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ω-Operads of coendomorphisms and
fractal ω-operads for higher structures

Camell Kachour

I dedicate this work to Michael Batanin.

Abstract. In this article we introduce the notion of Fractal ω-operad emerg-
ing from a natural ω-operad associated to any coglobular object in the cate-
gory of higher operads in Batanin’s sense, which in fact is a coendomorphism
ω-operads. We have in mind coglobular object of higher operads which alge-
bras are kind of higher transformations. It follows that this natural ω-operad
acts on the globular object associated to these higher transformations. To
construct the natural ω-operad we introduce some general technology and give
meaning to saying an ω-operad possesses the fractal property. If an ω-operad
B0

P has this property then one can define a globular object of all higher B0
P -

transformations and show that the globular object has a B0
P -algebra struc-

ture.

1 Introduction

This article is the first in a series of three articles (see [14, 15]). Here we present a
notion of fractal property which may be possessed by an ω-operad in the sense of
Batanin [2]. The property already exists in the simple case of the globular set of
globular sets (see [14]). Behind the technology of fractal ω-operads of this article,
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we had in mind the desire to find an elegant way to prove and describe a globular
approach of the weak ω-category of weak ω-categories. Actually the article [15]
shows that the weak ω-category of weak ω-categories has a similar description up
to the contractibility of specific higher operads. These main ideas were exposed for
the first time in September 2010, in the Australian Category Seminar at Macquarie
University [11, 16].

The main result of this article can be summarized as follows. Let T-CATc
be the category of T-categories over constant globular sets; in other words, it is
the category of coloured ω-operads over constant globular sets (see Section 2.3
and Section 3). We start with the basic data of a coglobular object B•P of ω-
operads in T-CATc equipped with a structure P . We say that the first ω-operad
B0
P (the “0-step”) of this coglobular object B•P has the fractal property, provided

there is a morphism of ω-operads between B0
P and the corresponding ω-operad

of coendomorphisms Coend(B•P ) associated to B•P . If this is the case, then all
algebras for all ω-operads BnP (n ∈ N) organise into a single algebra of B0

P .

The Batanin theory of higher operads which we describe in the first section
takes a large place of this article, and the new concept of fractal ω-operad we
develop in Section 3, takes few pages compared to the first section where nothing
are new in it. However this first section is needed to fully understand the new
contributions of the Section 3, which is the core of our article. Applications of this
concept of fractal ω-operad are given in the articles [14, 15].

Section 2 summarises Batanin’s theory of higher operads (see [2]) with the goal
of extracting Corollary 2.12, which is the basis for our article, and this corollary
is just a consequence of Proposition 7.2 in [2]. The material surrounding Corol-
lary 2.12 was described in [2]: globular categories, globular functors, monoidal glob-
ular categories (called MG-categories), monoidal globular functors (called MG-
functors), augmented monoidal globular categories (called AMG-categories), glob-
ular objects of a globular category, and so on. However we expose these concepts
using a more modern approach, essentially following Weber [23]. Then we explain in
detail the two most important MG-categories for Batanin’s theory of ω-operads:
the MG-category Tree of trees and the MG-category Span of spans in Set (see
2.2), also described in modern terms by [3, 4, 22, 24]. In Section 2.3 we briefly
describe T-categories, where T is the monad for strict ω-categories on globular
sets. T-categories are important for this article because we take the view that an
ω-operad in the sense of Batanin is a T-category over the terminal globular set; see
Section 2.4.

In Section 3, we state the main result of the article. Using Corollary 2.12 men-
tioned above, to each coglobular object W • in T-CATc, we associate its standard
action in T-CAT1 which, roughly speaking, is a diagram in T-CAT1 made of two
morphisms of ω-operads. In particular each coglobular object W • shows us two
important ω-operads: the ω-operad W 0 (the “0-step” of the coglobular object W •),



ω-Operads of coendomorphisms and fractal ω-operads 67

and the associated ω-operad

Coend(W ) := (HOM(Wn,W t))n∈N,t∈Tree

of its coendomorphisms. The ω-operad W 0 is fractal provided there exists a mor-
phism of ω-operads from it to Coend(W ).

The last section describes an important coglobular object in the category
T-Grp,c (see 2.3) which contains all combinatorics we need to build many kind
of higher transformations as described in [14]. This coglobular object is denoted
C• and contains all kind of basic operations for higher transformations. It gen-
erates canonical standard actions which are useful in [14] for describing different
relevant fractal ω-operads. The logical nature of this coglobular object C• shows
quickly that the corresponding free generated operads have finite ranks. In the
article [15] we describe a very similar coglobular object which is more specifically
adapted for building higher operads for strict and weak higher transformations (see
also the last remark in the article [14]).

2 Batanin’s theory of ω-Operads

Thoughout this paper, if C is a category then C(0) is the class of its objects (but we
often omit “0” when there is no confusion) and C(1) is the class of its morphisms.
The symbol := means “by definition is”. Also Set denotes the category of sets, and
SET denotes the category of large sets (for instance the proper class of ordinals is
an object of SET , but not in Set). Similarly Cat denotes the 2-category of small
categories, and CAT denotes the 2-category of categories.

The theory of higher operads was developed for the first time by Michael
Batanin in his seminal article [2]. What is more, he produced a theory of higher
operads in the general context of his monoidal globular categories.

In this section, we summarise the general approach of the theory of higher op-
erads of Michael Batanin, because it is in this general approach that the important
Corollary 2.12 was formulated. This corollary is the key result to develop the main
technology of this article. It is a result about the existence of the ω-operad of
coendomorphisms which, as we will see, plays an important role for many kinds
of higher structure. A higher structure for us means a structure based on globular
sets. For instance, ω-magmas are a basic example of such higher structure, but we
will consider also reflexive ω-magmas as an other kind of higher structure, and also
other more complex higher structures such as the weak ω-categories.

2.1 MG-categories and AMG-categories

A lot of material which surrounds Corollary 2.12 is described in [2]: globular cat-
egories, globular functors, monoidal globular categories (called MG-categories),
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monoidal globular functors (called MG-functors), augmented monoidal globular
categories (called AMG-categories), globular objects of a globular category, and so
on.

Definition 2.1. The globe category G is defined as follows. For each n ∈ N, objects
of G are formal objects n̄. Morphisms of G are generated by the (formal) cosource

and cotarget n̄
sn+1
n //
tn+1
n

// n+ 1 such that we have the relations sn+1
n snn−1 = sn+1

n tnn−1

and tn+1
n tnn−1 = tn+1

n snn−1. For each 0 6 p < n, we put snp := snn−1 ◦ sn−1
n−2 ◦ ... ◦ sp+1

p

and tnp := tnn−1 ◦ tn−1
n−2 ◦ ... ◦ tp+1

p

Definition 2.2. Starting with the globe category G above, we build the reflexive
globe category Gr as follow. For each n ∈ N we add in G the formal morphism

n+ 1
1n
n+1 // n̄ such that 1nn+1◦sn+1

n = 1nn+1◦tn+1
n = 1n̄. For each 0 6 p < n,

we put 1pn := 1pp+1 ◦ 1p+1
p+2 ◦ ... ◦ 1n−1

n

The category of globular sets is the category of presheaves ω-Gr := [Gop;Set]
(see for example [2]), the category of large globular sets is the category of presheaves
ω-GR := [Gop;SET ], and the 2-category of globular categories is the 2-category of
prestacks GCAT := [Gop;CAT ].

Definition 2.3. Consider the terminal globular category 1 and a globular category

C. A globular object (W, C) in C is a morphism 1
W // C in GCAT .

Let us put ω-Grr := [Gopr ;Set], the category of the reflexive globular sets (see
[21]). We have the adjunction

U a R : ω-Grr // ω-Gr

and we write (R, η, µ) for the generated monad whose algebras are reflexive globular
sets. Objects of ω-Grr are usually denoted by (G, (1pn)06p<n)), where the operations
(1pn)06p<n form a chosen reflexive structure on the globular set G.

Let us denote by ω-Cat the category of strict ω-categories. The forgetful functor

ω-Cat U // ω-Gr , which associates to any strict ω-category C its underlying
globular set U(C), is monadic. The corresponding adjunction generates a cartesian
monad T which is the monad of strict ω-categories on globular sets.

Consider CATPull, the 2-category of categories with pullbacks, with morphisms
functors which preserve these pullbacks, and with 2-cells natural transformations
between these functors. The functor Cat(−) which associates to any object C in
CATPull the 2-category Cat(C) of internal categories in it, is a 2-functor

CATPull
Cat(−) // 2-CAT
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where 2-CAT denotes the 2-category of 2-categories. Thus for the case of the
monad T on ω-Gr we can associate the 2-monad T = Cat(T) on GCAT .

Definition 2.4 ( [23]). An MG-category is a normal pseudo T -algebra for the
2-monad T on GCAT , MG-functors are strong T -morphisms, and MG-natural
transformations are algebra 2-cells of T . These data form the 2-category MGCAT
of MG-categories.

There is a coherence result in [2] that any MG-category is equivalent to a
strict MG-category (a strict MG-category is just an internal strict ω-category
in CAT ). Because of this coherence theorem we will not mention explicitly the
coherence isomorphisms in the MG-categories which can be found in [2]. Also, the
2-category MGCAT has a cartesian monoidal structure, which allows us to make
the following definition.

Definition 2.5 ( [23]). An AMG-category is a pseudo monoid in MGCAT . An
AMG-functor is an MG-functor f : A −→ A′ equipped with a strong monoidal
structure. An AMG-natural transformation φ : f =⇒ f ′ is an MG-natural
transformation such that φ is a monoidal 2-cell. These data form the 2-category
AMGCAT of the AMG-categories.

2.2 Main examples of monoidal globular categories

Globular categories can be defined also as internal categories in ω-Gr because of
the canonical isomorphism Cat(ω-Gr) ' [Gop;Cat]. We will use this presentation
to define the strict MG-category of n-trees as a discrete internal category

T(1) // T(1)oo
oo

//
// T(1)oo

oo
oo

This MG-category Tree has a canonical globular object given by the unit of T :

1 // Tree , 1(n)
� // 1(n) , where 1 denotes the terminal globular category,

and 1(n)1 denotes the n-linear tree. It is shown in [3, 4] that it has the following
universal property: if C is an MG-category and (C,W ) is a globular object in
it, then there is a unique, up to isomorphism, MG-functor W (−) which makes
commutative the following triangle.

Tree

W (−)

  
1

OO

W
// C

1which is denoted by Un in [2]



70 Camell Kachour

Let us set up some notation. Tensors of the monoidal globular category of
n-trees are denoted by symbols ?np .

?np : Treen ×
Treep

Treen // Treen

Also an n-tree t is degenerate if it is of the form t = Zkn(t′) where t′ is a k-tree such
that 0 6 k < n. In [2] the author used the letter ”Z” to express the reflexivity of
an MG-category, but we prefer use the notation ”1” to express these reflexivities
for the specific case of n-trees, to emphasis that a degenerate tree t = 1kn(t′) is also
an n-cell in the strict ω-category T(1). For example, for the n-linear tree 1(n), the
(n+ 1)-tree t = 1nn+1(1(n)) of T(1) is degenerate.

Each n-tree t has a unique decomposition

1k1i1 (1(k1)) ?
sup(i1,i2)
i′1

1k2i2 (1(k2)) ?
sup(i2,i3)
i′2

... ?
sup(im−1,im)
i′m−1

1kmim (1(km))

where for each 1 6 j 6 m − 1, we have i′j < kj+1 6 ij+1 and i′j < kj 6 ij , and if

kj = ij by convention we put 1
kj
ij

(1(kj)) = 1(kj). From this unique decomposition,
the n-tree t can be represented by the matrix of numbers

(
i1 i2 . . . im−1 im

i′1 . . . . . i′m−1

)

which we call the Grothendieck notation for the n-tree t (see [1, 9, 20]). Many
authors have given their own approach to n-trees (see for instance [2, 5, 8, 10, 19,
22]), and all these approaches are equivalent.

The second class of important examples of MG-category is given by the Span
and Cospan construction. For each n ∈ N, consider the following formal partially
ordered set Oct(n).
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•n

}} !!
•+n−1

�� ((

•−n−1

��vv
•+n−2

��

•−n−2

��
•+1

�� ((

•−1

��vv•+0 •−0

Let Oct+(n− 1) be the poset obtained from Oct(n) by removing •−n−1 and •n.

Similarly, let Oct−(n − 1) be the poset obtained from Oct(n) by removing •+n−1

and •n.

•+n−1

|| ""
•+n−2

�� ((

•−n−2

��vv
•+n−3

��

•−n−3

��
•+1

�� ((

•−1

��
vv•+0 A−0

•−n−1

|| ""
•+n−2

�� ((

•−n−2

��vv
•+n−3

��

•−n−3

��
•+1

��
((

•−1

��
vv•+0 •−0
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We obtain the following diagram in Cat

Oct+(n− 1)

i+n

&&
Oct(n− 1)

e+n

77

e−n ''

Oct(n)

Oct−(n− 1)

i−n

88

such that functors i+n , i
−
n are just canonical inclusions, and the functors e+

n and e−n
are obvious isomorphisms. Put snn−1 = i+n ◦ e+

n and tnn−1 = i−n ◦ e−n . The family of

functors Oct(n− 1)
snn−1 //
tnn−1

// Oct(n) (n > 1), defines an object of GCAT .

Furthermore, for any category C ∈ CAT , the category Spann(C) := [Oct(n);C]
of functors into C is called the category of n-spans in C. The previous functors
snn−1 and tnn−1 induce a family of functors

Spann(C)
snn−1 //
tnn−1

// Spann−1(C)

(that we still denote by snn−1 and tnn−1 because there is no risk of confusion), which
defines an object of GCAT . Dually, for any category C ∈ CAT , the category
Cospann(C) := [Oct(n)op;C] of presheaves is called the category of n-cospans in
C. The functors snn−1 and tnn−1 between the Oct(n), also induce a family of functors

Cospann(C)
snn−1 //
tnn−1

// Cospann−1(C) ,

which is still an object of GCAT . These two constructions are functorial and define
the Span and Cospan constructions

CAT
Span //
Cospan

// GCAT .

The case of a category C with pullbacks is more interesting for the span
construction because the corresponding globular category Span(C) is canonically
equipped with anMG-structure. We have a dual result for categories with pushouts
and their cospans (see Example 7 of Section 3 in [2]). For example consider a cat-
egory C with pushouts and the two 2-cospans x and y in C (x is the diagram on
the left).
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A2

A+
1

>>

A−1

``

A+
0

OO 77

A−0

OOgg

B2

B+
1

>>

A+
1

``

A+
0

OO 77

A−0

OOgg

The 1-cospans s2
1(x) and t21(y) are equal to the following 1-cospan

A+
1

A+
0

>>

A−0

``

and x⊗2
1 y is given by the following 2-cospan in C.

A2 t
A+

1

B2

A+
1

<<

B+
1

cc

A+
0

OO 55

A−0

OOii

Consider the category CATPush of categories with pushouts and with mor-
phisms functors which preserve these pushouts. Dually consider the underlying
category of the 2-category CATPull introduced in Section 2.1. We have the follow-
ing diagram

CATPush

(.)op

��

Cospan

&&
GMCAT

CATPull
Span

88
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where (.)op is the basic isomorphism of categories coming from duality, and where
the functors Cospan and Span are defined on morphisms to yield MG-functors
since the morphisms are functors preserving pushouts and pullbacks, respectively.

Remark 2.6. If CAT ∗Pull denotes the category of categories with pullbacks and
initial objects, and morphisms functors which preserve pullbacks and initial objects,
and CAT ∗Push denotes the category of categories with pushouts and initial objects,
and morphisms functors which preserve pushouts and initial objects, then we have
the following constructions

CAT ∗Push

(.)op

��

Cospan

''
AMGCAT

CAT ∗Pull
Span

77

Now consider a category C with pushouts and a globular object (C,W ) in
Cospan(C), which is also a coglobular object in C. Thanks to the universality of

the map 1 // Tree above there exists a unique map

W (−) : Tree // Cospan(C) .

This map W (−) sends each n-tree t to an n-coglobular object in C:

W (t) = (W 0
δ10 //
κ1
0

// W ∂n−1t
δ12 //
κ2
1

// W ∂n−2t //// W ∂t
δnn−1 //
κn
n−1

// W t),

where the ∂kt denotes the truncation of the n-tree t at level k (1 6 k 6 n− 1). In
this n-coglobular object W (t), the term W t denotes the colimit in C of the diagram

W i1 W i2 W im−2 W im−1

W i′1
κ
i′1
i1

bb

δ
i′1
i2

<<

W i′m−1

κ
i′m−1
im−2

ee

δ
i′m−1
im−1

99

coming from the Grothendieck presentation of the n-tree t.
Span := Span(Set) is an important MG-category. Examples of n-spans in

Set are given by the HOM construction defined as follows. For each globular
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category C ∈ GCAT , and each pair of objects A,B ∈ Cn, we associate the n-span
HOM(A,B):

HOM(A,B)n
snn−1

vv

tnn−1

((
HOM(A,B)n−1

sn−1
n−2

��

tn−1
n−2

,,

HOM(A,B)n−1

tn−1
n−2

��
sn−1
n−2

rr
HOM(A,B)n−2

��

HOM(A,B)n−2

��
HOM(A,B)1

s10
��

t10

,,

HOM(A,B)1

t10
��

s10
rr

HOM(A,B)0 HOM(A,B)0

in Set, havingHOM(A,B)n := homCn(A,B), and, for all 0 6 k < n, HOM(A,B)k :=
homCk(snk (A), snk (B)), where (sk+1

k )06k6n−1 and (tk+1
k )06k6n−1 are given by the

source and target functors of the globular category C.

Now consider a category C with pushouts and a globular object (C,W ) in
Cospan(C). If t is an n-tree we can associate between W (1(n)) and W (t) ∈
Cospan(C)n the n-span HOM(W (1(n)),W (t)), such that elements of the set
HOM(W (1(n)),W (t))n are diagrams of the form
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Wn fn // W t

Wn−1

δnn−1

OO

κn
n−1

OO

f−n−1 //

f+
n−1

// W ∂t

δt∂t

OO

κt
∂t

OO

Wn−(k−1)

OO OO

f−
n−(k−1) //

f+
n−(k−1)

// W ∂k−1t

OO OO

Wn−k

δ
n−(k−1)
n−k

OO

κ
n−(k−1)
n−k

OO

f−n−k //

f+
n−k

// W ∂kt

δ∂
k−1t

∂kt

OO

κ∂k−1t

∂kt

OO

W 1

OO OO

f−1 //

f+
1

// W ∂n−1t

OO OO

W 0

δ10

OO

κ1
0

OO

f−0 //

f+
0

// W 0

δ∂
n−1t

0

OO

κ∂n−1t
0

OO

which commute serially; that is:

• fnδ
n
n−1 = δt∂tf

−
n−1, fnκ

n
n−1 = κt∂tf

+
n−1

• ∀1 6 k 6 n−1, f−n−(k−1)δ
n−(k−1)
n−k = δ∂

k−1t
∂kt f−n−k, f−n−(k−1)κ

n−(k−1)
n−k = κ∂

k−1t
∂kt f−n−k

and f+
n−(k−1)δ

n−(k−1)
n−k = δ∂

k−1t
∂kt f+

n−k, f
+
n−(k−1)κ

n−(k−1)
n−k = κ∂

k−1t
∂kt f+

n−k.

See also Paragraph 9.2 in [19].

Remark 2.7. Spans in sets can be seen in a conceptual way: In [22], Ross Street
has shown that objects of Span are internal sets in the petit topos ω-Gr of globular
sets, and in [24] Mark Weber has shown that Span is a discrete opfibration classifier
in the 2-topos GCAT of globular categories.

We can summarise many constructions of this section with the following dia-
gram in 2-CAT
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CATpush
j //

(−)op

��

Cospan

$$

CAT

(−)op

��

Cospan

��
MGCAT i // GCAT

CATpull

Span

::

k // CAT

Span

BB

Recall that in this section we denote by 1 the terminal globular category, and
according to Definition 2.1 we denote the globe category by G.

Lemma 2.8. We have the following identifications

• (1 ↓ i) is the comma category of the globular objects 1
W // C such that

C ∈MGCAT ,

• (1 ↓ i◦Cospan) is the comma category of the globular objects 1
W // Cospan(C)

such that C ∈ CATpush,

• (G ↓ j) is the comma category of the globular objects G W // C in C such
that C ∈ CATpush,

• We have the following isomorphisms of categories

(1 ↓ i ◦ Cospan)
∼ // (G ↓ j) (1 ↓ i ◦ Span)

∼ // (Gop ↓ k) .

2.3 Digression on T-categories

Let us recall the approach to ω-operads by Tom Leinster using T-categories2 (see
his book [19]). We recall the notions of T-graph and T-category defined in [13, 19].

2For an arbitrary cartesian monad M on a category with pullbacks the notion of M-
category was first suggested by Albert Burroni in 1971; see [7].
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Consider the bicategory Span(T) as defined in Leinster’s book [19]. A T-graph
(C, d, c) is a diagram of ω-Gr such as

T(G) C
doo c // G

T-graphs are endomorphisms of Span(T) and they form a category T-Gr.
If we fix G ∈ ω-Gr(0), the endomorphisms on G in Span(T) form a subcategory

of T-Gr which is denoted T-GrG. The category T-GrG is monoidal with tensor given
by:

(C, d, c)⊗ (C ′, d′, c′) := (T(C)×T(G) C
′, µ(G)T(d)π0, cπ1),

and with unit given by I(G) = (G, η(G), 1G). The object I(G) is also an identity
morphism of Span(T). The globular set G is called the globular set of globular
arities, or the globular set of arities for short.

Remark 2.9. A p-cell of G is denoted by g(p) and this notation has the following
meaning. The symbol g indicates the ”colour”, and the symbol p records that g(p)
is a p-cell of G. This is useful because G has to be seen as an globular set even
though it is just a set.

A T-graph (C, d, c) equipped with a morphism I(G)
p−→ (C, d, c) is called a

pointed T-graph. This means that one has a 2-cell I(G)
p−→ (C, d, c) of Span(T)

such that dp = η(G) and cp = 1G. A pointed T-graph is denoted by (C, d, c; p).
We define in a natural way the category T-Grp of pointed T-graphs, and also
the category T-Grp,G of G-pointed T-graphs; their morphisms keep pointing in an
obvious direction.

A constant globular set is an globular set G such that, for all n,m ∈ N, we
have G(n) = G(m), and such that the source and target maps are identities. We
write ω-Grc for the corresponding category of constant globular sets. We write
T-Grc for the subcategory of T-Gr consisting of T-graphs with underlying globular
sets of globular arity which are constant globular sets. We write T-Grp,c for the
subcategory of T-Grp consisting of pointed T-graphs with underlying globular sets
of globular arity which are constant globular sets. Also, for a given G in ω-Grc, we
write T-Grp,c,G for the fiber subcategory in T-Grp,c.

Definition 2.10. Consider a T-graph (C, d, c). If k > 1, two k-cells x, y of C are
parallel if skk−1(x) = skk−1(y) and if tkk−1(x) = tkk−1(y). In that case we write x‖y.

A T-category is a monad in the bicategory Span(T) or, equally, a monoid in the
monoidal category T-GrG (for a specific G). The category of T-categories will be
denoted by T-CAT , and that of T-categories over the same globular set of globular
arities G will be denoted by T-CATG. Specifically, a T-category (B, d, c; γ, p) ∈
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T-CAT is given by the morphism (B, d, c)⊗ (B, d, c)
γ−→ (B, d, c) of operadic com-

position and the operadic unit I(G)
p−→ (B, d, c), satisfying axioms of associativity

and unity that we can find in Leinster’s book [19]. Note that (B, d, c; γ, p) has
(B, d, c; p) as natural underlying pointed T-graph. Algebras for a T-category are
just algebras for its underlying monad.

2.4 Endomorphism and coendomorphism ω-operads

Let C ∈ GCAT . Recall from [2] that the category of collections ω-Coll(C) in C
has as objects globular functors Tree A // C and as morphisms, globular natural
transformations between such globular functors. It is straightforward to see that
this defines a strict 2-functor Coll := HomGCAT (Tree,−):

GCAT Coll // CAT

Theorem 6.1 of [2] gives criteria for finding many categories of collections with
monoidal structure. Colimits commuting with the monoidal structure of an AMG-
category are defined in Definition 5.3 of [2].

Theorem 2.11. If C is an AMG-category such that colimits in C commute with
its monoidal structure, then Coll(C) has a natural monoidal structure.

For our purpose the main example of such an AMG-category as in this theorem
is Span. The monoidal category Coll(Span) is equivalent to the monoidal category
T-Gr1 of T-graphs over the terminal globular set 1 (see 2.3 and [19]). The category
of monoids in T-Gr1 is denoted T-CAT1, and objects of this category are thus ω-
operads of Batanin in Span. So in this article we see the ω-operad K of Batanin3

as a specific T-category in T-CAT1.
Now we are ready to express the main result of this section, which in fact is

just a corollary of Proposition 7.2 of [2].

Corollary 2.12. For each object (C,W ) in (G ↓ j) we can associate an ω-operad
Coend(W ) of coendomorphisms, given by the collection

Coend(W ) := (HOM(Wn,W t))n∈N,t∈Tree .

Also for each morphism

(C,W )
f // (C ′,W ′)

3In the article [13, 15] we have prefered to denote it B0
C to emphasise that it is the

first step of a sequence of higher operads: The higher operads Bn
C (n > 1) of the weak

higher transformations. The letter “B” indicates “Batanin”, and the subscript C means
contractible.
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in (G ↓ j) we can associate a morphism

Coend(W )
Coend(f) // Coend(W ′)

of ω-operads. Furthermore this construction is functorial; it defines a functor

(G ↓ j) Coend // T-CAT1 .

Also, for each object (C,W ) in (Gop ↓ k), we can associate the ω-operad End(W )
of endomorphisms, given by the collection

End(W ) := (HOM(W t,Wn))n∈N,t∈Tree.

Also, for each morphism

(C,W )
f // (C ′,W ′)

in (Gop ↓ k), we can associate a morphism

End(W )
End(f) // End(W ′)

of ω-operads. Furthermore this construction is functorial; it defines a functor

(Gop ↓ k)
End // T-CAT1 .

Proposition 2.13. If W ∈ (Gop ↓ k) then End(W )
∼ // Coend(W op) in T-CAT1.

Definition 2.14. If B ∈ T-CAT1 then an algebra for B in the sense of Batanin is
given by a morphism

B // End(W )

in T-CAT1, where W : Gop // Set is an object of ω-Gr.

Proposition 2.15 ([19]). If B ∈ T-CAT1, then algebras for B in the sense of
Batanin and algebras for B in the sense of Leinster (see Section 2.3) coincide.

3 Standard actions associated to a coglobular object in T-CATc

A T-category over any globular set can be seen as a coloured ω-operad (see [13, 19]),
and the category T-CAT of coloured ω-operads is locally presentable, thus it is a
category with pushouts. However it is in the context of the locally presentable
category T-CATc of T-categories over constant globular sets (see the Section T-
graphs with contractible units of the article [14] and the article [13]) that we are
going to build the standard actions associated to a coglobular object in T-CATc.
This concept is an application of the previous section to the category T-CATc.
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Definition 3.1. A coglobular ω-operadic object (T-CATc,W ) in T-CATc is called
algebraic if it is additionally equipped with an ω-operadic morphism

W (0)
w // Coend(W ) .

Definition 3.2. An ω-operad A is fractal if there exists an algebraic coglobular
ω-operadic object of the form (T-CATc,W ) in T-CATc with W (0) = A.

Remark 3.3. At this stage it is important to notice that we can generalise these
definitions easily: Any coglobular object of higher operads in a category where
pushouts are well defined, leads to such notion of algebraic coglobular ω-operadic
object and fractal higher operads (see [15]). We shall not require such generality
in the present article and in the article [14].

Consider the following diagram in CATPush

T-CATc
Alg(.) // CAT op

Ob(.) // SET op

For each coglobular object (T-CATc,W ) in T-CATc, we have the following diagram
in (G ↓ j).

G
W

vv
Aop

��

Aop
0

((
T-CATc Alg(.)

// CAT op
Ob(.)

// SET op

If we apply the functor Coend of Corollary 2.12 to this diagram, and if we use
Proposition 2.13, we obtain the following definition

Definition 3.4. The standard action in T-CAT1 associated to the coglobular ob-
ject (T-CATc,W ) ∈ (G ↓ j) in T-CATc is defined by the following diagram in
T-CAT1.

Coend(W )
Coend(Alg(.)) // Coend(Aop)

Coend(Ob(.)) // End(A0)

Now we are ready to explain the philosophy of the standard action associated to
a coglobular object in T-CATc. The category T-CATc is locally finitely presentable
and the forgetful functor

T-CATc
V // T-Grp,c

is monadic (see [19]), thus according to Proposition 5.5.6 of [6], V has rank. Let
us call its left adjoint M and denote by TM the finitary monad generated by the
adjunction.
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Now consider a category PT-CATc of ω-operads, equipped with a structure
that we call “P”, whereby the category is locally finitely presentable and equipped
with a monadic forgetful functor

UP : PT-CATc // T-CATc .

Various concrete choices for P will be considered in the article [14], when in
particular we shall consider some specific standard actions (see Section 4) called
standard action for higher transformations because it is built with the coglobular
object of higher transformations C• in T-Grp,c. The main problem for our philos-
ophy is to be able to build relevant examples of algebraic coglobular ω-operadic
objects (see Definition 3.1) in this context of the combinatorics for higher transfor-
mations. More concretely, we want to build a morphism of ω-operads between the
monochromatic ω-operad B0

P (the “0-step” of the coglobular object B•P ) and the
monochromatic ω-operad Coend(B•P ) (built with the whole coglobular object B•P ).
If such a morphism exists, which means that B0

P is fractal (see Definition 3.2), then
we have a morphism of operads

B0
P

// End(A0,P )

which shows that B0
P -algebras and all their higher transformations form a B0

P -
algebra. This motivates us to use the word fractal for such ω-operads.

We denote by FP the left adjoint to UP .

PT-CATc >
UP // T-CATc
FP

oo >
V // T-Grp,c
M

oo

Thus we are in a situation where V ◦ UP is monadic and the induced monad TP
on T-Grp,c has rank. Also we get the functor

P := FP ◦M : T-Grp,c // PT-CATc

which assigns the free PT -category on each pointed T-graph.

4 Standard actions for higher transformations.

We finish this article by describing an important class of actions which is used in
the article [14] to describe several interesting fractal ω-operads.

Consider the following coglobular object C• in T-Grp,c, that we call the coglob-
ular object for the higher transformations in T-Grp,c, because it includes precisely
the combinatorics we need for such higher transformations4 (see [13]):

4In [15] we use a slightly different coglobular object C• which is used to generate oper-
ads for strict and weak higher transformations, but with the same globular combinatorics
Cn of this section, for each integer n ∈ N.
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C0
δ10 //
κ1
0

// C1
δ12 //
κ2
1

// C2 //// Cn−1
δnn−1 //
κn
n−1

// Cn

Let us recall what is involved in this coglobular object. Pointings p of each collection
involved in this specific coglobular object are denoted with the symbol λ. The term

C0 is Batanin’s system of compositions; that is, there is the collection T(1)
d0←−

C0 c0−→ 1 where C0 precisely contains the symbols µmp ∈ C0(m)(0 ≤ p < m) for the
compositions of ω-categories, plus the operadic unary symbols um ∈ C0(m). More
specifically:

∀m ∈ N, C0 contains an m-cell um such that: smm−1(um) = tmm−1(um) = um−1 (if
m ≥ 1); d0(um) = 1(m)(= η(1 ∪ 2)(1(m))), c0(um) = 1(m).

∀m ∈ N − {0, 1}, ∀p ∈ N, such that m > p, C0 contains an m-cell µmp such
that: If p = m − 1, smm−1(µmm−1) = tmm−1(µmm−1) = um−1. If 0 ≤ p <
m − 1, smm−1(µmp ) = tmm−1(µmp ) = µm−1

p . Also d0(µmp ) = 1(m) ?mp 1(m), and
inevitably c0(µmp ) = 1(m).

Furthermore C0 contains a 1-cell µ1
0 such that s1

0(µ1
0) = t10(µ1

0) = u0, d0(µ1
0) =

1(1) ?1
0 1(1), also inevitably c0(µ1

0) = 1(1).

The system of composition C0 has a standard pointing λ0 which is defined by:
∀m ∈ N, λ0(1(m)) = um.

Firstly we will define a collection (C, d, c) which will be useful to build the
collections of n-transformations (n ∈ N∗). C contains two copies of the symbols
of C0, each having a distinct colour: symbols formed with the letters µ and u are
those of colour 1, and those formed with the letters ν and v are those of colour 2.
Let us be more precise:

∀m ∈ N, C contains an m-cell um such that: smm−1(um) = tmm−1(um) = um−1 (if
m ≥ 1) and d(um) = 1(m), c(um) = 1(m).

∀m ∈ N − {0, 1}, ∀p ∈ N, such that m > p, C contains an m-cell µmp such
that: If p = m − 1, smm−1(µmm−1) = tmm−1(µmm−1) = um−1. If 0 ≤ p < m − 1,
smm−1(µmp ) = tmm−1(µmp ) = µm−1

p . Also d(µmp ) = 1(m)?mp 1(m), c(µmp ) = 1(m).

Furthemore C contains a 1-cell µ1
0 such that s1

0(µ1
0) = t10(µ1

0) = u0 and d(µ1
0) =

1(1) ?1
0 1(1), c(µ1

0) = 1(1).

Besides, ∀m ∈ N, C contains an m-cell vm such that: smm−1(vm) = tmm−1(vm) =
vm−1 (if m ≥ 1) and d(vm) = 2(m), c(vm) = 2(m).
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∀m ∈ N − {0, 1}, ∀p ∈ N, such that m > p, C contains an m-cell νmp such that:
If p = m − 1, smm−1(νmm−1) = tmm−1(νmm−1) = vm−1. If 0 ≤ p < m − 1,
smm−1(νmp ) = tmm−1(νmp ) = νm−1

p . Also d(νmp ) = 2(m)?mp 2(m), c(νmp ) = 2(m).

Furthemore C contains a 1-cell ν1
0 such that s1

0(ν1
0) = t10(ν1

0) = v0 and d(ν1
0) =

2(1) ?1
0 2(1), c(ν1

0) = 2(1).

C1 is the system of operations of ω-functors. It is built by starting with C and
adding to it a single symbol for functor (for each cell level): ∀m ∈ N the Fm m-cell
is added, which is such that: If m ≥ 1, smm−1(Fm) = tmm−1(Fm) = Fm−1. Also
d1(Fm) = 1(m) and c1(Fm) = 2(m).

C2 is the system of operations of natural ω-transformations. C2 is built on C
by adding to it two symbols of functor (for each cell level) and a symbol of natural
transformation. More precisely

∀m ∈ N we add the m-cell Fm such that: If m ≥ 1, smm−1(Fm) = tmm−1(Fm) =
Fm−1. Also d2(Fm) = 1(m) and c2(Fm) = 2(m).

Then ∀m ∈ N we add the m-cell Hm such that: If m ≥ 1, smm−1(Hm) =
tmm−1(Hm) = Hm−1. Also d2(Hm) = 1(m) and c2(Hm) = 2(m).

And finally we add 1-cell τ such that: s1
0(τ) = F 0 and t10(τ) = H0. Also d2(τ) =

11(0) and c2(τ) = 2(1).

Observe that the 2-coloured collections Ci (i = 1, 2) are naturally equipped with a
pointing λi defined by λi(1(m)) = um and λi(2(m)) = vm.

In order to define the general theory of n-transformations (n ∈ N∗), it is nec-
essary to define the systems of operations Cn for the higher n-transformations
(n ≥ 3). This paragraph can be left out in the first reading. Each collection Cn is
built on C by adding to it the required cells. They contain four large groups of cells:
the symbols of source and target ω-categories, the symbols of operadic units (ob-
tained on the basis of C), the symbols of the ω-functors (sources and targets), and
the symbols of the n-transformations (natural ω-transformations, ω-modification,
etc). More precisely, on the basis of C:

Symbols for ω-Functors ∀m ∈ N, Cn contains m-cells αm0 and βm0 such that: if
m ≥ 1, then smm−1(αm0 ) = tmm−1(αm0 ) = αm−1

0 and smm−1(βm0 ) = tmm−1(βm0 ) =

βm−1
0 . Furthermore dn(αm0 ) = dn(βm0 ) = 1(m) and cn(αm0 ) = cn(βm0 ) =

2(m).

Symbols for Higher n-Transformations ∀p, with 1 ≤ p ≤ n− 1, Cn contains
p-cells αp and βp which are such that: ∀p with 2 ≤ p ≤ n − 1, spp−1(αp) =

spp−1(βp) = αp−1 and tpp−1(αp) = tpp−1(βp) = βp−1. If p = 1, then s1
0(α1) =

s1
0(β1) = α0

0 and t10(α1) = t10(β1) = β0
0 . Moreover, ∀p with 1 ≤ p ≤ n −

1, dn(αp) = dn(βp) = 10
p(1(0)) and cn(αp) = cn(βp) = 2(p). Finally Cn
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contains an n-cell ξn such that snn−1(ξn) = αn−1, bnn−1(ξn) = βn−1 and
dn(ξn) = 10

n(1(0)) and cn(ξn) = 2(n).

We can see that ∀n ∈ N∗, the 2-coloured collection Cn is naturally equipped with

the pointing 1 ∪ 2
λn

−−→ (Cn, d, c) defined as:

∀m ∈ N, λn(1(m)) = um and λn(2(m)) = vm.

The set {Cn|n ∈ N} has a canonical structure of coglobular object. This coglobular
object is generated by diagrams

Cn
δnn+1 //
κn
n+1

// Cn+1

of pointed 2-coloured collections. For n ≥ 2, these diagrams are defined as follows.
First the (n + 1)-coloured collection contains the same symbols of operations as
Cn for the j-cells with 0 ≤ j ≤ n − 1 or n + 2 ≤ j < ω. For the n-cells and
the (n + 1)-cells the symbols of operations will change: Cn contains the n-cell ξn
whereas Cn+1 contains the n-cells αn and βn, in addition, contains the (n+ 1)-cell
ξn+1. If one denotes by Cn − ξn the n-coloured collection obtained on the basis
of Cn by taking from it the n-cell ξn, then δnn+1 is defined as follows: δnn+1|Cn−ξn
(i.e the restriction of δnn+1 to Cn − ξn) is the canonical injection Cn − ξn ↪→ Cn+1

and δnn+1(ξn) = αn. In a similar way κnn+1 is defined as follows: κnn+1|Cn−ξn =
δnn+1|Cn−ξn and κnn+1(ξn) = βn. Notice that δnn+1 and κnn+1 keep pointing; that is,
we have for all n ≥ 1 the equalities δnn+1λ

n = λn+1 and κnn+1λ
n = λn+1.

The morphisms of 2-coloured pointing collections of the diagram

C0
δ01 //
κ0
1

// C1
δ12 //
κ1
2

// C2
δ23 //
κ2
3

// C3

have a similar definition:
We have for all integers 0 ≤ p < n and for all ∀m ∈ N:

δ0
1(µnp ) = µnp ; δ0

1(um) = um; κ0
1(µnp ) = νnp ; κ0

1(um) = vm.

Also: δ1
2(µnp ) = µnp ; δ1

2(um) = um; δ1
2(νnp ) = νnp ; δ1

2(vm) = vm; δ1
2(Fm) = Fm. And

κ1
2(µnp ) = µnp ; κ1

2(um) = um; κ1
2(νnp ) = νnp ; κ1

2(vm) = vm; κ1
2(Fm) = Hm.

Finally: δ2
3(µnp ) = µnp ; δ2

3(um) = um; δ2
3(νnp ) = νnp ; δ2

3(vm) = vm; δ2
3(Fm) = αm0 ;

δ2
3(Hm) = βm0 ; δ2

3(τ) = α1. And κ2
3(µnp ) = µnp ; κ2

3(um) = um; κ2
3(νnp ) = νnp ;

κ2
3(vm) = vm; κ2

3(Fm) = αm0 ; κ2
3(Hm) = βm0 ; κ2

3(τ) = β1.

The pointed 2-coloured collections Cn (n ∈ N∗) are the systems of operations of
n-transformations.
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If we apply the functor P of the Section 3 to this coglobular object we obtain
a coglobular object in PT-CATc

B0
P

δ10 //
κ1
0

// B1
P

δ12 //
κ2
1

// B2
P

//// Bn−1
P

δnn−1 //
κn
n−1

// BnP

which is also, when we forget its structure “P”, a coglobular object W = B•P of
T-CATc, and thus we obtain its resulting standard action

Coend(B•P )
Coend(Alg(.)) // Coend(AopP )

Coend(Ob(.)) // End(A0,P )

where in particular, Coend(B•P ) is the monochromatic ω-operad of coendomor-
phisms associated to this coglobular object.

The coglobular object C• freely generates higher operads of different kind of
rather simple higher transformations which are described in the article [14], and
is an important step for building their standard actions. In the article [14] we use
it with four specific functors P to prove that the ω-operad of globular sets, the
ω-operad of reflexive globular sets, the ω-operad of ω-magmas 5, and the ω-operad
of reflexive ω-magmas, are all fractal.

Remark 4.1. In fact ω-operad of globular sets, ω-operad of reflexive globular
sets, and ω-operads of their corresponding higher transformations, use a more basic
coglobular object G• in T-Grp,c: If we remove the symbols µmp and νmp from the
coglobular object C• described just above, we obtain such G•.

Remark 4.2. In the article [15] we use a different, but very similar, coglobu-
lar object of higher transformations C• in order to build strict and weak higher
transformations.

Acknowledgement

I am grateful to Michael Batanin and Ross Street for their mathematical support
and encouragement. I am grateful to Mark Weber who explained me some technical
points that I was not able to understand by myself. I am also grateful to Richard
Garner who shared with me his point of view on the algebraic small object argu-
ment, and to Clémens Berger, Denis-Charles Cisinski, and Rémy Tuyéras for many
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