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Weakly right po-Noetherian ordered
semigroups

Leila Shahbaz

Abstract. In this paper, we present a new way of defining the property of
being WRP-Noetherian by making use of principal right poideals. Addition-
ally, we provide a characterization of WRP-Noetherian ordered semigroups
through their S-posets. Furthermore, we investigate how the property of be-
ing WRP-Noetherian behaves under some semigroup-theoretic constructions,
like sub ordered semigroups, and quotients. Specifically, we establish neces-
sary and sufficient conditions for the direct product of two ordered semigroups
to be WRP-Noetherian.

1 Introduction and Preliminaries

In the study of certain types of algebraic structures known as (universal)
algebras, a finiteness condition is a requirement that is satisfied by all finite
members of the class. The concept was first introduced and developed by
Noether and Artin in the early 1900s. Since then, finiteness conditions have
played an important role in understanding the structure and behavior of
rings, groups, semigroups, and many other types of algebras. The property
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of being Noetherian, as one of the most important finiteness conditions, is
of fundamental importance in abstract algebra. The concepts of Noetherian
and Artinian rings and modules have been extensively researched by several
authors and have been useful in the development of the structure theory
of rings (For example, see [1, 17]). Noetherian rings are critical in ring
theory, playing a significant role in major results such as Krull’s intersection
theorem and Hilbert’s basis theorem.

In the case of right Noetherian semigroups, the research was initiated
by Hotzel in [8] and further developed by Kozhukhov in [11]. A monoid S is
called weakly right Noetherian if every right ideal is finitely generated. It is
considered right Noetherian if every right congruence is finitely generated.
These types of semigroups have been extensively studied and have gained
a lot of attention in research; see for instance [4, 7, 12]. In the case of
a monoid, this condition has been highly used in the theory of acts over
monoids. For instance, if a monoid M is right Noetherian, then every right
S-act that is finitely generated is also finitely presented [13]. Additionally,
it has been proven in [11] that if S is right Noetherian, then every subgroup
of S is right Noetherian as well. The concept of weakly right po-Noetherian
(or briefly, WRP-Noetherian) ordered semigroups was first introduced in [9]
(named Notherian ordered semigroups) and then studied in [15] and [16].
It is proved in [9], that being WRP-Noetherian for an ordered semigroup
is equivalent to the fact that the right poideals of the ordered semigroup
satisfy the so-called ascending chain condition, moreover it is equivalent to
the fact that an ordered semigroup satisfies the maximum condition for right
poideals. In addition, they proved that if an ordered semigroup .S is WRP-
Noetherian and I is its poideal then the Rees quotient ordered semigroup
S/1 is also WRP-Noetherian. Also, if S/I and I are WRP-Noetherian, then
so is S.

The present paper is devoted to the study of WRP-Noetherian ordered
semigroups. We present an alternative way of defining the WRP-Noetherian
property using principal right poideals. Additionally, we provide a charac-
terization of WRP-Noetherian ordered monoids based on their S-posets.
Furthermore, we investigate how the WRP-Noetherian property behaves
under various semigroup-theoretic constructions, such as sub ordered semi-
groups, and quotients. In particular, we establish necessary and sufficient
conditions for the direct product of two ordered semigroups to be WRP-
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Noetherian.

In the following, we briefly recall some basic definitions about posemi-
groups and S-posets needed in the sequel. For more information see [3], [5],
[15], and [16]. Recall that a monoid (semigroup) S is said to be an ordered
monoid (ordered semigroup) (briefly, pomonoid (posemigroup)) if it is also
a poset whose partial order < is compatible with its binary operation (that
is, s < t, s <t imply ss’ < tt').

A left poideal of a pomonoid S is a (possibly empty) subset I of S if
it is both a monoid left ideal (SI C I) and a poset ideal (that is, a down
closed subset of S: a < b,b € I imply a € I).

For every subset X of a pomonoid S,

<X>=|(XSYHY={teS:qwre X,Isc St <us}

is the smallest right poideal of S which contains X and is called the right
poideal of S generated by X. If X is finite, <X > is called a finitely gen-
erated right poideal, and if X is singleton, <X > is called a principal right
poideal of S. One can easily proves that [(U,cx #S") = U,ex LS. A
posemigroup S with no proper (right) poideals is called (right) simple.

If S is a posemigroup, an order congruence 6 on S is an equivalence
relation on S that is compatible with the binary operation on S, and has
the further property that S/6 can be equipped with a partial order so that
S/0 is a posemigroup and the natural map S — S/0 is a posemigroup
homomorphism.

Recall from [2] that if 0 is any binary relation on S, we write s <p " if
a so-called #-chain

s < 3103'1 < 8293’2 < "‘Hs;n <d

from s to s for some s1, 8}, ..., 8n, s, € S, exists in S. Then a congruence 6
on S is an order congruence if and only if for every s, s’ € S, sfs’ whenever
s<ps <ps.

Recall from [10] that for each ordered set (X, <x), we can construct a
free ordered semigroup (or briefly, free posemigroup) over (X, <x). In fact,
one can consider the set

Xt i={zmy... 2y ne€Nandz; € X,i=1,2,...,n}
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with the operation (concatenation)

(:L’lxg e xn).(ylyg .. ym) =12 .. TpY1Y2 - - - Ym,
and the order (componentwise)
TIT2 ... T S Y1Y2... Yy S n=mand x; <x y;, forall i =1,2,... n.

Then the pair (X, ., <) is a free posemigroup over (X, <y). Let (X7, ., <)
be the free posemigroup with the basis (X,<x). Then X* = XTU{0}
is called the free pomonoid over (X,<x) or the free pomonoid with the
basis (X, <x) where concatenation with the empty word () leaves everything
unchanged.

Recall from [14] that Green’s relations £,R and [J on a posemigroup
are given as follows: For two elements a,b € S, aLb if they generate the
same principal left poideal, that is |(S'a) = [(S'b). Similarly, aRb if
they generate the same principal right poideal, that is [(aS') = [(bS1).
Also, aJb if they generate the same principal poideal, that is |(S'aS') =
1(S'bS1). Tt is obvious that, Green’s relation L is a right order congruence
on S and R is a left order congruence on S.

Green’s relation R defines a preorder <% on S, given by

a <p b [(as!) C L(bS).

The preorder < induces a partial order on the set of R-classes of S given
by
R, < Ry if and only if a < b.
We recall the following definition which has been introduced in [9] as
Noetherian ordered groupoid (semigroup).

Definition 1.1. A posemigroup S is said to be WRP-Noetherian if every
right poideal of S is finitely generated.

Recall that a posemigroup S satisfies the ascending chain condition for
poideals if, for any sequence of poideals Iy, Is, ..., I;, ... of S such that

LCLC...CILC...

there exists an element n € N of natural numbers such that I,,, = I,, for each
m € N;m > n. Also, it is said that, a posemigroup S satisfies the maximum
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condition for poideals if each nonempty set of poideals of S, partially ordered
by inclusion, has a maximal element. That is, for each nonempty set £ of
poideals of S, there is an element M € L such that there is no element
N € L with M C N. Equivalently, if N € £L and N C M, then N = M.

The following theorem provides the equivalent conditions for being WRP-
Noetherian for a posemigroup S in terms of the ascending chain condition
and maximal condition on right poideals.

Theorem 1.2. ([9], Theorem 2.5) The following are equivalent for a posemi-
group S:

(i) S is WRP-Noetherian.

(ii) S satisfies the ascending chain condition for right poideals.

(iii) S satisfies the maximum condition for right poideals.

2 Weakly right po-Noetherian posemigroups

We begin this section by providing a characterization for WRP-Noetherian
posemigroups in terms of their principal right poideals, as well as their
‘R-class structure.

Theorem 2.1. The following are equivalent for a posemigroup S':

(i) S is WRP-Noetherian;

(ii) S has no infinite set of pairwise incomparable principal right poideals
and satisfies the ascending chain condition on principal right poideals.

(iii) the poset of R-classes of S contains no infinite strictly ascending chain
or infinite antichain (An antichain of a poset is a subset consisting of
pairwise incomparable elements).

Proof. (i) = (ii) Clearly, by Theorem 1.2, S fulfills the ascending chain
condition on principal right poideals.

We are going to prove that S does not contain an infinite set of pairwise
incomparable principal right poideals. Let’s assume the opposite for the
sake of contradiction.

Suppose that there exists an infinite set {|(a;S!) : i € N} of pairwise
incomparable principal right poideals of S. For each n € N, let I,, be a right
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poideal of S generated by ai,...,a, (ie. I, = |({a1,...,a,}S'). Now, if
for some m < n, I, = I, then for some i < m,a, € |(a;S'). This implies
that i = m = n, since |(a;S') and |(a,S!) are incomparable. Therefore,
we get an infinite strictly ascending chain of right poideals of S,

LCLC....

This contradicts Theorem 1.2.

(ii) = (i) Let S satisfy the ascending chain condition on principal right
poideals but it is not WRP-Noetherian. We will show that there exists an
infinite set of pairwise incomparable principal right poideals of S.

Since S is not WRP-Noetherian, there exists an infinite strictly ascend-
ing chain of right poideals of S,

LCcLcC...,

by Theorem 1.2. Choose a1 € I and for k > 2,a; € I, — I;_1. Then since
J(a;SY) C I; and ai € Iy — I, j <k, the principal right poideal |(axS?) is
not contained in any principal right poideal |(a;S?).

The set {}(a;S!) : i € N} contains a maximal element, namely |(a,, S*).
Therefore, |(a,,S') is not contained in any |(a;S'),7 # ri. If it were,
then there would exist an infinite strictly ascending chain of principal right
poideals of S, which contradicts the hypothesis.

Now consider the infinite set {](a;S') : i > r; + 1}. This set contains
a maximal element, denoted by |(a,,S'). It follows that |(a,,S') is not
contained in |(a;S1) for any j>r, where j # ro. This means that, |(a,,S')
is not contained in J(a;S!) for any j that belongs to the set of natural
numbers, except for j = 7. This is because }(a,,S') is not contained in
any }(a;S') where j < k.

We can continue this process infinitely, and obtain an infinite set {](a,,S') :
i € N} of pairwise incomparable principal right poideals of S.

(iii) < (i) It is easily seen that the poset of R-classes of S is isomorphic
to the poset of principal right poideals of S, via the order isomorphism given
by R, ={be€ S:,(aSt) = [(bS1)} — L(aSh). O

Corollary 2.2. Any posemigroup with a finite number of R-classes is WRP-
Noetherian. In particular, all finite posemigroups and all right simple posemi-
groups (which include pogroups) are WRP-Noetherian.
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By the following example we show that satisfying the ascending chain
condition on principal right poideals for a posemigroup S is not sufficient
for being WRP-Noetherian.

Example 2.3. Suppose that X is a non-empty poset. Then the free posemi-
group F'x on X satisfies the ascending chain condition on principal right
poideals. But, Fx is WRP-Noetherian if and only if |X| = 1. For, let
y,z € Fx. Then |(yF%) C J(2F}) if and only if 2 is a proper prefix of y
which means that the number of elements of X appearing in y is greater
than that of z. Therefore, there does not exist an infinite strictly ascending
chain of principal right poideals of F'x.

If X is a trivial poset, then Fx contains no infinite set of pairwise in-
comparable principal right poideals, so it is WRP-Noetherian by Theorem
2.1. Now, suppose that X has at least two elements, and choose the ele-
ments r1, v € X with x1 # xo. If ¢ # j, the element xiz9 is not a prefix
of 2z and vice versa. So one gets an infinite set {}((z{z2)F%) : i € N} of
pairwise incomparable principal right poideals and hence, Fx is not WRP-
Noetherian by Theorem 2.1.

Note that the free posemigroup Fx is a sub posemigroup of the free
pogroup on X, which is WRP-Noetherian, while Fx for |X| > 1 is not
WRP-Noetherian. So the property of being WRP-Noetherian is not closed
under sub posemigroups.

In the following result we show that, similar to the case for monoids
and monoid acts, a posemigroup S is WRP-Noetherian if and only if every
finitely generated right S-poset is WRP-Noetherian. This means that it
satisfies the ascending chain condition on its down closed sub S-posets.
Recall that a (right) S-poset is a poset A which is also an S-act whose
action A\ : A x S — A is order-preserving, where A x S is considered as a
poset with componentwise order.

Proposition 2.4. For each posemigroup S the following statements are
equivalent:

(i) S is WRP-Noetherian.
(ii) Ewvery finitely generated right S-poset is WRP-Noetherian.

Proof. (i) = (ii) Suppose that A is a finitely generated right S-poset such
that A = (X) = XS! and X is a finite, and B is a down closed sub S-poset
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of A. For each xz € X, define a set I, = {s € S : s € B}. For each
z € X, if I, # (0 then it is a right poideal of S since B is a down closed
sub S-poset of A. Since S is WRP-Noetherian, for each x € X with I, # ()
there exists a finite set U, C I, such that I, = (U,). It is proved that B
is generated by the set U = Umex,lﬁé@ xU,. Suppose b € B. Then b € A
and so b = xs,z € X,s € 5. Hence s € I, and so for some u, € U, and
s' € S, s < uys'. Therefore, b = xs < (zuy,)s’ € L(US!), as desired.

(ii) = (i) Since the right poideals of S are down closed sub S-posets of
the right S-poset S (which is cyclic) the result holds. O

The following result shows that a finite union of WRP-Noetherian posemi-
groups is WRP-Noetherian.

Proposition 2.5. Let a posemigroup S be a union of its sub posemigroups
S1,...,8, which are WRP-Noetherian. Then S is WRP-Noetherian.

Proof. Let I be a right poideal of S. For 1 < i < n, let I; = I N S; which
clearly are right poideals of S;. Then each I; is generated by some finite set
X; since S; is WRP-Noetherian. Now, we prove that [ is generated by the
finite set X = |J; X;. Let s € I. Then for some 1 <i<n,s € INS; =
I; = [(X;S}), as desired. O

Now, the relationship between a WRP-Noetherian posemigroup and its
quotients is considered.

Proposition 2.6. If S is a WRP-Noetherian posemigroup and 0 is an order
congruence on S, then S/0 is also WRP-Noetherian.

Proof. Suppose that I is a right poideal of S/f. Define the set I = {s €
S : [s]lg € I}. Tt is easily seen that I is a right poideal of S. Then I is
generated by a finite set X since S is WRP-Noetherian. Now, we prove
that I is generated by the finite set X = {[z]g: 2 € X}. Let [s]g € [,s € .
Then for some x € X and t € St, s < xt. Then [s]g < [x]g[t]s € L(X(S/0)}),
as required. O

Note that the converse of the above Proposition does not hold in general.
For example, the free posemigroup Fx,|X| > 2 is not WRP-Noetherian by
Example 2.3, while there exist quotients of F'y which are WRP-Noetherian.
However, if 0 is an order congruence on .S contained in the Green’s relation
‘R, the converse holds, too.
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Proposition 2.7. Suppose that S is a posemigroup and 0 is an order con-
gruence on S contained in the Green’s relation R. Then the poset of R-
classes of S is isomorphic to the poset of R-classes of S/60. Particularly, S
is WRP-Noetherian if and only if S/6 is WRP-Noetherian.

Proof. Suppose that ) ¢ is the poset of principal right poideals of S, and
s /0 is the poset of principal right poideals of S/6. Using the fact that the
poset of principal right poideals of a posemigroup is isomorphic to the poset
of its R-classes, it is enough to prove that ) ¢ and ) ¢ /g are isomorphic.
Then by Theorem 2.1, S is WRP-Noetherian if and only if S/ is WRP-
Noetherian.

Consider a mapping o : ) ¢ = > ¢ /9> given by

H(sSh) = L([sle(S/6)").-

It is obvious that « is surjective, and it remains to show that it is an
order embedding (i.e. [(sS!) C [(s'S1) if and only if [([s]s(S/0)!) C
L([s'19(S/0)Y). Tt is clear that if |(sS') C |(s'S!) then [([s]o(S/0)}) C
L(10(5/6)"). Conversely, let 4([slo(S/8)") C 4([1o(S/0)}). Then [s]y €
1([s']0(S/0)) and so for some [tlg € (S/0)',[s]la < [s']o[tle = [s't]s. Hence
s <p §'t, and so for some s1,8],...,8n,8, € S;n € N, s < 510s] < ... <
spbs!, < s'. Then we get

s<s1 <8ty <sgty <...< Shtp..  ty < Stty.. . t; €8S

for some t1,...,t, € S! since § C R, which means that s € [(s'S!), as
desired. ]

As we have discussed before, sub posemigroups of WRP-Noetherian
posemigroups are not necessarily WRP-Noetherian. This section aims to
study when the property of being WRP-Noetherian can be transferred be-
tween a posemigroup S and its sub posemigroup 7.

Lemma 2.8. Suppose that T is a sub posemigroup of a posemigroup S such
that S — T is contained in a finite union of R-classes. Then S is WRP-
Noetherian if T' is WRP-Noetherian.

Proof. Consider a right poideal I of S. Then I NT is a right poideal of T
and so there exists a finite set X C I NT with INT = [(XT"') since T
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is WRP-Noetherian by the assumption. Let S — T C R; U...U R,, where
Ri,..., R, are R-classes. Fix r; € R; for each 1 < i < n. We prove that
I =(YSY) where Y = X U{r; : R C I,1 <i < n}is a finite set. Let
acl IfacINT,thenac |(XTY). Ifac S—T,thena € INR; for
some 1 < i < n. Hence [(aS') = [(r;S') which means that a < r;s for
some s € S'. Hence, in both cases, we get a € [(Y S1). d

Let’s assume that S is a posemigroup and 7 is its sub posemigroup. We
can define the T-relative Green’s relation R on S as follows:

Two elements a,b € S are related by R”, denoted as aR”b, if and only
if [(aTt) = L(bT1).

Similarly, we can define the relation £ on S, and H as the intersection
of RT and £”. We can also define DT and J7 in a similar way.

All of these relations are equivalence relations on S, and if T is a down
closed sub posemigroup of S, each class belongs entirely to either T or
S—T.

Proposition 2.9. Suppose that S is a posemigroup and T is its sub posemi-
group such that its complement S—T contains only finitely many R” -classes.
Then each RS-class of S is a union of a finite number of RT -classes.

Proof. We can consider the case where S — T # (), because if S = T,
trivially the result holds. Suppose R® is an R°-class of S. Now, assuming
for contradiction, that RS is a union of an infinite number of R7-classes, we
can deduce that R¥NT must contain infinitely many R”-classes, considering
that S — T contains only a finite number of R”-classes. We claim that for
any t1 € RSN T, there exists an x € T such that t1x € RS NT while for
all y in T, t; £ t1zy. According to the definition, we have RY C [(t;8Y).
Let u and v be elements in S — T, where uRTv. This implies that tjuRT t;v
because R is a left congruence. Since S—T contains only finitely many R” -
classes, it follows that |¢;(S — T') N T will only intersect the finite number
of the infinitely many RT-classes contained in R NT. Thus, there are
infinitely many RT-classes in R° N T that can only be obtained from t;
by right multiplication by elements from 7. Specifically, one can find an
RT-class R in R® NT that is different from that of ¢1, and an element z in
T such that t;z € R. Since t; and ¢;z are not in the same R”-class and x
is an element of T, we conclude that there is no element y in 7' such that
tl S tla:y.
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By choosing ¢; and z as the above, and assuming to = t;x, obviously we
get L(tyT) D [(toT"). Now, we can generate an infinite chain

J,(tlTl) D) \L(tQTl) D) J,(thl) D...

of such elements since ¢ is arbitrary. We can then choose x; € S—T for each
1 such that t; < ¢;112;, because all ¢;’s belong to a single R5-class of S , and
for all j < 4, we have t; < tj+1$j$j,1...£l?i. This implies that TjTj—1..-T; €
S —T, since L(t;TY) D }(tj41T1). As S —T contains only finitely many R”-
classes, there exists [ >j>i such that mlml_l...ijTxl:cl_l...a:jxj,l...xi. This
means that there exists an element ¢ € T" such that x;z;_1...z;7;_1...7; <
SC[SCl_l...SCjt. Then ti < tl—}—lxll‘l—l-'-l'jxj—lmxi < tl+1l‘ll‘l_1...l‘jt < t]’t.
This leads to a contradiction since |(t;71) D |(t;T7), and the proof com-
pletes. O

Proposition 2.10. Suppose that S is a posemigroup such that its poideals
are exactly its semigroup ideals. If T is a sub posemigroup of S such that
S — T is a finite union of RT -classes, then S is WRP-Noetherian if and
only if T is WRP-Noetherian.

Proof. Suppose that I is a right poideal of T" and J equals the right poideal
of S generated by I, J = IS'. Since S is WRP-Noetherian, .J can be
generated by some finite subset X C I. Suppose S — T contains the R”-
classes R1, Rs,...,R,, and for each 1 < i < n, fix r; € R;. We prove that
Y=XU{zr;el:xze€ X,1<i<n}is a finite generating set for I. Let
a be an element of I. Then, a belongs to J = XS', and hence there exist
elements z € X and s € S such that @ = xs. In the case where s € T,
a € L(YTY). Let s € S —T. Then there exists some i € {1,...,n} such
that s € R;. Thus, we can find t,u € T' such that s < r;t and 7; < su.
Therefore, xr; < xsu = au € I and so xr; € I since [ is a right poideal of
T. Hence a < xs < (zr;)t € YT! which shows that a € [(YT?), as desired.

For the converse, by Proposition 2.9, each R°-class is a union of RT-
classes, and hence S — T is contained in a finite union of R°-classes. There-
fore, S is WRP-Noetherian by Lemma 2.8. O

Corollary 2.11. Suppose S is a posemigroup such that its poideals are
exactly its semigroup ideals, and T is its sub posemigroup where S — T 1is
finite. Then S is WRP-Noetherian if and only if T is WRP-Noetherian.
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Corollary 2.12. Let S be a posemigroup. Then S is WRP-Noetherian if
and only if ST is WRP-Noetherian if and only if S is WRP- Noetherian.

Suppose that S is a posemigroup and 7' is its sub posemigroup. It is
easily seen that
<R C<re V(T xT).

We say that T preserves R (in S), or is R-preserving, if
SRr=<Rg N(T xT).

In the following result, we prove that the property of being WRP-
Noetherian is preserved by R—preserving sub posemigroups.

Proposition 2.13. Suppose S is a posemigroup and T is a sub posemigroup
of S which is R-preserving. If S is WRP-Noetherian, then T is also WRP-

Noetherian.

Proof. Assume that I is a right poideal of T, and I = [(IS!). As S is
WRP-Noetherian, there exists a finite subset X C I such that I = [(XS?!).
Suppose a is an element of I, then a € [(xS") for some x € X, implying
a <Rrg x. According to the assumption, a <, x, which means a € LzTh).
Therefore, I = [(XT"'), which proves that I is finitely generated. O

Definition 2.14. We call an element s of a posemigroup S poregular if
there exists an element x € S such that s < sxs. A posemigroup S is called
poregular if all of its elements are poregular. An element x € S such that
s < sxs is called a pseudoinverse of s. An element s’ € S such that s < ss's
and s’ < §'ss’ is called a po-inverse of s. Let s be a poregular element of S,
so there exists an element z € S such that s < szs. Put s’ = xsz. It can be
easily seen that s < ss’s and s’ < s’ss’. Therefore, every poregular element
of a posemigroup S has a po-inverse element.

Corollary 2.15. Suppose S is a WRP-Noetherian posemigroup with the
property that its right poideals are exactly its semigroup right ideals, and T
is its poregular sub posemigroup. Then T is also WRP-Noetherian.

Proof. Suppose T is a poregular sub posemigroup of a posemigroup S, and
t1 and to belong to T" with t; <rg t2. Then there exists an element s € St
such that ¢; = tos. If we take any inverse of to and call it ¢}, then we have
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t) = tas < tothtas = to(tht1), which belongs to J(t2T!). This implies that
t1 <R, t2, meaning that T" preserves R. Thus, according to Proposition
2.13, we get the result. O

Corollary 2.16. Suppose S is a posemigroup and I is a right poideal of S
with the property that for every i € I,i € {(iI). If S is WRP-Noetherian,
then I is also WRP-Noetherian.

Proof. 1t will be proved that I preserves R in S. To demonstrate this, we
only need to show that <g N(I xI) C<g,. Let’s assume that (,7’) belongs
to I x I and i <, i'. In this case, i € |(i'S'). As I is a right poideal with
the mentioned property, one gets

i€ L(i'SY) C U@ T)SY) = L@ (ISY) C LED).
Therefore, i <g, i, as desired. O

A sub posemigroup T of a posemigroup S is called right unitary in S if
for any t in T and s in S, if ts is also in T, then s must also be in T'.

Corollary 2.17. Assume S is a posemigroup and T is a right unitary
sub posemigroup of S. If S is WRP-Noetherian, then T 1is also WRP-
Noetherian.

Proof. 1t is easily seen that a right unitary sub posemigroup is R-preserving
and so by Proposition 2.13 we get the result. 0

Corollary 2.18. Suppose S is a WRP-Noetherian posemigroup with a sub
posemigroup T such that S —T is a left poideal of S. Then T is also WRP-
Noetherian.

Proof. If the complement of a sub posemigroup is a left poideal, it can
be deduced that the sub posemigroup is right unitary. Thus one gets the
desired result. ]

Corollary 2.19. Suppose S is a posemigroup and T is its sub posemigroup.
If S — T is a WRP-Noetherian poideal of S, then S is WRP-Noetherian if
and only if T is WRP-Noetherian.
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Proof. For the direct implication, we can refer to Corollary 2.18. Now, for
the converse, we can set [ as S —T. As we know, T is WRP-Noetherian, so
S/I =T U{0} is also WRP-Noetherian, according to Corollary 2.12. With
this information, we can apply Theorem 2.18 of [9], to conclude that S is
WRP-Noetherian. O

3 WRP-Noetherian poregular posemigroups

In this section, we will study WRP-Noetherian poregular posemigroups. We
give a necessary and sufficient condition for a poregular posemigroup to be
WRP-Noetherian.

Let E = {e € S:e < e?} and E" be the set of all products of n
elements of F. Further, let <FE> be the sub posemigroup of S generated
by E if E # 0; then <E> = J;cy E".

For any element s € S, we define V(s) as the set of all po-inverses of s.
For X C S, we define V(X) to be the set of all po-inverses of elements of
X, denoted by V(X) = U,cx V().

For a positive integer m, we define V™ (X) recursively. Specifically, we
define V1(X) = V(X), and for m > 1,V™t(X) = V(V™(X)).

Example 3.1. 1. If § is a right zero posemigroup then it is a WRP-
Noetherian poregular posemigroup, since its only right poideal is itself which
is finitely generated.

2. Let S = (N, max, <) where < is the usual order on N. Then the only
right poideal of S is itself which is principal. Hence S is a WRP-Noetherian
poregular pomonoid.

Theorem 3.2. Let S be a poregular posemigroup. If S is WRP-Noetherian
posemigroup then for every subset U C E, there exists a finite set X C U
with the property that for each u € U there exists x € X and s € S such
that u < xs.

The converse is also true if, for every subset U C E, there exists a finite
set X C U with the property that for each u € U there exists © € X such
that v < zu.

Proof. Assume that S is a WRP-Noetherian poregular posemigroup. Let
us consider a set U that is a subset of F, and a right poideal I = |(US?)
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of S. Since S is WRP-Noetherian, we can find a finite subset X from U
such that I = [(XS!). For every u € U, since u € I, there exist x € X and
s € St such that u < xs, as desired.

Now, assume that for every subset U C FE, there exists a finite set X C U
with the property that for each u € U there exists x € X such that u < zu
and [ is a right poideal of S. By the assumption, for the set U = I N E
there exists a finite set X C U that satisfies the mentioned property. We
claim that I = (X S'). Let a be an element of I. We can find an inverse
of a, say a’, such that a < ad’a. Since aa’ € U, we can find an x € X
such that aa’ < z(ad’). Consequently, a < aa’a < zaa’a, which implies that

a e L(XSY). 0

Corollary 3.3. Let S be a poreqular posemigroup such that its right poideals
are exactly its semigroup ideals. Then S is WRP-Noetherian if and only if
for every subset U C FE, there exists a finite set X C U with the property
that for each uw € U there exists x € X such that u < zu.

In the following, we prove that, for the set E of idempotent elements of a
poregular posemigroup, V(E") = | E"! which generalizes a result of Fitz-
Gerald ( [6]) for ordered semigroups. As a corollary, we conclude that the
sub posemigroup generated by the idempotents of a poregular posemigroup
is itself poregular.

Lemma 3.4. Let s be an element of a posemigroup S. If s € [(sE™s) then
se |Entl,

Proof. Let s < sxs,x € E™. Hence x = e; ...e,, where for each 1 < i < n,
e; € E. For each 1 < i < n, define u; =e1...¢; and v; = ¢;...¢e,. Then
uv; > x. Forn > 2 and 2 < j < n, define f; = vjsu;_1. Hence

2 _ ey eal s 4 — 1. . eap. 4 — £
fj = U SUj_1VjSUj—1 = VjSTSUj_1 > VjSU—1 = [;

which means that f; € E/. Then

s < sxs < s(28)" < $(upvps)(Up—10p-18) ... (uv18) =
(sUn) (VnSUn_1) . .. (vasur)(v18) = (52) fn ... fo(xs) € E"TL

which implies s € [(E™1). O

Corollary 3.5. V(E") C |[E"FL.



166 L. Shahbaz

Lemma 3.6. Suppose S is a poregular posemigroup. Then [E"Tt C V(E™).

Proof. Assume that s <ej...e,11, wheree; € E;1 <i<n+1. Then there
exists some s’ € S such that s < ss’s and s’ < §'ss’, since S is poregular.
Foreach1 <i<n-+1,setu; =eq1...¢; and v; = ¢;...e,. Then u;v; > s.
Further, for each 1 < j < n, define f; = vj;15'u;. Hence

2 _ . 1ot ay. Tt — oy, Tecla . ) loy . — f.
fj = Vj415 UjVj418 Uj = Vj418 88 Uj > Vjp15uj = fj.
Set z = f ... f1. Hence

s < ss's < s(s's)"
/ /
< S€p+418 UpUnS Up—1Up—1 - - . U]

= s(py18"up) (Vs Uup_1 . .. (v2s'ur)uy

=Sfn...[f1s
= 528,
and
282 = fn... f18fn... f1
= fn... fgvgs'ulsvn+1s’un .vas’ug
= fn ... fo(ves') (ursvpi1) (Sunvy) . . . (8'ugve)(s'uq)
> fo- - f2(v2s)(e1sent1)(s's)" " (s'uq)
> fu... fo(ves's)(s'ss'ur)
> fn--- fa(vas'uy)
=fn.. - f2S1
= z.
Therefore, s € V(z) C V(E™), as desired. O

By Lemmas 3.4 and 3.6 one gets the following theorem.

Theorem 3.7. Suppose S is a poregular posemigroup. Then V(E™) =
iEn—H.

Corollary 3.8. Suppose S is a poregular posemigroup. Then the sub posemi-
group < | E> of S is poregular.
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As a corollary of Theorem 3.2 and Corollary 3.8, one gets the following.

Corollary 3.9. Let S be a poregular posemigroup such that for every subset
U C E, there exists a finite set X C U with the property that for each v € U
there exists x € X such that u < xu. Then the sub posemigroup T = <| E>
of S is WRP-Noetherian.

4 WRP-Noetherian posemigroups and direct products

In this section, we study the behavior of WRP-Noetherian posemigroups
with respect to direct products.

Lemma 4.1. Assume that S and T are two posemigroups where S is infi-
nite. If S x T is WRP-Noetherian, then for each t € T,t € [(tT).

Proof. Assuming t is an element of T, we consider the right poideal of
S x T generated by the set {(s,t) : s € S}, denoted by I. As S x T is
WRP-Noetherian, there exists a finite set X C .S such that [ is generated
by the set {(z,t) : * € X}. We choose an element s € S\ X. Thus, for
some z € X and w € (S x T)!, we have (s,t) < (z,t)w. Since s # x, we
can conclude that w € S x T, so w = (u,v) for some u € S and v € T.
Consequently, we have t < tv € [(tT), as desired. O

Proposition 4.2. Assume S and T are posemigroups such that for each
seSandteT,se (sS)andt € [(tT). If S and T are WRP-Noetherian,
then their direct product, S x T, is also WRP-Noetherian.

Proof. Consider I, a right poideal of S x T'. For any s € S, we define a set
Isras [{t €T : (s,t) € I}, and claim that I, 7 is a right poideal of T". For,
let ¢ belong to Is 7 and u belong to T'. By the assumption, there exists an
element s’ € S such that s < ss’. Since I is a right poideal of S x T, we
can say that (s,tu) < (s,t)(s’,u) belongs to I, which implies that tu also
belongs to I, 7. Furthermore, if ¢’ € T and ¢’ < ¢ then (s,t') < (s,t) which
means that (s,t’) € I, since I is a right poideal of S x T. Hence t’ also
belongs to I, 1.

In a similar manner, for each ¢ € T, we define a right poideal I; 5 as
H{s € S:(s,t)€l}. Now we claim that there exists a finite set X C S such
that for each s € S, there exists x € X such that s € [(«S) and I, 7 = I, 7.
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Let’s suppose that there are an infinite number of right poideals in the form
of I, 7. It’s worth noting that for any s and s’ in S, we have Iy 7 C Iy 7.
Since S is WRP-Noetherian, there exists a finite set X; C S such that
S = [(X181). Clearly, S = [(X19), since for each s € S, s € |(s95), which
implies that X; C |(X15). Based on our assumption, we know that there
exists an 1 € X such that there are infinitely many s € J(x15) with Iy 7 #
I, 7. Put J; = S. Let’s consider the set Jo = {s € [(15) : Iy 7 # I, 1}
and let s € Jy and s’ € S. Then I, v C I, 7 C Iy r and hence ss’ € Jo.
Also, if &' < s then I, 7 C Iy C Iy 7 and so s’ € Ja, which means that J,
is a right poideal of S.

Since S is WRP-Noetherian, there exists a finite set Xo C .J such that
Jo = [(X295), and there exists an x5 € Xy such that there are infinitely
many s € J(z25) with Is 7 # I, 7. We can continue this process to obtain
an infinite ascending chain

le,T C I:r:Q,T cC...

of right poideals of T. However, this contradicts the fact that T" is WRP-
Noetherian. Thus, there must be a finite set Z C S such that I, p € {I. 7 :
z € Z} for every s € S.

Let z € Z. Define I, as the right poideal of S, which is generated by the
set L, ={s e S: 1,7 = 1,7} Since S is WRP-Noetherian, there exists
a finite set X, C L., where I = [(X.S). We can now set X = (J,., Xz,
the union of X, for all z € Z. It is evident that X meets the requirement
stated in the claim. Similarly, we can prove that there exists a finite set
Y C T such that for each t € T, there exists y € Y such that ¢ € |(yT') and
Iis=1,5.

Now, we show that I is generated by the finite set 7N (X xY'). Suppose
(s,t) € I. Then, t € Iy 7 and s € I; g. Using the above claim, we can find
z € X and s’ € S such that s < xs’ and I, = I, 7. Similarly, we can find
y €Y and ¢’ € T such that t < yt’ and Iis =1,5. Since s € I; 5 = I, g, we
can infer that (s,y) € I, which implies that y € I, 7 = I, 7. Consequently,
we can conclude that (z,y) € I. O

Theorem 4.3. Suppose S and T are two posemigroups, where S is infinite.

(i) If T is also infinite, then S x T is WRP-Noetherian if and only if both
S and T are WRP-Noetherian and for each s € S,t € T, s € [(s5),t €
L),
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(ii) If T is finite, then S x T is WRP-Noetherian if and only if S is WRP-
Noetherian and for each t € T,t € [(tT).

Proof. 1If S x T, is WRP-Noetherian, then both S and T are also WRP-
Noetherian since they are homomorphic images of S xT" according to Propo-
sition 2.6. Additionally, by Lemma 4.1, for each t € T,t € [(tT). If T is
infinite, then also for each s € S,s € [(sS), by Lemma 4.1. Now, con-
sider the case that T is finite and S is WRP-Noetherian while for each
t € T,t € [(tT). Then S! is also WRP-Noetherian by Corollary 2.12.
By Proposition 4.2, it follows that S' x 7" is WRP-Noetherian. Since
(S1 x T) — (S x T) is finite, it can be deduced from Corollary 2.12 that
S x T is WRP-Noetherian. O
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