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6 I. Naidoo

1 Introduction

This sequel paper is a continuation of Naidoo [39](2024) in which we pre-
sented pertinent studies of Dube on structured frames that of nearness-,
metric-, and uniform-frames, and relevant subcategories that he inserted
into pointfree topology and manoeuvred within these structured frames. We
also steered through Dube’s categorical manifestations with certain types of
mappings in frames, functorial commutativity, the Stone-Čech compactifi-
cation (βL), the regular Lindelöf coreflection or Lindelöfication (λL), the re-
alcompact coreflection or Realcompactification (υL), the paracompact core-
flection or Paracompactification (πL) and the Booleanization (ßL).

I recall that in one of our conversations, Dube acknowledged that he has
an affinity for ideals and it is more his preference. This is self-evident in
many of his papers. Nevertheless, I did remark that he is certainly dually
filtered. This paper is devoted to giving prominence to Dube’s pioneering
work on convergence in the category of frames and locales. It is an ag-
gregation of Dube’s work, particular filtered since his doctoral thesis until
his retirement in 2022. We mainly proposition Dube’s unprecedented work
specifically on filters in the categories Frm and Loc. We continue our
survey into Dube’s pointfree influence and engagements threading through
three main pillars that concatenates Dube’s prodigious scholarly contribu-
tions in pointfree topology during the period 1992 - 2022. We highlight some
of Dube’s pertinent independent and collaborative work on convergence in
frames and locales, and on extensions and quotients of frames. The relevant
background material on the category of frames that are referred to in this
paper may be accessed from [39]. In the next Section §2 we provide the
necessary further data that we require on frames and locales to make the
paper self-contained We also formalize some of the symbols and notations
that we use.

Section §3 spans over 5 areas of the diverse workings of Dube that all
have a common thread in filter characterizations of the conservative prop-
erties examined in each independently by Dube and with his coauthors.
Section §3 chronicles and recounts Dube’s interests in convergence and clus-
tering of filters in frames in which he characterizes normality, almost re-
alcompactness, pseudocompactness (with Matutu) and Čech-completeness
(with Mugochi and Naidoo) by the convergence and clustering of certain
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types of filters that he creates independently and jointly with his coauthors.

The study of convergence in the category of frames has been expansive
since Banaschewski and Pultr [23](1990) defined a filter in a frame to be
convergent provided it contains a completely prime filter. However, in the
opposite category of locales, in Dube and Ighedo [15](2016) the authors
found that the theory developed on convergence in Frm and its utilities
serviced by filters was inadequate and not suitable for their study involving
P -frames and on mainly characterising points of βL in terms of convergence.
They required an entity in locales that is more general than the exemplar of a
filter in frames. Filters in the lattice of sublocales Sℓ(L) of a locale L whose
members are sublocales met their requirements. This is an unchartered
realm in Loc that Dube jointly ventures into for discovery and posterity.
In Section §4 we recapitulate Dube’s seminal joint work on convergence
in Loc, the results of which bear similar resemblance to many classical
topological ones as one would undoubtedly expect. We end in Section §5 by
communicating celebratory tributes to Dube extended by Joanne Walters-
Wayland, Papiya Bhattacharjee and Tega Ighedo.

2 Preliminaries

For a general background into frames and locales we suggest the book by
Picado and Pultr [42] which is our primary source for the symbols, notations,
nomenclature and pertinent results that are used.

Frm is the category in which the objects are frames and morphisms are
frame homomorphisms (maps between frames that preserve finite meets and
arbitrary joins). Equivalently, a frame L is a complete Heyting algebra with
(unique) Heyting operation → on L given by

a ∧ b ≤ c iff a ≤ b→ c,

where b → c =
∨{x : b ∧ x ≤ c} for any a, b, c ∈ L. This emanates

since the map L L
x∧(−)

preserves
∨

and so has a right Galois adjoint

L L
x→(−)

. The operation → will be used in the subsequent sections in
describing sublocales. We will be also be interested in the opposite (dual)
category Loc = Frmop, the objects of which are called locales (which are



8 I. Naidoo

the same as frames) and morphisms are localic (or continuous) maps (which
are the right adjoints of frame homomorphisms).

We consider L ∈ Frm hereunder and in the next two subsections unless
otherwise stated. We recall that each element x ∈ L has a pseudocomple-
ment denoted

x∗ =
∨
{y ∈ L : y ∧ x = 0}.

The following are well known properties of the pseudocomplement for ele-
ments x, y in L and any B ⊆ L:

x ≤ x∗∗, x∗∗∗ = x∗,
(∨

B

)∗
=
∧

b∈B
b∗, and (x ∧ y)∗∗ = x∗∗ ∧ y∗∗.

Furthermore, x ∈ L is dense if x∗ = 0. The collection of all dense elements
in L is denoted

dL = {x ∈ L : x∗ = 0}.
x ∈ L is called a regular element if x = x∗∗. The Booleanization of L is the
set of all regular elements of L that we denote by

ßL = {x ∈ L : x = x∗∗}.

x is complemented if x ∨ x∗ = 1.

We will require some properties of a frame (locale) L that we briefly
provide in the following Remark.

Remark 2.1.

(1) RegFrm is the category of regular frames and their homomorphisms.
L ∈ RegFrm if for each x ∈ L,

x =
∨
{y ∈ L : y ≺ x}

where y ≺ x iff y∗ ∨ x = 1.

(2) CRegFrm is the category of completely regular frames and their ho-
momorphisms. Here L ∈ CRegFrm if for each x ∈ L, x =

∨{y ∈
L : y ≺ x} in which x =

∨{y ∈ L : y ≺≺ x} where y ≺≺ x iff there is
a scale {sq ∈ L : q ∈ Q ∩ [0, 1]} such that y = s0, x = s1 and sq ≺ sp
whenever q < p).
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(3) L is normal frame if whenever x ∨ y = 1 there is s, t ∈ L such that
s ≺ x, t ≺ y and s ∧ t = 0.

(4) L is Hausdorff if a, b ∈ L, 1 ̸= a ≤ b implies that ∃ c ∈ L such that
c∗ ̸≤ a and c ̸≤ b (Johnstone and Shu-Hao [33](1988)).

(5) Pt(L) is the set of all points or prime elements of L. p ∈ L is called
a point of L if p ̸= 1 and whenever x, y ∈ L with x ∧ y ≤ p we have
x ≤ p or y ≤ p.

(6) L is spatial if L ≃ OX for some topological space X where OX is the
frame of open sets of X.

The points of a frame provide internal equivalent formulations of spa-
tiality.

Lemma 2.2. For a frame L the following are equivalent:

(1) L is spatial.

(2) For each x ∈ L, x =
∧{p ∈ Pt(L) : x ≤ p}.

(3) If y ≰ x in L then there is p ∈ Pt(L) such that x ≤ p and y ≰ p.

In the above lemma, the equivalence of spatiality and (2) is given in Pi-
cado and Pultr [42, Chapter II, Proposition 5.3](2012) whilst the equivalence
of (3) appears in Johnstone [32, Chapter II, §1.3 & §1.5](1982). For regular
frames, Dube in [9](2011) provides the following equivalent expression of
spatiality that embraces points.

Lemma 2.3. [9, Lemma 3.1] A regular frame L is spatial iff for each 1 ̸=
x ∈ L there is p ∈ Pt(L) such that x ≤ p.

2.1 Covering properties of a frame We will use the notation ⊆<ω
(resp. ⊆ω) for finite (resp. countable) subsets. The frame ℘(X) is the
powerset of X. A cover of a frame L is any subset whose join is the top
and CovL = {C ⊆ L :

∨
C = 1} is the collection of all covers of L whilst

Covω L = {C ⊆ω L :
∨
C = 1}. We also define the set Covq L = {C ⊆

L :
∨
C ∈ dL} and members of Covq L are termed quasi-covers. For any

F ⊆ L we let
α(F ) =

∨

x∈F
x∗.
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x ∈ L is a compact element if x ≤ ∨S for any S ⊆ L then x ≤ ∨T
for some T ⊆<ω S. kL denotes the collection of all compact elements of
L. If 1 ∈ kL then the frame L is a compact frame (every cover of L has a
finite subcover). Banaschewski and Mulvey [22](1980) define x ∈ L to be
cocompact provided that the frame ↑ x = {y ∈ L : x ≤ y} is compact. We
denote the collection of all cocompact elements of L by

cokL = {x ∈ L : ↑x is compact}.

We also mention that L is

1. Lindelöf if for each A ∈ CovL there is Covω L ∋ B ⊆ A (each cover
of L has a countable subcover),

2. almost compact if for each A ∈ CovL there is Covq L ∋ B ⊆<ω A
(each cover of L has a finite subset whose join is dense), and

3. locally almost compact if α(Fa) = 1 where

Fa = {x ∈ L : ↑ x∗∗ is almost compact}.

We will refer to a frame that is not almost compact as a nalco-frame.
We define an element x in a frame L to be co-almost compact if ↑ x is an
almost compact frame and denote the collection of all co-almost compact
elements by

coakL = {x ∈ L : ↑ x is almost compact}.
In Paseka and Šmarda [40](1988) the authors provide an investigation into
locally almost compact frames and they provide an extensive treatment of
almost compact frames in Paseka and Šmarda [41](1992). It is well known
that for regular frames almost compactness and compactness coincide (see
Hong [29](1992)). We note that if L is almost compact and x ∈ ßL, then
x ∈ coakL [40, Proposition 2.3](1988). Furthermore, if L is Hausdorff then
L is compact iff L = coakL [40, Proposition 2.9](1988). The co-almost
compact elements are again captured in Proposition 3.17 of our paper in
our synopsis celebrating Dube’s work.

2.2 The cozero part of a frame Let L be a bounded distributive lat-
tice in which for each S ⊆ω L,

∨
S ∈ L and binary meet distribute over these
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joins (L satisfies the frame distributive law for countable subsets), then L
is called a σ-frame. σFrm is the category of σ-frames and their morphisms.
σ-frame homomorphisms are maps between σ-frames that preserves all fi-
nite meets and countable joints (including the top and bottom elements). In
general, in a σ-frame the pseudocomplement of an element does not exist.
With the minor modification (to incorporate countable joins) L ∈ σFrm is
a regular if for each x ∈ L, x =

∨
Y for some Y ⊆ω {y ∈ L : y ≺ x} where

y ≺ x if there is s ∈ L such that y ∧ s = 0 and s ∨ x = 1. Normality for
σ-frames is defined in the same way as that for frames and it is well known
that every regular σ-frame is normal (see Gilmour [27](1984)).

For L ∈ Frm, L ∋ c is a cozero element if c = h(R\{0}) for some frame
homomorphism h : OR → L. The cozero part of a frame L is the set of
all cozero elements of L denoted as Coz[L]. For L ∈ CRegFrm, Coz[L]
join-generates L and Coz[L] is a regular σ-frame. Equivalent descriptions
of a cozero element that are frequently favoured is given in Banaschewski
and Gilmour [18, Proposition 1](1996):

Proposition 2.4. In any frame L and c ∈ L the following are equivalent:

(1) c ∈ Coz[L].

(2) c =
∨{xn ∈ L : xn ≺≺ c ∀n ∈ N}.

(3) c =
∨{xn ∈ L : xn ≺≺ xn+1 ∀n ∈ N}.

For more details on σ-frames and Coz[L], see Reynolds [44](1979), Gilmour
[27](1984), Madden and Vermeer [36](1986), Walters [46, 47](1990, 1991)
and Banaschewski and Gilmour [18, 19](1996, 2001).

Ball and Walters-Wayland [17](2002) briefly introduced P -frames, the
pointfree analogue of P -spaces (those spaces in which each cozero set is
closed).

A frame L is a P -frame if Coz[L] is complemented, that is if
x ∈ Coz[L] then x∗ ∈ Coz[L].

Since a topological space X is a P -space iff OX is a P -frame, this property
is conservative. Notably from Ball and Walters-Wayland [17, Proposition
8.4.8],

L ∈ Frm is a P -frame iff λL is a P -frame iff υL is a P -frame.
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Dube has made further inroads on this concept and provides a more
detailed account of P -frames in Dube [8](2009).

2.3 Filters and convergence in frames For a frame L, ∅ ≠ F ⊆ L
is a filter in L if 0 /∈ F and F is an upset (x ∈ F and x ≤ y implies y ∈ F )
that is closed under finite meet. F is a proper filter if F ̸= L. We will denote
the collection of all filters in L by F(L) and consider only proper filters. By
dualizing, we have the concept of an ideal in a frame. The set of all ideals
in L is denoted by I(L) and ordered by inclusion (J(L),⊆) is a compact
frame with

⋂
=
∧

and for any collection of ideals {Ij : j ∈ J}, its join in
J(L) is the ideal

∨

j∈J
Ij =

{∨
F : F ⊆<ω

⋃

j∈J
Ij

}

given in Picado and Pultr [42, Proposition 4.1.1](2012). For a ∈ L,

↑a = {b ∈ L : a ≤ b} ∈ F(L)

is the principal filter generated by a. For any H ⊆ L, ⟨H⟩ denotes the filter
generated by H.

Remark 2.5. Given any a, b ∈ L, S ⊆ L and F ∈ F(L), F is classified as:

(1) prime if a ∨ b ∈ F then a ∈ F or b ∈ F . Fp(L) denotes the collection
of all prime filters in L.

(2) disjoint-prime if a ∨ a∗ ∈ F then either a ∈ F or a∗ ∈ F .
(3) completely prime if

∨
S ∈ F then F ∩ S ̸= ∅. The collection of all

completely prime filters is denoted Fcp(L). If p ∈ Pt(L) then Fp =
{x ∈ L : x ̸≤ p} ∈ Fcp(L). In contrast, if F ∈ Fcp(L), then pF =∨
(L\F ) ∈ Pt(L). Moreover, pFp = p and FpF = F .

(4) an ultrafilter if G ∈ F(L) and F ⊆ G then F = G. Fult(L) is the
collection of all ultrafilters in L.

(5) a σ-filter if
∧
S ∈ F whenever S ⊆ω F . The collection of all σ-filters

in L is denoted Fσ(L).

(6) regular if for each y ∈ F ∃ x ∈ F such that x ≺ y. Freg(L) denotes the
set of regular filters of L.
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(7) completely regular if for each y ∈ F ∃ x ∈ F such that x ≺≺ y. Fcreg(L)
denotes the set of completely regular filters of L.

(8) saturated if dL ⊆ F .

We note that a filter base F is called regular (respectively, completely reg-
ular) if F satisfies (6) (respectively, (7)). In the above, Remark (2) and (8)
emanate from Carlson and Porter [24](2009) and is given in pointfree form
in Dube [7](2015).

Dualizing the above notions we characterize the corresponding types
of ideals as prime-, maximal- and σ-ideal. The corresponding respective
collections of these types of ideals are respectively denoted Ip(L), Imax(L)
and Iσ(L). The set of all minimal prime ideals of L will be denoted Ipmin(L).
The classical separation lemma of Stone for distributive lattices (see, for
instance, Johnstone [32](1982)) is a fundamental existential result for prime
ideals and we will refer to it in the subsequent part of the paper.

Lemma 2.6 (Stone’s Separation Lemma). Let F be a filter and I be an
ideal in a distributive lattice L, and suppose that F ∩ I = ∅. Then there is
a prime ideal P of L such that I ⊆ P and P ∩ F = ∅.

The original notion of convergence in pointfree topology is ascribed to
Banaschewski and Pultr in [23](1990). Their study primarily involved pro-
viding an alternate description of the completion of a uniform frame via
its Samuel compactification (the compact regular coreflection of a uniform
frame). Apart from this description of the completion, they considered the
classical Cauchy completeness of a uniform space in pointfree form. In so
doing, a prerequisite was the notion of a convergent filter in a frame. Given
F ∈ F(L), they defined F to be convergent if there is G ∈ Fcp(L) such that
G ⊆ F (a filter F is convergent if it contains a completely prime filter).

Hong [30](1995) presented a first concise investigation into pointfree con-
vergence and introduced a novel cover approach to convergence and clus-
tering of filters in frames derived from the conservative property of the
convergence of open filters in spaces. Given F ∈ F(L),

1. F converges or is convergent in L provided that F ∩ A ̸= ∅ for each
A ∈ CovL.
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2. F clusters or is clustered in L provided that secF ∩ A ̸= ∅ for each
A ∈ CovL where secF = {x ∈ L : for any a ∈ F, a ∧ x ̸= 0}.

We introduce the following notations for the convergence and clustering
of a filter in a frame L. Given F ∈ F(L),

1. F →○L denotes that F converges in L. We note that F →○L iff ∀
A ∈ CovL, a ∈ F for some a ∈ A. If G ∈ F(L) and G ⊇ F →○L then
G →○L.

2. F ⊸○L denotes that F clusters in L. Hong [30, Proposition 1.3](1995)
provides an equivalent formulation of a clustered filter:

F ⊸○L iff α(F ) ̸= 1.

Furthermore, if F →○L then F ⊸○L. If G ∈ F(L) and G ⊆ F ⊸○L then
G ⊸○L.

3. F is called free if F ̸ ⊸○L, that is α(F ) = 1 (see Strauss and Zhang
[48](1999)). The collection of all free filters (resp. prime, resp. ultra-
filters) in L is denoted F𭟋(L) (resp. F𭟋

p (L), resp. F
𭟋
ult(L)).

Free filters in a frame L are termed α-filters by Paseka and Šmarda
in their papers [40, 41](1988, 1992). They observed that

for any G ∈ F𭟋(L),
∧
G = 0

and they provided an elegant characterization of almost compact frames
using such filters:

A frame L is almost compact iff F𭟋
ult(L) = ∅.

They also showed that

A nalco-frame L is locally almost compact iff Fa ∈ F𭟋(L).

We note the following concerning filters, ultrafilters and some covering
properties characterized by them.

Remark 2.7. (1) If F ∈ Fcp(L) then F →○L. For regular frames, conver-
gence is equivalently formulated using completely prime filters. If L is a
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regular frame and F ∈ F(L) then F →○L iff F contains a completely prime
filter (Banaschewski and Hong [21]). Hong’s notion of convergence of fil-
ters is weaker than that of the Banaschewski-Pultr definition. Nevertheless,
both descriptions coincide for regular frames.

(2) If F ∈ Fult(L) then F = secF and consequently dL ⊆ F (F contains
all dense elements). We also have that every filter is contained in an ultrafil-
ter (by the usual application of Zorn’s Lemma). Furthermore, if F ∈ Fult(L)
then F ⊸○L iff F →○L.

(3) For regular frames, compactness and Lindelöfness have characteri-
zations by the convergence and clustering of filters. For a regular frame L,
we have by Hong [30, Corollary 1.5](1995) that

L is compact iff F ⊸○L for every F ∈ F(L)

iff F →○L for every F ∈ Fult(L),

and by Naidoo [37, Theorem 4.6](2007) that

L is Lindelöf iff F ⊸○L for every F ∈ Fσ(L).

We now briefly discuss the notion of frame extensions that we will require
in the next section. We call an onto frame homomorphism h : L → M a
quotient. For any frame homomorphism h : L → M its right adjoint is
denoted h∗ : M → L and h : L→M is dense iff h∗(0M ) = 0L.

In a frame L and a ∈ L, the map φa : L→↑a defined by φa(x) = a ∨ x
is a quotient called the closed quotient at a. Every frame homomorphism
h : L→M has a dense-onto factorization via the closed quotient at h∗(0).

L ↑h∗(0) Mφh∗(0)

h

h̄

h = h̄ ◦φh∗(0) where h̄ is the dense frame homomorphism mapping as h.

An extension of a frame L is any pair (M,h) where M is any frame and
h : M → L is a dense quotient which we call the extension map.

Remark 2.8. Let (M,h) be an extension of a frame L. Then (M,h) is
called:
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(1) strict if h∗(L) generates M ,

(2) spatial over L if whenever h(a) = h(b) and a ̸≤ b, then ∃ p ∈ Pt(M)
such that b ≤ p and a ̸≤ p,

(3) perfect if h∗(a∨a∗) = h∗(a)∨h∗(a∗) ∀ a ∈ L, Equivalently, if h∗(a∨b) =
h∗(a) ∨ h∗(b) ∀ a, b ∈ L with a ∧ b = 0.

In the above Remark, (1) and (2) can be found in Banaschewski and
Hong [20](1999) and (3) emanates from Baboolal [16](2011). See also Dube
and Mugochi [13](2015). Hong in [30](1995) defines a simple extension of
a frame L determined by a set of filters using a subframe of the product
L× ℘(X) where X ⊆ F(L) as follows. For each a ∈ L, let

Xa = {F ∈ X : a ∈ F}

and

sXL = {(a,S) ∈ L× ℘(X) : S ⊆ Xa}.
Then sXL is a subframe of L × ℘(X). Furthermore, the map s : sXL → L
given by s(a,S) = a is an open, dense quotient with right adjoint s∗ : L→
sXL given by s∗(a) = (a,Xa). The pair (sXL, s) is called the simple extension
of L with respect to X and s is the simple extension map. The subframe
of sXL generated by s∗(L) is denoted by tXL and s |tXL= t : tXL → L is a
dense quotient. Then (tXL, t) is the strict extension of L determined by X.

2.4 Sublocales Let L ∈ Loc. A subset S ⊆ L is a sublocale of L if

(S1)
∧
A ∈ S for all A ⊆ S, and

(S2) for all x ∈ L and s ∈ S, x→ s ∈ S.
By (S1) 1L =

∧ ∅ ∈ S for any S ∈ Sℓ(L) so that every sublocale is
nonempty. The lattice of all sublocales of L, denoted by Sℓ(L), ordered by
inclusion is complete with meet and join given by

∧

j∈J
Sj =

⋂

j∈J
Sj and

∨
Sj =

{∧
A : A ⊆

⋃

j∈J
Sj

}
,

for any family {Sj : j ∈ J} of sublocales of L. The least (smallest) sublocale
of L is 0Sℓ(L) = {1} = O and is contained in any other sublocale. The
greatest sublocale is, of course, 1Sℓ(L) = L.
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For S ∈ Sℓ(L), its supplement is the sublocale defined as

sup(S) =
⋂
{R ∈ Sℓ(L) : R ∨ S = L} =

∨
{T ∈ Sℓ(L) : T ∩ S = O}.

S is complemented if there is T ∈ Sℓ(L) such that S∩T = O and T ∨S = L.
Not all sublocales have complements. If S ∈ Sℓ(L) is complemented, then
sup(S) is the complement of S in Sℓ(L). We will denote the lattice of all
complemented sublocales of L by

Sℓc(L) = {S ∈ Sℓ(L) : S is complemented}.

We refer the reader to Isbell [31](1991) and Plewe [43](2000) for further
details on the lattice Sℓc(L).

Sℓ(L) is a co-frame meaning that for any S ∈ Sℓ(L) and any family
{Tj : j ∈ J} of sublocales we have that

S ∨
⋂

j∈J
Tj =

⋂

j∈
(S ∨ Tj).

For x ∈ L, we have the open and closed sublocale induced by x, given
respectively by

o(x) = {x→ a : a ∈ L} = {a : x→ a = a}

and

c(x) = {a ∈ L : x ≤ a} = ↑x.
The following are some well-known identities and properties of open and

closed sublocales.

Lemma 2.9. For L ∈ Loc, x, y ∈ L and {xj : j ∈ J} ⊆ L we have

(OSC1) o(0L) = c(1L) = O and o(1L) = c(0L) = L,

(OSC2) o(x) and c(x) are complements of each other in Sℓ(L),

(OSC3) x ≤ y iff c(x) ⊇ c(y) iff o(x) ⊆ o(y),

(OSC4) o(x) ∩ o(y) = o(x ∧ y) and c(x) ∨ c(y) = c(x ∧ y),
(OSC5)

⋂
j∈J

c(xj) = c

( ∨
j∈J

xj

)
and

∨
j∈J

o(xj) = o

( ∨
j∈J

xj

)
, and

(OSC6) c(x) ⊆ o(y) iff x ∨ y = 1L.
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Sublocales are equivalently represented by congruences and nuclei as
we briefly illustrate (see Picado and Pultr [42, Chapter III §5](2012) or
Johnstone [32, Chapter II §2](1982) for the finer details).

We recall that for any frame L, a congruence on L is an equivalence
relation θ ⊆ L×L that is a subframe of L×L. The lattice of congruences,
CL, of a frame L partially ordered by inclusion is complete with intersection
for the meet. Moreover, CL is a frame with top∇ = 1CL = L×L and bottom
∆ = 0CL = {(x, x) : x ∈ L}. Each x ∈ L is associated with the least (or
smallest) congruence containing (0L, x), namely ∇x = {(a, b) ∈ L × L :
a ∨ x = b ∨ x} (the closed congruence), and with the least congruence
containing (x, 1L), namely ∆x = {(a, b) ∈ L× L : a ∧ x = y ∧ x} (the open
congruence). Furthermore, ∇x ∨∆x = ∇ and ∇x ∩∆x = ∆ so that ∇x and
∆x are complements of each other in CL.

A nucleus on a frame L is a monotone map ν : L → L satisfying the
following properties for each x, y ∈ L:
(N1) x ≤ ν(x),
(N2) ν(ν(x) = ν(x), and
(N3) ν(x ∧ y) = ν(x) ∧ ν(y).

NL denotes the collection of all nuclei on a frame L that is partially
ordered by ν, κ ∈ NL, ν ≤ κ iff ν(x) ≤ κ(x) for each x ∈ L. NL is a
frame with meet defined for N = {νj : j ∈ J} ⊆ NL by

∧
N : L → L

given by
∧
N(x) =

∧
j∈J

νj(x). Given any nucleus ν on L, the associated

congruence on L is defined by θν = {(x, y) ∈ L × L : ν(x) = ν(y)}. For
any congruence θ ∈ CL, we define νθ : L → L by νθ(x) =

∨{y : (y, x) ∈ θ}
which gives the associated nucleus on L. On the other hand, given any
sublocale S ∈ Sℓ(L), νS : L→ L given by νS(x) =

∧{s ∈ S : x ≤ s} defines
the associated nucleus on L. For any nucleus ν : L → L, the associated
sublocale is Sν = ν(L). Sublocales, congruences and nuclei are thus in
one-to-one correspondences with each other:

Sℓ(L) NL CL

S 7→νS

Sν←[ν

ν 7→θν

νθ← [θ

The open and closed sublocales (o(x) and c(x)) correspond to the open
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and closed congruences (respectively, ∆x and ∇x). As frames, we have the
isomorphisms

Sℓ(L)op ≃ NL ≃ CL.

Particularly, meets and join in Sℓ(L) correspond to respectively join and
meets in CL (and NL).

For S ∈ Sℓ(L), the closure of S in L, denoted by S, is the least closed
sublocale containing S, computed as

S =
⋂

x∈L
{c(x) : S ⊆ c(x)} = c

(∧
S

)
= ↑

(∧
S

)
.

The following properties of closures can then be realised for S ∈ Sℓ(L):

(Cl1) S ⊆ S.
(Cl2) S = S.

(Cl3) S ∨ T = S ∨ T .
(Cl4) o(x) = c(x→ 0L) = c(x∗) = ↑ (x∗) for each x ∈ L.

A sublocale S is dense in L iff S = L iff 0L ∈ S. It is well established that
every locale L has a smallest dense sublocale ßL (see Johnstone [32, Chapter
II, §2.3, Lemma, pg.50](1982) or Picado and Pultr [42, Chapter III, §7,
Proposition, pg. 40](2012)) where ßL = {x→ 0: x ∈ L}.

3 Clustering in frames

In this section, Dube’s mathematical works especially on the clustering of
filters in frames is elucidated. In §3.1 we feature Dube’s earliest conceptions
on pointfree clustering emanating from his doctoral thesis [1](1992) followed
by his insertion and coverage of specialized filters that he brings to the fore
in [2](2002). Dube’s compass points next towards weaker forms of realcom-
pactness in [4](2006) that forms the basis in his subsequent encounter with
convergence that we elaborate in §3.2. We also acknowledge Dube’s joint
work with Matutu in [5](2007) with particular interest on the interaction of
pseudocompactness with filters.

In §3.3 we muse on the Katětov extension (κL, κL) of a frame L and
confront Dube’s unfolding of the Fomin extension (σL, σL) of L and its
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coincidence with the Stone-Čech compactification βL for a completely reg-
ular frame L. Penulimately, in §3.4 we touch upon the concept of Čech-
completeness developed jointly by Dube together with Mugochi and the
author in [11](2014) and revisit Dube’s collaborative work with Mugochi
in [13](2015) on remote points. We also narrate Dube’s prerequisite work
on frame quotients in [3](2005) that is fundamental in grounding his joint
work in [13](2015). We end with §3.5 that gives a brief account of a stronger
version of clustering in pointfree form that Dube introduces with the au-
thor in addressing a pointfree version of a folklore result on convergence in
spaces.

3.1 Filters and their balance Dube’s initial imprint on convergence
in pointfree topology was rather subtle, first appearing in his doctoral thesis
[1](1992). Dube invents the notion of a near subset which inadvertently
cloaks Hongs [30](1995) notion of convergence of filters in frames:

A ⊆ L is near if ∀ B ∈ CovL ∃ b ∈ B such that b ∧ a ̸= 0 ∀ a ∈ A.

Equivalently,

A ⊆ L is near iff A ∩ secB ̸= ∅ ∀ B ∈ CovL.

Dube then shows, in his doctoral thesis [1](1992), that

A ⊆ L is near iff {a∗ : a ∈ A} /∈ CovL,

that is
A is near iff α(A) ̸= 1.

For F ∈ F(L), this transcribes to F ⊸○L iff F is near. Dube’s original
concept of a near subset actually delivers the pointfree notion of Hong’s
clustering of filters.

Dube’s first impactful contribution to the theory of convergence in frames
appears in Dube [2](2002) in which he characterizes normality in frames via
the use of certain distinguished filters that he defines as the balanced and
closed-generated ones. Moreover, Dube provides some of the essential classi-
cal theory on filters of point set topology in pointfree form that we highlight
below. Stone’s Separation Lemma is used to show (1) below.
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Proposition 3.1. Let L ∈ Frm and F ∈ F(L).
(1) If 0 ̸= x ∈ F then ∃ G ∈ Fp(L) such that x /∈ G and F ⊆ G.
(2) F =

⋂{P ∈ Fp(L) : F ⊆ P}.
(3) F ∈ Fult(L) iff ∀ x ∈ L either x ∈ F or x∗ ∈ F .
(4) F ∈ Fp(L) iff F is maximal with respect to missing some M ⊆ dL where
M is closed under finite joins.
(5) F ∈ Fult(L) iff F is maximal with respect to containing dL.

Dube then defines his distinguished filters and ideals as follows.

Remark 3.2. Let F ∈ F(L).

(a) b(F ) =
⋂{U ∈ Fult(L) : F ⊆ U} ∈ F(L) and b(F ) is called the balance

of F . If F = b(F ) then F is said to be balanced. We denote the
collection of all balanced filters in a frame L by Fbal(L).

(b) If I ∈ I(L) then γ(I) = {x ∈ L : ∃ y ∈ I, x ∨ y = 1} ∈ F(L). If there
is J ∈ I(L) such that F = γ(J) then F is called closed-generated.

(c) If G ∈ F(L), then δ(G) = {x ∈ L : ∃ y ∈ G, x ∧ y = 0} ∈ I(L). Given
any J ∈ I(L), if there is F ∈ F(L) such that J = δ(F ) then J is called
open-generated.

(d) If F = γ(δ(F )) then F is called stably closed-generated.

Using the above original and innovative pointfree concepts Dube dis-
cerns the following neat characterizations of balanced filters, ultrafilters and
maximal ideals with elegant and succinct proofs.

Proposition 3.3. Let L ∈ Frm, F ∈ F(L) and J ∈ I(L). Then

(1) F ∈ Fult(L) iff F ∈ Fp(L)∩Fbal(L) iff L\F ∈ Ipmin(L) iff δ(F ) = L\F .
(2) F ∈ Fbal(L) iff dL ⊆ F .
(3) b(F ) = {x ∈ L : x∗∗ ∈ F} = ⟨F ∪ dL⟩ = sec2 F .

(4) secF =
⋃{U ∈ Fult(L) : U ⊇ F}.

(5) J ∈ Imax(L) iff γ(J) = L\J .

Dube also presents a characterization of when F ∈ Freg(L) and this is
precisely when F is stably closed-generated. Furthermore, he imparts the
following:
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For L ∈ RegFrm, F𭟋
ult(L) ⊆ Freg(L) iff F𭟋

p (L) ⊆ Fult(L).

His main objective of the paper in characterizing normality in frames is
disseminated using his prototype distinguished filters.

Proposition 3.4. [2, Proposition 9] A frame is normal iff its closed-generated
filters are precisely the stably closed-generated ones.

3.2 Almost realcompactness and pseudocompactness Dube’s
subsequent exposé on convergence in pointfree topology is to be found in
Dube [4](2006) in his creation of weaker forms of realcompactness. In this
section we highlight Dube’s conception of almost realcompactness and filter
characterizations with pseudocompactness.

Remark 3.5. Let L ∈ Frm and S be any sublattice of L. Then J ∈ I(S)
is called

(a) σ-proper if
∨
L

T ̸= 1 for each T ⊆ω J , and
(b) completely proper if

∨
L

J ̸= 1.

L is a realcompact frame if for any J ∈ Imax(Coz[L]) that is σ-proper is
completely proper (Banaschewski and Gilmour [19](2001)).

In Dube [4](2006) a weaker form of the Banaschewski and Gilmour no-
tion of realcompactness is developed by Dube. By replacing the sublattice
Coz[L] by ßL, the Booleanization of L, Dube defines a frame L to be almost
realcompact if for any J ∈ Imax(ßL) that is σ-proper is completely proper.
Every realcompact frame is almost realcompact and if L is Boolean, then
Coz[L] = ßL so that realcompactness and almost realcompactness coincide
for Boolean frames. Dube defines F ∈ F(L) to be σ-fixed if α(S) ̸= 1 for
any S ⊆ω L and shows that almost realcompactness is characterized by the
convergence and clustering of certain designated filters.

Proposition 3.6. [4, Proposition 3.4] For L ∈ Frm the following are equiv-
alent:

(1) L is almost realcompact.

(2) F ⊸○L ∀ F ∈ F(L) where F ∩A ̸= ∅ ∀ A ∈ Covω L.

(3) F →○L ∀ F ∈ Fult(L) where F is σ-fixed.
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For a regular frame L, L is almost realcompact iff F →○L ∀ F ∈ F(L)
where F ∩A ̸= ∅ ∀ A ∈ Covω L.

Coincidently, a similar type result of the above proposition is achieved by
Hong [30](1995) in characterizing almost compactness by filter convergence.

Proposition 3.7. [30, Corollary 1.4] For L ∈ Frm the following are equiv-
alent:

(1) L is almost compact.

(2) F ⊸○L ∀ F ∈ F(L).

(3) F →○L ∀ F ∈ Fult(L).

For regular frames, almost compactness and compactness are equivalent
so that the above proposition holds for regular frames with almost compact
being replaced by compact (see Remark 2.7(3)). Lindelöf and almost com-
pact frames are almost realcompact. Almost realcompactness is shown to
be a conservative property in Dube [4, Corollary 3.9](2006).

Dube’s next intervention in an internal characterization of a conservative
property using convergence in frames appears in Dube and Matutu [5](2007).
Here, pseudocompactness is given a filter characterization by the clustering
of a distinguished filter base.

Proposition 3.8. [5, Proposition 4.1] For any frame L, L is pseudocompact
iff every countable completely regular filter base F ⊸○L.

3.3 The Fomin extension and the Stone-Čech compactfica-
tion Dube takes us on a frame-theoretic excursion of the Katětov and
Fomin extensions in Dube [6](2007). We mainly unfold the Fomin extension
that Dube establishes and purveys in [6]. The preceding paper is dedicated
by Dube to the memory of the late Professor Sergio de Ornelas Salbany
(1941-2005) who was an eminent topologist and colleague in the Department
of Mathematical Sciences at the University of South Africa. Incidentally, in
September 2012 Dube chaired the organising committee of an international
conference at the University of South Africa on Topology, Algebra and Cat-
egory Theory (TACT2012) that was in honour of Professor Sergio Salbany.
Dube was one of the guest editors of the proceedings of the conference (see
Dube, Naidoo and Brümmer [12]).
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We recall that a topological space is called H-closed (Hausdorff-closed)
if it is closed in any Hausdorff space in which it is embedded. An extension
of a topological space X is a space Y in which X is a dense subspace of
Y . In Katětov [34](1940) the author showed that every Hausdorff space
X possesses an H-closed extension κX which has since been coined the
Katětov extension of X. Katětov continued with his deliberations on κX
and presented other analogous descriptions of κX in Katětov [35](1947). A
general method of constructing extensions of topological spaces is prepensed
in Fomin [26](1943). In the latter, Fomin also constructs another H-closed
extension σX of a Hausdorff space X (benamed the Fomin extension of
X). The Katětov and Fomin extensions of a Hausdorff space X are further
investigated in Flachsmeyer [25](1966) and the author shows that κX = σX
iff κX\X is finite.

The pointfree analogue, the Katětov H-closed extension of a frame, has
been constructed using the collection of all free ultrafilters in a frame and
have been studied by Paseka and Šmarda [41](1992), and independently
by Hong [29](1992). In §2.2 we described the simple extension of a frame
(sXL, s) determined by a set of filters X given by Hong [30](1995) and the
associated strict extension (tXL, t). For a L ∈ Frm and a ∈ L, we let

F𭟋
ulta

(L) = {G ∈ F𭟋
ult(L) : a ∈ G}

and consider the product frame L× ℘(F𭟋
ulta

(L)). Let

κL = {(a,X) : X ⊆ F𭟋
ulta

(L)}.

Then κL is a subframe of the product L×℘(F𭟋
ulta

(L)) and the map κL : κL→
L defined by κL(a,X) = a is a dense quotient. The simple extension (κL, κL)
is called the Katětov extension of L. The right adjoint of the Katětov
extension map is given by (κL)∗ : L→ κL where (κL)∗(a) = (a,F𭟋

ulta
(L)) for

each a ∈ L.
Dube foregrounds the Fomin extension that also conscripts ultrafilters

and convergence in frames. He defines the Fomin extension (σL, σ) of a
frame L to be the associated strict extension of the Katětov extension
(κL, κL) determined by F𭟋

ult(L). σL is the subframe of κL generated by
(κL)∗(L) and σL : σL → L is the Fomin (strict) extension map given by
the restriction of κL to σL. Dube mainly sets out to determine when σL
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and βL are isomorphic for L ∈ CRegFrm and achieves this by various
filter characterizations. He first shows the following discerning result on the
Fomin extension for any F ∈ Frm,

σL ∈ RegFrm iff L ∈ RegFrm and F𭟋
ult(L) ⊆ Freg(L).

Dube then distinguishes certain types of covers in a frame. We denote

Covp L = {C ∈ CovL : ∃Covq L ∋ B ⊆<ω C}.

Dube calls any C ∈ Covp L a p-cover and presents the following equivalent
conditions for regular frames.

Lemma 3.9. [6, Lemma 4.2] For L ∈ RegFrm the following are equivalent:

(1) F𭟋
ult(L) ⊆ Freg(L).

(2) dL ⊆ cokL.

(3) Every C ∈ Covp L has a finite subcover.

Dube then establishes his main result on the Fomin extension and the
Stone-Čech compactification of a completely regular frame.

Proposition 3.10. [6, Proposition 4.3] For L ∈ CRegFrm the following
are equivalent:

(1) σL ≃ βL.
(2) σL ∈ RegFrm.

(3) F𭟋
ult(L) ⊆ Freg(L).

(4) F𭟋
p (L) ⊆ Fult(L).

(5) dL ⊆ cokL.

(6) Every C ∈ Covp L has a finite subcover.

3.4 Čech-complete frames and remote points revisted Con-
tinuing with the quest in providing filter characterizations of conservative
properties, we turn our attention to the joint work by Dube, Mugochi and
Naidoo [11](2014) which we highlighted in Naidoo [39](2024) particularly
for nearness frames. This collaborative paper would be the next formidable



26 I. Naidoo

encounter with convergence by Dube jointly with Mugochi and the author
in which they introduce a new type of filter and give an ultrafilter charac-
terization of the conservative property of Čech-completeness for frames. We
illuminate this next with some new notation.

Remark 3.11. Let L ∈ Frm and C ⊆ CovL be any collection of covers of
L. Then:

(a) F ∈ F(L) is called C -Cauchy provided that F →○C L (F converges in
L localised/relative/with respect to C ), meaning F ∩C ̸= ∅ for every
cover C ∈ C . Notably, if F(L) ∋ G ⊇ F →○C L then G →○C L.

(b) The frame L is called Čech-complete (resp. strongly Čech-complete) if
there is C ⊆ω CovL such that for every F(L) ∋ F →○C L, F ⊸○L (resp.
F →○L).

Strong Čech-completeness implies Čech-completeness. Furthermore, Čech-
completeness is conservative for regular spaces and also has a characteriza-
tion in terms of ultrafilter convergence.

Proposition 3.12. [11, Proposition 3.2] A frame L is Čech-complete iff
there is C ⊆ω CovL such that for every Fult(L) ∋ F →○C L, F →○L.

Dube and his coauthors then indulge in the preservation and reflection of
Čech-completeness and strong Čech-completeness under suitable morphisms
between frames and other attributes of these two pointfree properties which
the reader may further engage in [11].

Pursuant to Dube, Mugochi and Naidoo [6](2014), Dube’s immediate
succession with an amplified preoccupation with convergence and exten-
sions in pointfree topology is a joint work with Mugochi on localic remote
points in Dube and Mugochi [13](2015). The proclivity by the authors is on
establishing criteria on when extensions have remote points. This predis-
position appeals primarily to filters. The joint article evolved from Dube’s
original work in Dube [3, 7](2005, 2009). These earlier two papers also en-
gage diversely with clustering of filters and conservative properties that lays
the foundation for [13].

We next provide some of the data on onto frame homomorphisms and
definitions that we require from Dube [3, 7](2005, 2009).
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Remark 3.13. Let h : L→M be a quotient. Then h is:

(1) bounded (bdd for brevity) if ∀ C ∈ CovL ∃ B ⊆<ω C such that h(B) ∈
CovM ,

(2) almost bounded (a-bdd for brevity) if ∀ C ∈ CovL ∃ B ⊆<ω C such
that h((

∨
B)∗) = 0,

(3) an H-quotient if ∀ C ⊆ L such that h(C) ∈ CovL ∃ B ⊆<ω C such
that h((

∨
B)∗) = 0,

(4) extension-closed if ∀ C ∈ CovM ∃ B ∈ CovL such that h(B) = C iff
h∗(C) ∈ CovL ∀ C ∈ CovM ,

(5) nowhere dense if ∀ 0 ̸= x ∈ L ∃ 0 ̸= y ≤ x such that h(y) = 0.

Nowhere dense quotients are characterized by the denseness of the image
of the bottom under their right adjoints. From Dube [7, Lemma 3.2](2009)
we have that

a quotient h : L→M is nowhere dense iff h∗(0) ∈ dL.

We next give some of the pertinent filter characterizations of the above
concepts that are shown creatively by Dube.

Proposition 3.14. Let h : L→M be a quotient.

(1) If L ∈ RegFrm, then h is bdd iff ∀ F ∈ F(M), F(L) ∋ h−1(F ) ⊸○L
iff h is a-bdd.

(2) h is a-bdd iff ∀ F ∈ F(L) such that h(x) ̸= 0 ∀ x ∈ F , F ⊸○L.

(3) If h is dense then h is an H-quotient iff ∀ F ∈ F(L), h(F ) ⊸○M .

The following results concern the closed quotients φa : L →↑a at a for
a ∈ L where L is any frame.

Proposition 3.15. Let a ∈ L. Then φa is

(1) a-bdd iff a ∈ F ∀ F ∈ F𭟋(L).

(2) nowhere dense iff a ∈ dL.

(3) a-bdd iff ↑a is almost compact whenever a ∈ ßL.
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(4) an H-quotient iff φa is bdd iff φa is a-bdd iff ↑a is compact iff ↑a is
almost compact whenever L ∈ RegFrm.

By the results of Proposition 3.3, Dube shows how his above concepts
of frame quotients can be neatly applied to characterize free prime filters as
ultrafilters in a frame L.

Proposition 3.16. [3, Proposition 5.17] F𭟋
p (L) ⊆ Fult(L) iff each closed

nowhere dense quotient in L is a-bdd.

Concerning the locally almost compact frames of Paseka and Šmarda
[40](1988), Dube shows the following result for such frames.

Proposition 3.17. If L is a nalco-frame that is locally almost compact then
⟨coakL⟩ = ⋂{F ⊆ L : F ∈ F𭟋(L)} ∈ F𭟋(L).

The pointfree form of the property of almost H-closedness is delivered
by Dube:

A frame L is almost H-closed if |F𭟋
ult(L)| ≤ 1.

H-closedness for frames is then characterized by almost compactness.

L is H-closed iff ∀ a, b ∈ L with a ∧ b = 0, at least one of the
frames ↑a∗ or ↑b∗ is almost compact.

Dube then provides the characterization he coveted amongst nalco-frames.

Proposition 3.18. [3, Proposition 5.18] For a nalco-frame L the following
are equivalent:

(1) L is almost H-closed and every closed nowhere dense quotient of L is
almost compact.

(2) L is almost H-closed and every closed nowhere dense quotient of L is
a quotient of an almost compact quotient of L.

(3) |F𭟋
p (L)| = 1.

(4) |F𭟋(L)| = 1

We now peruse the conservative notion of the remoteness of points of a
frame extension of a given frame that is established in Dube and Mugochi
[13](2015) and tweak some notation.
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Remark 3.19. Let (M,h) be an extension of a frame L and p ∈ Pt(M).
Then:

(1) p is remote from L if for every nowhere dense quotient η : L→ N we
have h∗(η∗(0)) ̸≤ p. We denote the property p is remote from L by the
notation p ⋉○Pt(M) L (for brevity p ⋉○L). The collection of all points
of M that are remote from L is designated by

Pt(M ⋉ L) = {p ∈ Pt(M) : p ⋉○L}.

(2) Let Up = {a ∈ L : h∗(a) ≰ p}. Then Up ∈ F(L).

(3) Let Ip = {a ∈ L : h∗(a) ≤ p} so that Ip = L\Up. Then Ip ∈ J(L).

(4) p ⋉○L iff ∀ d ∈ dL, h∗(d) ≰ p iff Up is saturated (see Dube and
Mugochi [13, Proposition 3.2]).

Returning to the Katětov extension (κL, κL) of a frame L, where

κL = {(a,X) : X ⊆ F𭟋
ulta

(L)}

and κL : κL→ L given by κL(a,X) = a, we have that

Pt(κL) = {(1,X\{F}) : F ∈ X} ∪ {(p,X) : p ∈ Pt(L)}

from Paseka and Šmarda [41, Proposition 3.9(2)](1992).

For each F ∈ X, F ∈ Fult(L) so that by Proposition 3.3 we have that
dL ⊆ F . Thus for any d ∈ dL and F ∈ X we have that

(κL)∗(d) = (d,F𭟋
ultd

(L)) = (d,X) ≰ (1,X\{F}).

Thus, by Remark 3.19(4) above we have that

Pt(κL⋉ L) = {(1,X\{F} : F ∈ X}

The above description of the remote points of the Katětov extension is a
delightful example given by Dube and Mugochi in [13] that articulates the
cohesion of Dube’s contributions and finesse in pointfree topology.
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Dube and Mugochi then proceed to analyse remote points in perfect
extensions and in so doing they introduce dual balanced filters, the balanced
ideals. In a frame L,

J ∈ I(L) is balanced if for any x ∈ L, x∗∗ ∈ J whenever x ∈ J.

We denote Ibal(L) the collection of all balanced ideals of L. Given any per-
fect extension (M,h) of a frame L the elements of Pt(M ⋉L) characterized
by ultrafilters and ideals are distilled from [13, Proposition 5.1 & 5.2] and
given below. The filter Fp = {x ∈M : x ≤ p} is discussed in Remark 2.5(3).

Proposition 3.20. If (M,h) is a perfect extension of a frame L and p ∈
Pt(M) then the following are equivalent:

(1) p ⋉○L.

(2) Up ∈ Fult(L).

(3) Ip ∈ Ipmin(L).

(4) Ip ∈ Ibal(L).

(5) h(Fp) ∈ Fult(L).

Perquisites of the above result are then shared by Dube and his coauthor:

1. If (M,h) is a perfect extension of a frame L then Pt(M ⋉L) ̸= ∅ iff ∃
F ∈ Fcp(M) such that h(F ) ∈ Fult(L).

2. Pt(M ⋉ L) ≃ {F ∈ Fcp(M) : h(F ) ∈ Fult(L)}.

A fitting conclusion to Dube’s joint study on remote points is given in
the determination of when an extension (M,h) of a frame L that is spatial
over L is perfect. The latter invites disjoint-prime filters and trace filters as
solvents that is passed over for the reader’s satiety.

3.5 Strong clustering We annexe a quick look into pointfree cluster-
ing that is pursued by Dube and the author in [14](2015). It is folklore that
a filter in a topological space clusters iff it is contained in a convergent filter.
However, this result does not hold in the category of frames as illustrated
in Dube and Naidoo [14, Example 6.1](2015).
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Dube, together with the author, examines this primordial result innate
to clustered filters in spaces in pointfree form in [14]. They introduce a
stronger notion of clustering of filters in frames to ameliorate this limitation
in the covering interpretation of clustering:

A filter F in a frame L is strongly clustered or strongly clusters
in L if there is p ∈ Pt(L) such that α(F ) ≤ p.

Remark 3.21. For a frame L and F ∈ F(L) we note the following.

(1) F –•○L denotes that F strongly clusters in L.

(2) If F –•○L then F ⊸○L.

(3) If F(L) ∋ G ⊆ F –•○L then G –•○L.

(4) If L ∈ RegFrm and F →○L then F –•○L.

The idea of strong clustering in frames developed jointly by Dube pro-
vides an adequate curation of the result in spaces in pointfree form.

Proposition 3.22. [14, Proposition 6.4] Let L ∈ RegFrm and consider
any F ∈ F(L). Then F –•○L iff ∃ G ∈ F(L) such that F ⊆ G →○L.

Furthermore, the two conceptualizations of clustering coincide for regu-
lar frames under spatiality.

Proposition 3.23. [14, Proposition 6.5] Let L ∈ RegFrm. For each
F(L) ∋ F ⊸○L, F –•○L iff L is spatial.

4 Convergence in Locales

In this section, L ∈ Loc (unless stated otherwise) and we refer to §2.4 for the
relevant abridgement of sublocales. We refer to Dube and Ighedo [15](2016)
for a comprehensive treatment of our précis in this section. We will retain
our notations for the specific class of filters on a locale (see §2.3) and also
the notations for the convergence and clustering of filters with appropriate
modification as required.

4.1 Convergence of filters on a locale Given any sublattice A

of Sℓ(L), we let F(A) = {F : F is a proper filter in A} and we note that
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O /∈ F for each F ∈ F(A). For any F ∈ F(A), F is called an A-filter on
L.

The lattice of all open sublocales of L induced by the elements of L is
denoted

O(L) = {o(a) : a ∈ L}.

We symbolize

Ccoz(L) = {c(a) : a ∈ Coz[L]}

for the lattice of all closed sublocales induced by cozero elements of L.

If p ∈ Pt(L) and F ∈ F(A) for any sublattice A of Sℓ(L), then

1. a neighbourhood (for brevity nhood) of p is any member of O(L) that
contains p and

2. F converges to p, which we write asF →○ p, if every nhood of p contains
a member of F. The point p is a limit of F.

For a frame L and F ∈ F(L) we denoted F →○L (and merely say F
converges) for the convergence of F in L in the Banaschewsk and Pultr
[23](1990) sense as well as that of Hong [30](1995). For a locale L and
any A-filter F on L, we will write F →○L (and say F converges) to mean
that ∃ p ∈ Pt(L) such that F →○ p. The notion of F →○L for a locale L is
shown by Dube and Ighedo to generalize that of the Banschewski and Putr
completely prime filter notion in [23](1990) for T1-locales defined by Rosický
and Šmarda [45](1985). Here, for a filter F in a frame L they construct a
filter F on L induced by F of the type (1), (2) and (3) in the Remark below
and show that F →○L iff F →○L for T1-locales.

Remark 4.1. Given a specific sublattice A of sublocales, Dube and Ighedo
provide the following nomenclature (with justification) for the corresponding
A-filters on the locale L.

(1) F ∈ F(Sℓ(L)) is a filter on L.

(2) F ∈ F(Sℓc(L)) is a Cartan filter on L.

(3) F ∈ F(O(L)) is an open filter on L.

(4) F ∈ F(Ccoz(L)) is a z-filter on L.

In particular for Hausdorff locales the following is disseminated.
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Proposition 4.2. Let L be a Hausdorff locale and A be a sublattice of
Sℓ(L).

(1) If F(A) ∋ F →○ p ∈ Pt(L), then
⋂{F : F ∈ F} = {p, 1}.

(2) Limits are unique in L.

The converse of (2) remains an open question. Next, for a given sublocale
S ⊆ L convergence of an A-filter on S to a point in L is defined:

Let S ∈ Sℓ(L). If F is a filter ( or Cartan filter) on S, then
F →○ p ∈ Pt(L) if ∀ a ∈ L with p ∈ o(a) ∃ F ∈ F such that
F ⊆ o(a).

If L is a frame and (M,h) is an extension of L, then h∗(L) is a dense
sublocale of L. The map h∗ : L→ h∗(L) is a frame isomorphism with inverse
h−1∗ : h∗(L) → L mapping as h. With the above expression of convergence
of an A-filter on a sublocale converging to a point of L, it is observed that
for any frame L

if (M,h) is an extension of L, then for any filter or Cartan
filter F on the sublocale h∗(L), F →○ p ∈ Pt(L) iff ∀ a ∈M with
p ∈ o(a), oh∗(L)(h∗h(a)) ∈ F.

This then motivates a dual notion of convergence of ideals that we watershed
in the next section that Dube and Ighedo define and investigate.

4.2 Coconvergence of ideals in a frame Let L ∈ Frm and (M,h)
be an extension of L with Pt(M) ̸= ∅. Let J ∈ I(L) (or J ∈ I(Coz[L])) be
proper. Conconvergence of the ideal J is then defined:

J coconverges to p ∈ Pt(M) if, for every m ∈M with m∨p = 1,
there is u ∈ J such that h(m) ∨ u = 1.

We introduce the notation J ↬○ p to denote that the ideal J coconverges to
p. Now if F is filter on the sublocale h∗(L), then

JF = {a ∈ L : ch∗(L)(h∗(a)) ∈ F}

is a proper ideal in L, and if J is an ideal in L then

FJ = {S ∈ Sℓ(h∗(L)) : S ⊇ ch∗(L)(h∗(a)) for some a ∈ J}
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is a filter on h∗(L). Furthermore, JFJ
= J and FJF ⊆ F. Considering

the poset (F(h∗(L)),⊆) and the frame of ideals of L the authors exhibit an
adjunction

I(L) F(h∗(L))

J 7→FJ

JF← [F

and show the following for specific extensions:

1. If (M,h) is a T1-extension of L, J ∈ I(L) and p ∈ Pt(M), then J ↬○ p
iff FJ →○ p.

2. If (M,h) is a regular-extension of L, F ∈ F(h∗(L)) and p ∈ Pt(M),
then JF ↬○ p iff F →○ p.

3. If (M,h) is a compact-Hausdorff-extension of L and J is an ideal of L
then J ↬○ p ∈ Pt(M) iff

∨
u∈J

h∗(u) = p.

4. If L ∈ CRegFrm, I ∈ Pt(βL) and J is a proper ideal of L, then
J ↬○ I iff J ⊇ I.

Dube together with his coauthor then apply the above theory that they
have developed in the category CRegFrm and successfully characterize the
points of βL in terms of filter characterizations and the notion of a sharp
point of βL that Dube introduced jointly in Dube and Matlabyana [10,
Definition 4.2](2013):

I ∈ Pt(βL) is sharp if for any c ∈ Coz[L], (βL)∗(c) ⊆ I implies c ∈ I.

Recall that βL : βL → L is the map given by join and the right adjoint is
the map (βL)∗ : L → βL given by (βL)∗(a) = {x ∈ L : x ≺≺ a} for each
a ∈ L. Their main result follows.

Proposition 4.3. [15, Proposition 3.2] For I ∈ Pt(βL) the following are
equivalent:

(1) I is a sharp point.

(2) AI ⊆ F for every prime filter F on (βL)∗(L) such that F →○ I.
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(3) AI ⊆ F for every ultrafilter F on (βL)∗(L) such that F →○ I.

(4) AI ⊆ F for every Cartan ultrafilter F on (βL)∗(L) such that F →○ I.

In the above Proposition, for I ∈ Pt(βL)

AI = {c(βL)∗(L)((βL)∗(c)) : c ∈ UI}.
and

UI = {c ∈ Coz[L] : (βL)∗(c) ⊆ I}.

4.3 Clustering of filters on a locale In this section we advocate
the machinery developed by Dube and Ighedo in which they proffer for
locales similar filter characterizations of compactness that Hong [30](1995)
establishes using his covering approach to convergence and clustering of
filters in frames. To this end they introduce the concept of clustering of a
filter on a locale as follows: Let L ∈ Loc, S ∈ Sℓ(L) and F be a filter or
Cartan filter on S. Then

F clusters at p ∈ Pt(L) if every nhood of p meets every member
of F, that is for every a ∈ L with p ∈ o(a), o(a) ∩ F ̸= O for
every F ∈ F.

We retain the notation and write F ⊸○ p whenever F clusters at p for a filter
F on a locale L and p ∈ Pt(L). It is then observed that

1. F ⊸○ p iff p ∈ ⋂
F∈F

F and

2. if F →○ p then F ⊸○ p.

Compact locales are then characterized by the convergence and clustering
of filters on the locale reminiscent of those of Hong [30](1995) for frames.

Proposition 4.4. [15, Proposition 4.2] For any locale L the following are
equivalent:

(1) L is compact.

(2) Every filter on L clusters.

(3) Every Cartan filter on L clusters.
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(4) Every prime filter on L clusters.

(5) Every ultrafilter on L clusters.

Dube and Ighedo also introduce coclustering of ideals in frames in par-
allel to conconvergence:

Let (M,h) be an extension of L and J ∈ I(L). J coclusters at a
point p ∈ Pt(M) if

∨
u∈J

h∗(u) = p.

They conclude their study on providing equivalent conditions for a locale
to be compact in terms of coconvergence and coclustering of ideals:

L ∈ Loc is compact iff every ideal in L coclusters iff every prime
ideal in L coconverges iff every maximal ideal in L coconverges.

5 Celebratory tributes

The following personal tributes are conveyed to Themba Dube in celebration
of his lifetime mathematical achievements on the occasion of his ≥ 65th

birthday and retirement.

5.1 Dr. Joanne Walters-Wayland (Jo) Jo Walters-Wayland is a
member of the Center of Excellence in Computation, Algebra and Topology
(CECAT) at Chapman University, USA.

A magnetic personality, a booming voice and a dignified presence -
not attributes one usually associates with an accomplished mathematician,
and yet those are not even all that are immediate when meeting Professor
Themba Dube.

I had the privilege to meet Themba many decades ago when we were
both grad. students - he attended a conference at the University of Cape
Town - I was drawn to the attributes mentioned above and we shared an
obsession and love for frame theory; none of which has changed all these
years later.

Unfortunately, we had less opportunity to collaborate than I would have
liked as my home ended up being in California. However I am very proud of
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the papers we did co-author and I always enjoyed his company (and that of
his students) as the numerous international conferences we both attended.

Themba has always been an inspiration to me, and to this day, whenever
I am asked, or wonder about, an idea related to my area of frame theory, I
always check as to whether Themba Dube or Bernhard Banaschewski have
already written about it - and very often they have!

Ngiyabonga Themba!

Jo

5.2 Prof Papiya Bhattacharjee Papiya Bhattacharjee is currently
the Assistant Chair of the Department of Mathematics and Statistics at the
Florida Atlantic University, Charles E. Schmidt College of Science, Boca
Raton, and a former Associate Professor in the School of Science (Mathe-
matics) at the Pennsylvania State University, Erie, The Behrend College,
USA.

I met Professor Themba Dube for the first time at the University of
Florida, in the United States, while we were attending the conference on
Ordered Algebraic Structures (OAL), in March 2012. Professor Dube trav-
elled to the USA with Professor Naidoo to attend the conference. During
my days as a graduate student, studying the theory of frames, I became
familiar with Professor Dube’s work through his papers. In 2012, when I
first met him in person, I was star-struck! I soon found out that it was
extremely easy to have conversations with Professor Dube and Professor
Naidoo; hence began our mathematical collaborations. Our research work
continued in the following years, leading to two published articles in frame
theory with Professor Dube.

Soon after, I was invited to attend the TACT 2012 Conference at Uni-
versity of South Africa in Pretoria, in September of 2012. In the years 2013
and 2016, I hosted and organized the OAL13 and OAL16 conferences at
Penn State Behrend, in the United States. It was my great pleasure that
Professor Dube accepted and attended both conferences and presented his
beautiful mathematical work. In 2014, I was both pleasantly surprised and
honored when I received an invitation from the Topology Research Group
at UNISA to visit and continue my collaborative work with Professor Dube.
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I must admit that the back and forth visitation and collaboration with Pro-
fessor Dube and Professor Naidoo, between the United States and South
Africa, has created fond memories that I will cherish forever.

I admire Professor Themba Dube and have extreme respect for him. I
enjoy discussing mathematics with him greatly and I strongly hope that we
will continue our mathematical collaborations in the future. I wish Professor
Dube all the best in his future endeavors.

5.3 Prof Oghenetega Ighedo (Tega) Tega Ighedo is currently an
Associate Professor at the Center of Excellence in Computation, Algebra
and Topology (CECAT) at Chapman University, USA. She was the first fe-
male doctoral student of Themba Dube, and graduated as the first African
black woman to receive her PhD in pure mathematics in the 140 year his-
tory of the University of South Africa. Tega was also a former Associate
Professor in the Department of Mathematical Sciences at Unisa.

Good day everyone. I also want to join the list of great friends and
colleagues paying tribute to Professor Themba Dube.

Deciding to pursue a PhD degree at the University of South Africa and
having Themba Dube as my advisor is one of the best decisions I have made
so far in my academic career. He is an excellent teacher, an outstanding
advisor and a superb mentor. He is fully committed to pushing his students
up to the level he wants them to be.

He is one person I know that no place is too sacred for discussing mathe-
matics, always having a pen lurking around somewhere on him. Paper nap-
kins at restaurants become writing pads, and university shuttles between
the Pretoria campus and the Florida campus on Unisa become lecture halls
for discussing the research topics one is working on.

An incident that I will never forget occurred on one of our trips to
a conference. Professor Themba Dube, Dr. Jissy Nsonde-Nsayi (He was
still a graduate student then, a brilliant student under the supervision of
Themba Dube) and I were travelling together for a conference. We arrived
at the O.R. Tambo International Airport, Johannesburg, South Africa early
enough and checked in our luggage. We were waiting to board, and I was
sitting next to Professor Themba Dube. I recall him looking around and
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asking where Jissy was. I looked and beheld Jissy sitting very far away. We
called him to come over. He came over and we requested him to sit with
us. He bluntly said no, he would not sit with us. We asked why? He said:
“Because Professor Dube is going to ask me about the work he gave me to
do, which of course I am busy with and will show him when we get to our
destination and will not discuss this here”. He left us and went to sit by
himself. I looked at Professor Dube and we burst into laughter.

His culture of hard work and passion to share his knowledge became
a huge benefit to a lot of us. I would go with him from place to place,
country to country in the African continent to recruit students for graduate
studies in pointfree topology. He is a great pure mathematician with a
huge sense of humour. He is also an excellent presenter of research findings,
making everyone listening to him feel as if they are experts in what he is
presenting; a quality which is rare in presenting findings in some areas of
pure mathematics. We are grateful for his huge contribution to the area of
pointfree topology.

I wish him all the good things that come with retirement, and I hope
he will let us keep tapping into his huge wealth of knowledge from time to
time.
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