∞.

Proof. By Lemma 2.10 and Lemma 3.3, there exists a positive integer k and
the following commutative diagram

0

��

0

��

0

��

0

��

0

��

0 // C0 ∂0
//

��

C1 ∂1
//

��

C2

��

∂2
// · · · // Cn−1 ∂n−1

//

��

Cn

t
��

// 0

0 // F0
0

//

��

F1
0

//

��

F2
0

��

// · · · // Fn−1
0

//

��

Fn
0

��

// 0

...

��

...

��

...

��

· · ·
...

��

...

��

0 // F0
k−1

//

��

F1
k−1

//

��

F2
k−1

��

// · · · // Fn−1
k−1

//

��

Fn
k−1

��

// 0

0 // X 0 //

��

X 1 //

��

X 2

��

// · · · // X n−1 //

��

X n //

��

0

0 0 0 0

(3.5)
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with exact rows and columns such that for all 0 ≤ j ≤ k− 1 and 0 ≤ i ≤ n,
F i
j is flat and C0, ..., Cn−1, Cn are cotorsion objects. Consider the following

three cases.
1: Let j = n. By Lemma 3.3, the following exact sequence

0 // C0 ∂0
// · · · // Cn−1 t∂n−1

// Fn
0

// · · · // Fn
k−1

// X n // 0

(3.6)

implies that fdX n ≤ k + n.
2: Let j = 0. By Lemma 3.3 and [13, Theorem 2.3], the first row of

(3.5) is pure and so C0 is flat. Therefore, fdX 0 ≤ n.
3: Let 0 < j < n. By Lemma 3.3 and [13, Theorem 2.3], Ker ∂j is a

cotorsion object of finite flat dimension and Im∂j is a flat object. Then,
F j = Ker ∂j ⊕ Im∂j has finite flat dimension.

Now, by the same method used in the proof of Theorem 3.4, we obtain
the following result.

Theorem 3.5. Assume that R has enough projective objects and

X : 0 // X 0 ∂0
// X 1 ∂1

// X 2 ∂2
// · · · // X n−1∂

n−1
// X n // 0

is a bounded acyclic complex in R such that for each i ̸= j, pdX i < +∞.
Then, pdX j < +∞.

The next result is a generalization of [4, Proposition 2.3] and the main
Theorem of [15].

Theorem 3.6. Assume that R has enough projective objects. Then the
following conditions are equivalent.

(i) R is n-perfect for some positive integer n.

(ii) Finite flat dimension implies finite non-negative dimension.

(iii) If

X : 0 // X 0 ∂0
// X 1 ∂1

// X 2 ∂2
// · · · // X n−1∂

n−1
// X n // 0

is a bounded acyclic complex in R such that for each i ̸= j, fdX i <
+∞. Then, pdX j < +∞.
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(iv) Any object in R, which is quasi-isomorphic to a bounded complex of
objects of finite flat dimension, has finite projective dimension.

Proof. The equivalence (i)↔(ii) deduced by the similar method used in the
proof of [4, Proposition 2.3]. The implication (i)→(iii) is a direct con-
sequence of Theorem 3.5. For the implication (i)→(iii), we proceed as
follows. Assume that G ∈ R is quasi-isomorphic to a bounded complex
X = (X i, ∂i

X)i=n
i=0 such that any of its component has finite flat dimension.

So, there exists a bounded acyclic complex

0 // Y0 // Y1 // Y2 // · · · // Yr−1 // Yr // 0

such that for some 0 ≤ j ≤ r, Yj = G ⊕ X s, and for each i ̸= j, Y i has
finite flat dimension. By Lemma 2.10 and Lemma 3.3, we have the following
commutative diagram

0

��

0

��

0

��

0

��

0

��

0 // C0 ∂0
//

��

C1 ∂1
//

��

C2

��

∂2
// · · · // Cn−1 ∂r−1

//

��

Cr

t
��

// 0

0 // F0
0

//

��

F1
0

//

��

F2
0

��

// · · · // Fr−1
0

//

��

Fr
0

��

// 0

...

��

...

��

...

��

· · ·
...

��

...

��

0 // F0
k−1

//

��

F1
k−1

//

��

F2
k−1

��

// · · · // Fr−1
k−1

//

��

Fr
k−1

��

// 0

0 // Y0 //

��

Y1 //

��

Y2

��

// · · · // Yr−1 //

��

Yr //

��

0

0 0 0 0

(3.7)

with exact rows and columns such that for all 0 ≤ j ≤ k − 1 and 0 ≤ i ≤ r,
F i
j is flat and C0, ..., Cr−1, Cr are cotorsion objects. By the same method used

in the proof of Theorem 3.4, we deduce that fdYj < +∞. Consequently, by
Lemma 3.3, fdG < +∞ and hence by Theorem 3.5 we are done.

The implication (iv)→(i) is straightforward.
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4 n-perfect categories

In this section, we assume that (A,⊗) is a locally noetherian symmetric
monoidal closed Grothendieck category which has enough flat objects. It is
known that, projective objects are rare in some situations (see [10, §3]) and
so we can not talk about the projective dimension. This issue was resolved in
[9, 11] by using the cotorsion dimension rather than the projective dimension
and was characterized non-affine schemes which over them any flat object
has finite cotorsion dimension (see [9, 11] for more details). So, the study
around the objects of finite cotorsion dimension is interesting for us. In
the following, we give some examples of Grothendieck categories which has
enough flat objects and do not have non-zero projective objects.

Example 4.1. Let (X,OX) be a locally noetherian scheme (see [7] for more
details on sheaves and schemes).

(i) The category (ModX, -⊗OX
-) of all sheaves of OX -modules is locally

noetherian ([8, Theorem II.7.8]) and has enough flat objects, see [8,
Proposition II.1.2] for more details.

(ii) The category (QcohX, - ⊗OX
-) of all quasi-coherent sheaves of OX -

modules is locally noetherian. Furthermore, by [19], QcohX has a flat
generator if and only if X is quasi-compact and semi-separated.

(iii) Let R be a commutative ring and X = Pn
R be the projective n-space

over R. Then, by [6], QcohX dose not have non-zero projective ob-
ject. But, X is quasi-compact and semi-separated so QcoX has a flat
generator.

(iv) Let k be a commutative ring with identity. It was shown in [5] that if
X = P1

k is the projective line over k, then QcoX has a flat generator.

The next result concerns a characterization of objects of finite cotorsion
dimension.

Proposition 4.2. Let G be an object in A. Then, we have the following
equivalent conditions.

(i) cdG ≤ n.

(ii) For any flat object F , Extn+1
A (F ,G) = 0.
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(iii) For any flat object F and any i ≥ 1, Extn+i
A (F ,G) = 0.

Proof. The proof is a standard homological algebra fare.

In the next proposition, we will give a characterization of n-perfect cat-
egories.

Proposition 4.3. The following conditions are equivalent.

(i) A is n-perfect, for some non-negative integer n.

(ii) Finite flat dimension in A implies finite cotorsion dimension.

Proof. (i) ⇒ (ii). Let G be an object in A of finite flat dimension. Then, G
is quasi-isomorphic to a bounded complex of flat objects. So, by Theorem
3.1, G has finite cotorsion dimension.

(ii) ⇒ (i). Assume by contradiction that for any integer n, A is not
n-perfect. Then, for any n, we have a flat object Gn of cotorsion dimension
n. For such n, consider the following minimal injective resolution

0 // Gn
∂n // I0

n

∂0
n // I1

n

∂1
n // · · · // Im

n

∂m
n // · · · .

of Gn. Then,

0 //
⊕

n∈Z Gn
⊕∂n //

⊕
n∈Z I0

n

⊕∂0
n //
⊕

n∈Z I1
n

// · · · //
⊕

n∈Z Im
n

// · · · .

is an injective resolution of
⊕

n∈Z Gn (direct sum of injectives is injective in a
locally noetherian Grothendieck category). But,

⊕
n∈Z Gn is flat and hence

it has finite cotorsion dimension. Proposition 4.2 implies that there is a non-
negative integer k0 where cd(

⊕
n∈Z)Gn ≤ k0. So, Ker(⊕∂k0

n ) ∼= ⊕(Ker ∂k0
n )

and Ker ∂k0
n are cotorsion for any n and so for any n cdGn ≤ k0. But this is

a contradiction. It follows that, A is n-perfect for some non-negative integer
n.

Finally, in the rest of this paper, we give some examples of Grothendieck
categories that our results are hold for them.
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4.1 The category of sheaves Let (X,OX) be an arbitrary scheme,
QcoX be the category of all quasi-coherent OX -modules and ModX be the
category of all sheaves of OX -modules (for more details on sheaves and
schemes see [7]). It is known that QcoX is a full subcategory of ModX.
If R is one of QcoX or ModX, Theorems 3.1 and Theorem 3.4 hold true
(see [4, 10, 11] for more details).

4.2 The category of R-modules Assume that R is an associative
ring with 1 ̸= 0 and C(R) is the category of complexes of left R-modules. In
this subsection, we will present a method to construct new n-perfect rings
(for more details and examples see [14], [17, 18], [4], [10]). For this purpose,
we recall some notations from [16, Remark 2.4]. Let SR be the R-algebra
of the quiver

· · · // •δ
n−1
// • δn // •δ

n+1
// • δn+2

//// · · ·

with the relation δn+1δn = 0 and SR-Mod is the category of all left SR-
modules. Every representation of this quiver is in fact a complex of R-
modules. By [16], we have a fully faithful functor

inc : C(R) // SR-Mod

where for any complex X, inc(X) =
⊕

n∈ZX
n. This functor has a right

adjoint
C : SR-Mod −→ C(R).

In addition, C is a colimit preserving exact functor. By [16, Proposition
2.8], for any flat (projective) SR-module F , C(F ) is a flat (projective) com-
plex of R-modules and for any flat (projective) complex F of R-modules
inc(F) is a flat (projective) SR-module.

Theorem 4.2.1. The following conditions are equivalent.

(i) Finite flat dimension in R-Mod implies finite projective dimension.

(ii) Finite flat dimension in SR-Mod implies finite projective dimension.

Proof. (i) ⇒ (ii). Let F be a flat SR-module and

E : · · · // Pn
∂n
E // Pn−1

∂n−1
E // Pn−2 // · · · // P 0

∂0
E // F // 0
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be a projective resolution of F . Then, inc(E) gives a projective resolution of
incF where Ker ∂n−1

inc(E) is projective by assumption. Therefore, Ker ∂n−1
E =

C(Ker ∂n−1
inc(E)) is projective and so we are done.

(ii)⇒ (i). Assume that F is a flatR-module. By assumption, pd(inc(F )) ≤
n. Let

E : 0 // Pn ∂n
// Pn−1∂

n−1
// Pn−2 // · · · // P 0 ∂0

// inc(F ) // 0

be the minimal projective resolution of inc(F ). Therefore, C(E) gives a
projective resolution of F and hence pdF ≤ n. Consequently, we are done
by [4, Proposition 2.3].

Corollary 4.2.2. The following conditions are equivalent.

(i) R is n-perfect.

(ii) SR is n-perfect.

Assume that k is a field, R (S) is a right-noetherian (left-noetherian)
k-algebra.

Definition 4.2.3. Let SDR be a bounded complex in the derived category
D(S⊗k R

op) with finitely generated cohomology both over S and Rop. It is
called a dualizing complex if the following conditions hold.

(i) The injective dimensions idSD and idRopD are finite.

(ii) Both morphismsR −→ RHomS(D,D) inD(Re), R −→ RHomRop(D,D)
in D(Se) are isomorphisms.

If Dfd(R) is the subcategory of the derived category D(R) consisting of
complexes which are isomorphic to a bounded complex of flat R-modules,
and Did(S) is the subcategory of the derived category D(S) consisting
of complexes which are isomorphic to a bounded complex of injective S-
modules. Then, there is an equivalence

Dfd(R)
DL⊗R−

//
Did(S)

RHomS(D,−)
oo (4.1)
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of triangulated categories. Now, we use 4.1 and deduce the main result
of [15]. It was shown in [4] that an associative ring is n-perfect if and only if
finite flat dimension implies finite projective dimension if and only if finite
flat dimension implies finite cotorsion dimension.

Corollary 4.2.4. Let M be a left R-module. Then fdM < ∞ implies
pdM < ∞.

Proof. By 4.1, any flat R-module F is quasi-isomorphic to a bounded com-
plex of cotorsion R-modules. Therefore, by Corollary 3.2, F has finite co-
torsion dimension and so, by Corollary 3.6, we are done.
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