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Replacing bar-like resolutions in a
simplicial setting

Samuel Carolus, Jacob Laubacher∗, Sydney D. Vitalbo, and Leah K.
Widlarz

Abstract. It is well known that the bar resolution can be replaced with
any projective resolution of the corresponding algebra when computing the
Hochschild (co)homology of that algebra. This is, in fact, a feature of its
construction via derived functors. For generalizations and extensions of
the Hochschild (co)homology (like the secondary and tertiary Hochschild
(co)homology theory, as well as higher order Hochschild (co)homology the-
ory), one uses a bar-like resolution in a simplicial setting within its con-
struction in order to accommodate the changing module structures in every
dimension. In this note, we present a method in order to replace these bar-like
resolutions.

1 Introduction

Hochschild cohomology theory, first defined in [6] to study extensions of
algebras and then later employed to examine deformation theory in [5], was
realized as a construction using derived functors by Cartan and Eilenberg
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in [4]. The fundamental ingredient in this construction used the so-called bar
resolution associated to the given algebra, and then employing properties
of derived functors, one can replace that bar resolution with any projective
resolution. This is incredibly powerful for computation.

In 2016, Staic introduced a generalization of the Hochschild cohomology
(see [11]). The aptly-named secondary Hochschild cohomology was used to
investigate deformations of the given algebra A that had a nontrivial B-
algebra structure. In [10] it was discovered that the secondary Hochschild
cohomology could be constructed using a bar-like resolution in a simplicial
setting. Here the main hurdle to overcome was that the module structure
changes in every dimension. Further generalizations, as well as the higher
order Hochschild cohomology over the d-sphere, for example, have now also
been constructed in this setting (see [3] and [7], among others).

Due to the changing module structure described above, the secondary
Hochschild cohomology cannot be viewed as a derived functor. However,
it would be advantageous if the property of being able to replace the bar-
like resolution within the construction could be obtained. The goal of this
paper is to answer that question. In Section 2, we recall all the necessary
background information regarding the simplicial setting in which we work in
order to keep this paper as self-contained as possible. Section 3, therefore,
houses our main results. We introduce the proper morphisms and homo-
topies which help answer the question regarding the conditions required to
replace these bar-like resolutions.

2 Preliminaries

We fix k to be a field, and we let ⊗ := ⊗k. Next, we assume all k-algebras
are associative and have multiplicative unit. Most of the results in this
section are from [10].

2.1 Simplicial algebras One can begin with a simplicial k-algebra,
which is just a simplicial object in the category of k-algebras, and then
build from there. The formal definition is below:

Definition 2.1. ([10]) A simplicial k-algebra A is a collection of k-algebras
{An}n≥0 together with morphisms of k-algebras δAi : An −→ An−1 and
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σAi : An −→ An+1 for all 0 ≤ i ≤ n such that

δAi δ
A
j = δAj−1δ

A
i (2.1)

whenever i < j, and

σAi σ
A
j = σAj+1σ

A
i if i ≤ j,

δAi σ
A
j = σAj−1δ

A
i if i < j,

δAi σ
A
j = idAn if i = j or i = j + 1, and

δAi σ
A
j = σAj δ

A
i−1 if i > j + 1.

(2.2)

It is sufficient to only have face maps and still be viewed as a chain
complex. In fact, later on in this paper, it is much more convenient (and
less cluttered) to view things from a presimplicial setting (satisfying (2.1)
only). However, there are times when it is crucial we also make use of the
degeneracy maps, which require more conditions to be satisfied (see (2.2)).

Example 2.2. ([10]) Let A be a k-algebra. Then A(A⊗Aop) is a simplicial
k-algebra by setting An = A ⊗ Aop for all n ≥ 0, with δAi = idA⊗Aop and
σAi = idA⊗Aop for all 0 ≤ i ≤ n.

Example 2.3. ([10]) Let A be a k-algebra, B a commutative k-algebra,
and ε : B −→ A a morphism of k-algebras such that ε(B) ⊆ Z(A). Then
A(A,B, ε) is a simplicial k-algebra by setting An = A ⊗ B⊗2n+1 ⊗ Aop for
all n ≥ 0, with

δA0 (a⊗ α1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · · ⊗ βn ⊗ b)

= aε(α1)⊗ α2 ⊗ · · · ⊗ αn ⊗ γβ1 ⊗ β2 ⊗ · · · ⊗ βn ⊗ b,

δAi (a⊗ α1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · · ⊗ βn ⊗ b)

= a⊗ α1 ⊗ · · · ⊗ αiαi+1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · ·
· · · ⊗ βiβi+1 ⊗ · · · ⊗ βn ⊗ b

for 1 ≤ i ≤ n− 1, and

δAn (a⊗ α1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · · ⊗ βn ⊗ b)

= a⊗ α1 ⊗ · · · ⊗ αn−1 ⊗ αnγ ⊗ β1 ⊗ · · · ⊗ βn−1 ⊗ ε(βn)b,
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along with

σA0 (a⊗ α1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · · ⊗ βn ⊗ b)

= a⊗ 1⊗ α1 ⊗ · · · ⊗ αn ⊗ γ ⊗ 1⊗ β1 ⊗ · · · ⊗ βn ⊗ b,

σAi (a⊗ α1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · · ⊗ βn ⊗ b)

= a⊗ α1 ⊗ · · · ⊗ αi ⊗ 1⊗ αi+1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · ·
· · · ⊗ βi ⊗ 1⊗ βi+1 ⊗ · · · ⊗ βn ⊗ b

for 1 ≤ i ≤ n− 1, and

σAn (a⊗ α1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · · ⊗ βn ⊗ b)

= a⊗ α1 ⊗ · · · ⊗ αn ⊗ 1⊗ γ ⊗ β1 ⊗ · · · ⊗ βn ⊗ 1⊗ b.

For more examples, one can also define the simplicial k-algebras A2(A)
andA3(A), which are used in the construction for the higher order Hochschild
(co)homology over the 2-sphere ([7]) and the 3-sphere ([3]), respectively, as
well as A(Q), which is used to define the tertiary Hochschild (co)homology
over a quintuple Q (studied in [2] and [3]).

2.2 Simplicial modules As the next natural step, we can then look
at simplicial modules over these simplicial k-algebras.

Definition 2.4. ([10]) We say that M is a simplicial left module over the
simplicial k-algebra A if M = {Mn}n≥0 is a simplicial k-vector space (sat-
isfies (2.1) and (2.2)) together with a left An-module structure on Mn for
all n ≥ 0 such that we have the following natural compatibility conditions:

δMi (anmn) = δAi (an)δ
M
i (mn)

and

σMi (anmn) = σAi (an)σ
M
i (mn)

for all an ∈ An, for all mn ∈ Mn, and for all 0 ≤ i ≤ n.

One can easily define a simplicial right module and a cosimplicial left
module over a simplicial k-algebra in an analogous way.
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Example 2.5 (The bar resolution). ([10]) Let A be a k-algebra. Then
B(A) is a simplicial left module over the simplicial k-algebra A(A⊗Aop) by
setting Bn = A⊗n+2 for all n ≥ 0 with the left An-module structure given
by

(a⊗ b) · (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) = aa0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1b.

Moreover, we have that

δBi (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

and

σBi (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an+1

for all 0 ≤ i ≤ n.

Example 2.6. ([10]) Let A be a k-algebra and M an A-bimodule. Then
M(M) is a simplicial right module over the simplicial k-algebra A(A⊗Aop)
by setting Mn = M for all n ≥ 0 with the right An-module structure given
by m · (a ⊗ b) = bma. Moreover, we have that δMi = idM and σMi = idM
for all 0 ≤ i ≤ n.

Example 2.7 (The secondary bar resolution). ([10]) Let A be a k-algebra,
B a commutative k-algebra, and ε : B −→ A a morphism of k-algebras
such that ε(B) ⊆ Z(A). Then B(A,B, ε) is a simplicial left module over the

simplicial k-algebra A(A,B, ε) by setting Bn = A⊗n+2⊗B⊗
(n+1)(n+2)

2 for all
n ≥ 0 with the left An-module structure given by

(a⊗α1⊗· · ·⊗αn⊗γ⊗β1⊗· · ·⊗βn⊗b)·



⊗




a0 b0,1 · · · b0,n b0,n+1

1 a1 · · · b1,n b1,n+1
...

...
. . .

...
...

1 1 · · · an bn,n+1

1 1 · · · 1 an+1







= ⊗




aa0 α1b0,1 · · · αnb0,n γb0,n+1

1 a1 · · · b1,n b1,n+1β1
...

...
. . .

...
...

1 1 · · · an bn,n+1βn
1 1 · · · 1 an+1b




.
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Moreover, we have that

δBi



⊗




a0 b0,1 · · · b0,n b0,n+1

1 a1 · · · b1,n b1,n+1
...

...
. . .

...
...

1 1 · · · an bn,n+1

1 1 · · · 1 an+1







= ⊗




a0 b0,1 · · · b0,ib0,i+1 · · · b0,n b0,n+1

1 a1 · · · b1,ib1,i+1 · · · b1,n b1,n+1
...

...
. . .

...
. . .

...
...

1 1 · · · aiε(bi,i+1)ai+1 · · · bi,nbi+1,n bi,n+1bi+1,n+1
...

...
. . .

...
. . .

...
...

1 1 · · · 1 · · · an bn,n+1

1 1 · · · 1 · · · 1 an+1




and

σBi



⊗




a0 b0,1 · · · b0,n b0,n+1

1 a1 · · · b1,n b1,n+1
...

...
. . .

...
...

1 1 · · · an bn,n+1

1 1 · · · 1 an+1







= ⊗




a0 b0,1 · · · b0,i 1 b0,i+1 · · · b0,n b0,n+1

1 a1 · · · b1,i 1 b1,i+1 · · · b1,n b1,n+1
...

...
. . .

...
...

...
. . .

...
...

1 1 · · · ai 1 bi,i+1 · · · bi,n bi,n+1

1 1 · · · 1 1 1 · · · 1 1
1 1 · · · 1 1 ai+1 · · · bi+1,n bi+1,n+1
...

...
. . .

...
...

...
. . .

...
...

1 1 · · · 1 1 1 · · · an bn,n+1

1 1 · · · 1 1 1 · · · 1 an+1




for all 0 ≤ i ≤ n.

We dwell on Example 2.7 specifically, and how it contrasts to Example
2.5. Notice how the secondary bar resolution has a different module struc-
ture in each dimension, whereas the classic bar resolution has a consistent
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module structure throughout. However, both can be represented in this
context as simplicial modules over simplicial algebras.

Example 2.8. ([10]) Let A be a k-algebra, B a commutative k-algebra, and
ε : B −→ A a morphism of k-algebras such that ε(B) ⊆ Z(A). Furthermore,
let M be an A-bimodule which is B-symmetric. Then S(M) is a simplicial
right module over the simplicial k-algebra A(A,B, ε) by setting Sn = M
for all n ≥ 0 with the right An-module structure given by

m · (a⊗ α1 ⊗ · · · ⊗ αn ⊗ γ ⊗ β1 ⊗ · · · ⊗ βn ⊗ b) = bmaε(α1 · · ·αnγβ1 · · ·βn).

Moreover, we have that δSi = idM and σSi = idM for all 0 ≤ i ≤ n.

One can also define other examples like M2(M) and B2(A) (see [7]),
M3(M), B3(A), S(Q), and B(Q) (see [3]), and L(A,B, ε) (see [10]). These
also have varying module structures in every dimension.

2.3 Combining simplicial modules Finally, we recall the aptly
named Tensor Lemma, which takes the role of the Tor functor. As is nec-
essary, this allows us to accommodate a changing module structure in each
dimension.

Lemma 2.9 (Tensor Lemma). ([10]) Let (X , δXi , σXi ) be a simplicial right
module, and let (Y, δYi , σ

Y
i ) be a simplicial left module, both over the sim-

plicial k-algebra A. Then M = (X ⊗A Y, Di, Si) is a simplicial k-module
(satisfies (2.1) and (2.2)) where Mn = Xn ⊗An Yn for all n ≥ 0, and we
take

Di : Mn −→ Mn−1

given by

Di(xn ⊗An yn) = δXi (xn)⊗An−1 δ
Y
i (yn),

and

Si : Mn −→ Mn+1

given by

Si(xn ⊗An yn) = σXi (xn)⊗An+1 σ
Y
i (yn),

for all 0 ≤ i ≤ n.
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The Hom Lemma from [10], which we omit here, produces a cochain
complex in the same context. It combines a simplicial left module X and a
cosimplicial left module Y over a common simplicial k-algebra A, generating
a cosimplicial k-module denoted by HomA(X ,Y).

Example 2.10. ([10]) Using these simplicial structures and the Tensor
Lemma 2.9, one can see that the Hochschild homology of A with coeffi-
cients in M , denoted H•(A,M), can be viewed as the homology of the chain
complex M(M)⊗A(A⊗Aop) B(A). In notation, we have that

H•(A,M) = H•(M(M)⊗A(A⊗Aop) B(A)).

Example 2.11. ([10]) Again using the Tensor Lemma 2.9, along with pre-
viously established examples, one gets that the secondary Hochschild ho-
mology of the triple (A,B, ε) with coefficients in M (introduced in [11] and
more thoroughly investigated in [8], and its cohomology in [12]), denoted
H•((A,B, ε);M), can be realized as the homology of the chain complex
S(M)⊗A(A,B,ε) B(A,B, ε). Notationally, we have that

H•((A,B, ε);M) = H•(S(M)⊗A(A,B,ε) B(A,B, ε)).

One can also see that the secondary Hochschild homology associated
to a triple (A,B, ε) is HH•(A,B, ε) = H•(L(A,B, ε) ⊗A(A,B,ε) B(A,B, ε))
(defined in [10], and further studied in [9], and its cohomology in [1]), that

the higher order Hochschild homology over the d-sphere is HSd

• (A,M) =
H•(Md(M) ⊗Ad(A) Bd(A)) for d = 2 ([7]) and d = 3 ([3]), and that the
tertiary Hochschild homology of the quintuple Q with coefficients in M is
H•(Q;M) = H•(S(Q)⊗A(Q) B(Q)) (see [3]).

3 Main Results

For the sake of computation, it is natural to wonder when we can replace
a simplicial left module. In particular, following the many examples above,
our goal is to replace the bar-like resolutions (like B(A), B(A,B, ε), B2(A),
B3(A), and B(Q)). The aim of this section is to approach that topic.

We fix A to be a simplicial k-algebra and B and C to be simplicial left
modules over A.
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Definition 3.1. We say that f : B −→ C is a presimplicial morphism if
there is a family of An-module morphisms fn : Bn −→ Cn such that

fn−1δBi = δCi fn (3.1)

for all n ≥ 0 and 0 ≤ i ≤ n.

Definition 3.2. A presimplicial homotopy h between two presimplicial mor-
phisms f, g : B −→ C is a family of maps hi : Bn −→ Cn+1 for 0 ≤ i ≤ n
and n ≥ 0 such that

(i) hi(anbn) = σAi (an)hi(bn) for all an ∈ An and bn ∈ Bn, and

(ii) the following are satisfied:

δCi hj = hj−1δBi for i < j,

δCi hi = δCi hi−1 for 0 < i ≤ n,

δCi hj = hjδ
B
i−1 for i > j + 1,

δC0h0 = fn,

δCn+1hn = gn.

(3.2)

Remark 3.3. In the context of Definition 3.2, it appropriate to say that the
two presimplicial morphisms f : B −→ C and g : B −→ C are presimplicially
homotopic. When this is the case, we will write f ∼ g.

Lemma 3.4. Presimplicial homotopy defines an equivalence relation.

Proof. First observe that since C is a simplicial left module over A, it is
endowed with degeneracy maps σCi . These are necessary in what follows.

To see that f ∼ f , consider h with the family of maps hi : Bn −→ Cn+1

for 0 ≤ i ≤ n given by hi := σCi fn. One can then check the necessary
conditions in Definition 3.2 are satisfied in order to obtain reflexivity.

For symmetry, we first suppose that f ∼ g under the presimplicial ho-
motopy h. To see that g ∼ f we take t as follows: define the family of maps
ti : Bn −→ Cn+1 for 0 ≤ i ≤ n by ti := σCi (fn + gn)− hi.

Finally, for transitivity, we suppose that f ∼ g under the presimplicial
homotopy h, and we suppose that g ∼ l under the presimplicial homotopy
t. To see that f ∼ l, we define s with the family of maps si : Bn −→ Cn+1

for 0 ≤ i ≤ n by si := hi + ti − σCi gn.
Hence, presimplicial homotopy defines an equivalence relation.
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Definition 3.5. We say that a presimplicial morphism f : B −→ C is a
presimplicial homotopy equivalence if there exists a presimplicial morphism
g : C −→ B such that there is a presimplicial homotopy between gf and
idB, and a presimplicial homotopy between fg and idC .

3.1 Replacing the simplicial left modules Here we present a no-
tion of how to replace these bar-like resolutions.

Proposition 3.6. Let M be a simplicial right module over A. If there
exists a presimplicial homotopy equivalence f : B −→ C, then

H•(M⊗A B) ∼= H•(M⊗A C).

Proof. We are given presimplicial morphisms f : B −→ C and g : C −→ B
such that gf is presimplicially homotopic to idB and fg is presimplicially
homotopic to idC . Thus, for all n ≥ 0 and 0 ≤ i ≤ n there exists maps
hi : Bn −→ Bn+1 and ti : Cn −→ Cn+1 such that each satisfies Definition
3.2 appropriately. Without loss of generality, we say that δB0 h0(b) = gnfn(b)
and δBn+1hn(b) = b. Likewise δC0 t0(c) = fngn(c) and δCn+1tn(c) = c.

Recall that DBi : Mn ⊗An Bn −→ Mn−1 ⊗An−1 Bn−1 is given by

DBi (m⊗An b) = δMi (m)⊗An−1 δ
B
i (b)

for all n ≥ 0 and 0 ≤ i ≤ n. Likewise for DCi : Mn ⊗An Cn −→ Mn−1 ⊗An−1

Cn−1.
Define h′i : Mn ⊗An Bn −→ Mn+1 ⊗An+1 Bn+1 by

h′i(m⊗An b) = σMi (m)⊗An+1 hi(b)

for 0 ≤ i ≤ n. One can check that h′i is well-defined. Likewise for t′i :
Mn ⊗An Cn −→ Mn+1 ⊗An+1 Cn+1.

Next, define F : M⊗A B −→ M⊗A C by

Fn(m⊗An b) = m⊗An fn(b).

Notice that for all n ≥ 0 and 0 ≤ i ≤ n we have that

Fn−1DBi (m⊗An b) = Fn−1(δMi (m)⊗An−1 δ
B
i (b)) = δMi (m)⊗An−1 fn−1δ

B
i (b),
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and

DCi Fn(m⊗An b) = DCi (m⊗An fn(b)) = δMi (m)⊗An−1 δ
C
i fn(b),

which are equal due to (3.1). One can verify that F is well-defined. Hence
F is a morphism of presimplicial k-modules. Likewise for G : M⊗A C −→
M⊗A B.

Our goal will be to show that h′i is a presimplicial homotopy (as k-
modules) between GF and idM⊗AB (from M⊗A B to M⊗A B). Likewise
for t′i between FG and idM⊗AC (from M⊗A C to M⊗A C).

Observe that for all n ≥ 0 we have the conditions in (3.2) satisfied as
k-modules. That is,

DBi h
′
j(m⊗An b) = DBi (σ

M
j (m)⊗An+1 hj(b))

= δMi σMj (m)⊗An δBi hj(b)

= σMj−1δ
M
i (m)⊗An hj−1δBi (b)

= h′j−1(δ
M
i (m)⊗An−1 δ

B
i (b))

= h′j−1D
B
i (m⊗An b)

for i < j. Next, for 0 < i ≤ n we have

DBi h
′
i(m⊗An b) = DBi (σ

M
i (m)⊗An+1 hi(b))

= δMi σMi (m)⊗An δBi hi(b)

= δMi σMi−1(m)⊗An δBi hi−1(b)

= DBi (σ
M
i−1(m)⊗An+1 hi−1(b))

= DBi h
′
i−1(m⊗An b).

Furthermore, we have that

DBi h
′
j(m⊗An b) = DBi (σ

M
j (m)⊗An+1 hj(b))

= δMi σMj (m)⊗An δBi hj(b)

= σMj δMi−1(m)⊗An hjδ
B
i−1(b)

= h′j(δ
M
i−1(m)⊗An−1 δ

B
i−1(b))

= h′jD
B
i−1(m⊗An b)
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whenever i > j + 1. Finally we have that

DB0 h
′
0(m⊗An b) = DB0 (σ

M
0 (m)⊗An+1 h0(b))

= δM0 σM0 (m)⊗An δB0 h0(b)

= m⊗An gnfn(b)

= Gn(m⊗An fn(b))

= GnFn(m⊗An b)

and

DBn+1h
′
n(m⊗An b) = DBn+1(σ

M
n (m)⊗An+1 hn(b))

= δMn+1σ
M
n (m)⊗An δBn+1hn(b)

= m⊗An b

= idM⊗AB(m⊗An b).

Thus h′i is a presimplicial homotopy between GF and idM⊗AB (as k-
modules). Similarly we get that t′i is a presimplicial homotopy between FG
and idM⊗AC (as k-modules). Hence, the result follows.

Following Proposition 3.6, one can then compute the homology of chain
complexes built in this context with an appropriate replacement. Specifi-
cally, referencing Example 2.10 and the usual Hochschild homology, if there
was a simplicial module C such that there exists a presimplicial homotopy
equivalence f : B(A) −→ C, then we have that

H•(A,M) = H•(M(M)⊗A(A⊗Aop) B(A)) ∼= H•(M(M)⊗A(A⊗Aop) C).

Likewise for Example 2.11, if there was a simplicial moduleD such that there
exists a presimplicial homotopy equivalence f : B(A,B, ε) −→ D, then one
could compute the secondary Hochschild homology in an alternative way.
In notation, we would have

H•((A,B, ε);M) = H•(S(M)⊗A(A,B,ε) B(A,B, ε))

∼= H•(S(M)⊗A(A,B,ε) D).

One can get similar results using replacements via presimplicial homo-
topy equivalence for the rest of the examples discussed at the end of Section
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2. Finally, for the sake of completion, switching to the context of cosim-
plicial modules by way of the Hom Lemma (discussed in [10]), we get an
analogous result.

Proposition 3.7. Let M be a cosimplicial left module over A. If there
exists a presimplicial homotopy equivalence f : B −→ C, then

H•(HomA(B,M)) ∼= H•(HomA(C,M)).

Proof. Similar to that of Proposition 3.6.
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