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Pure filters and topological spaces on
triangle algebras

P. Franclin Demlabi, A.G. Tallee Kakeu∗, B.B. Koguep Njionou, and
Celestin Lele

Abstract. In this paper, we delve into the lattice of filters of a triangle
algebra. Moreover, we establish the prime filter theorem, and investigate
the algebraic structure of the set of co-annihilators of a triangle algebra. In
addition, we explore the concept of pure filter within the framework of triangle
algebras. Furthermore, we describe the topological properties of the prime
filter space of a triangle algebra by equipping the lattice of prime filters with
the Zariski topology. Thanks to the notion of pure filters in triangle algebras,
we also provide a characterization of the open stable sets with respect to the
stable topology, a topology that is coarser than the Zariski topology.

1 Introduction

Zadeh’s (see [19]) approach to fuzzy set theory is still popular and has
gained considerable momentum in recent years. Indeed, Zadeh used the
real unit interval [0; 1] as a set of truth values, with the intersection and
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union modeled by the minimum and maximum, respectively. Taking into
account the potentiel of incomparability among elements in the truth value
set, Goguen (see [9]) substituted the real unit interval with a bounded lattice
and used triangular norms and co-norms to extend logical conjunction and
disjunction [12, 13]. In line with the residuation principle, this led to the
algebraic structure known as residuated lattice (see [18]), which is often
used as basic structure of truth degrees in fuzzy logic. Given that the truth
value of a statement is mostly gradual than strict, that is, its precision is
usually unknown and restricted to an interval, Van Gasse et al (see [14,
15, 17]) constructed residuated lattices from triangular lattices, also called
interval-valued residuated lattices (IVRLs). Subsequently, they equipped
these IVRLs with approximation operators and introduced a third angular
point, resulting in the so-called extended interval residuated lattices, whose
corresponding logical algebraic structure is represented by triangle algebras
[14, 17].

A triangle algebra L := (L,∧,∨,⊙,→, ν, µ, 0, u, 1) is a residuated lat-
tice to which two approximation operators (necessity and possibility) and
a constant (uncertainty) other than 0 and 1, have been added. As sub-
sets of partially ordered sets satisfying specific properties, filters are crucial,
since they are set of provable formulas. Also, they are intimately related to
congruence relations, which are essential in the study of quotient sets. In
2010, Van Gasse et. al introduced the notion of filter in triangle algebras,
involving the approximation operator ν, making the filters of triangle al-
gebras different from that of other algebraic structures such as residuated
lattices and their subclasses [16]. They defined Boolean filters and prime
filters in triangle algebras, establishing some relationships between them.
Subsequently, Zahiri et al., in a series of papers [20–22] further investigated
properties of triangle algebras by exploring other types of filters.

In the present paper, given a triangle algebra L, we examine the lattice
of filters of a triangle algebra. Since tools from topology are used to interpret
algebraic varieties, we prove that Spec(L), the set of all prime filters of L,
can be equipped with the Zariski topology τL as well as the stable topology,
in light of what has been done in the context of bounded distributive lattices
[7], and residuated lattices [2].

The paper is organized as follows: firstly, we recall some preliminary
notions of triangle algebras in Section 2. In Section 3, we study the algebraic
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structure of the set of filters of a triangle algebra, as well as the set of co-
annihilators of a triangle algebra. Moreover, the prime filter theorem is
established. Section 4 investigates the notion of pure filter of a triangle
algebra, along with some of its properties. Section 5 is devoted to the
spectral topology on triangle algebras. We show that (Spec(L), τL) is a
compact T0 space, and characterize triangle algebras for which (Spec(L), τL)
is connected. In Section 6, we examine the stable topology SL, whose stable
sets are completely described by pure filters.

2 Preliminaries

In this section, we recall some important notions and results on residuated
lattices, and triangle algebras, which will be needed in the sequel.

Definition 2.1. [18] A residuated lattice is an algebra L = (L,∨,∧,⊙,→,
0, 1) of type (2, 2, 2, 2, 0, 0) satisfying:

(i) (L,∨,∧, 0, 1) is a bounded lattice;

(ii) (L,⊙, 1) is a commutative monoid ;

(iii) x ⊙ y ≤ z if and only if x ≤ y → z, for any x, y, z ∈ L (residuation
principle).

In this paper, we will use the following notations:
• ¬x for x → 0;
• x ↔ y for (x → y) ∧ (y → x) ;
• xn for x⊙ x⊙ · · · ⊙ x︸ ︷︷ ︸

n times

, with n ∈ N∗. Conventionally, x0 = 1.

Definition 2.2. [23] Let (L,∨,∧,⊙,→, 0, 1) be a residuated lattice. The
order of x ∈ L, denoted by ord(x), is the smallest n ∈ N such that xn = 0.
If there is no such n, then ord(x) = ∞.

Proposition 2.3. [14, 16]

Let (L,∨,∧,⊙,→, 0, 1) be a residuated lattice. For every x, y, z ∈ L, we
have:

(RL1) x⊙ y ≤ x ∧ y; x ≤ y → (x⊙ y), y ≤ x → y;
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(RL2) x⊙ (x → y) ≤ x ∧ y; particularly, x⊙ ¬x = 0;

(RL3) x ∨ y ≤ (x → y) → y; particularly, x ≤ ¬¬x;
(RL4) (x → y) ⊙ z ≤ x → (y ⊙ z), (x → y) ⊙ (y → z) ≤ x → z, x →

y ≤ (x ⊙ z) → (y ⊙ z); (x ⊙ y) → z = x → (y → z); particularly,
¬(x⊙ y) = x → ¬y;

(RL5) x → (y ∧ z) = (x → y) ∧ (y −→ z);

(RL6) (x ∨ y) → z = (x → z) ∧ (y → z); particularly, ¬(x ∨ y) = ¬x ∧ ¬y;
(RL7) x → y = sup{z ∈ L : x ⊙ z ≤ y}; particularly, 1 → x = x and

x → x = 1;

(RL8) x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z), x ∨ (y ⊙ z) ≥ (x ∨ y) ⊙ (x ∨ z), and
(x ∨ y)mn ≤ xm ∨ yn, for every m,n ≥ 1.

(RL9) x ⊙ 0 = 0, ¬(0) = 1, ¬(1) = 0; ¬¬¬x = ¬x; ¬(x ⊙ y) = x → ¬y =
y → ¬x.

Definition 2.4. [16] Let (L,∨,∧,⊙,→, 0, 1) be a residuated lattice. A
filter of L is a nonempty subset F of L such that, for every x, y ∈ L:

(F1) if x ∈ F and x ≤ y, then y ∈ F ;

(F2) if x, y ∈ F, then x⊙ y ∈ F.

Another way to describe filters in residuated lattices is through the
concept of deductive systems. A deductive system of a residuated lattice
L is a nonempty subset F of L containing 1 such that for all x, y ∈ L,
x → y ∈ F and x ∈ F imply y ∈ F. It is well-known that the notions of
filter and deductive system coincide in residuated lattices [4].

Let L = (L,∨,∧, 0, 1) be a bounded lattice. We recall from [14, 16, 17]
that the triangularization or triangular lattice of L is the bounded lattice
T(L) of the closed intervals of L defined by:

T(L) = (Int(L),∨Int(L),∧Int(L), [0, 0], [1, 1])

such that Int(L) = {[x1, x2] : x1, x2 ∈ L and x1 ≤ x2}, and for all
x1, x2, y1, y2 ∈ L,

• [x1, x2] ∨Int(L) [y1, y2] = [x1 ∨ y1, x2 ∨ y2];

• [x1, x2] ∧Int(L) [y1, y2] = [x1 ∧ y1, x2 ∧ y2];
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• [x1, x2] ≤Int(L) [y1, y2] if and only if x1 ≤ y1 and x2 ≤ y2.

The set D(L) = {[x, x] : x ∈ L} is called Diagonal of T(L).
From [14, 17], an interval-valued residuated lattice (IVRL) is a residuated

lattice (Int(L),∨,∧,⊙,→⊙, [0, 0], [1, 1]) on the triangularization T(L) of a
bounded lattice L such that the diagonal D(L) is closed under ⊙ and →⊙,
that is, [x, x]⊙ [y, y] ∈ D(L) and [x, x] →⊙ [y, y] ∈ D(L), for all x, y in L.

The structure (Int(L),∨,∧,⊙,→⊙, prv, prh, [0, 0] , [0, 1] , [1, 1]) is called
extended IVRL, where u = [0, 1] is a constant interval, prv and prh are
respectively called vertical and horizontal projections defined from Int(L)
to Int(L) by prv ([x1, x2]) = [x1, x1] and prh ([x1, x2]) = [x2, x2].

Definition 2.5. [14, 16] A triangle algebra is a structure

L = (L,∨,∧,⊙,→, ν, µ, 0, u, 1)

in which (L,∨,∧,⊙,→, 0, 1) is a residuated lattice, ν and µ are unary oper-
ations on L, u (0 ̸= u ̸= 1) a constant, all satisfying the following conditions:

(T.1) νx ≤ x; (T.1′)x ≤ µx;
(T.2) νx ≤ ννx; (T.2′)µµx ≤ µx;
(T.3) ν(x ∧ y) = νx ∧ νy; (T.3′)µ(x ∧ y) = µx ∧ µy;
(T.4) ν(x ∨ y) = νx ∨ νy; (T.4′)µ(x ∨ y) = µx ∨ µy;
(T.5) νu = 0; (T.5′)µu = 1;
(T.6) νµx = µx; (T.6′)µνx = νx;
(T.7) ν(x → y) ≤ νx → νy;
(T.8) (νx ↔ νy)⊙ (µx ↔ µy) ≤ (x ↔ y);
(T.9) νx → νy ≤ ν(νx → νy).

Every triangle algebra is isomorphic to an extended IVRL [14].
For terminology and theory of triangle algebra, we refer the reader to

[14, 16, 21, 22].

Proposition 2.6. [14, 16] Let L = (L,∧,∨,⊙,→, ν, µ, 0, u, 1) be a triangle
algebra. Then, for any x, y ∈ L,

(1) ν(x⊙ y) = νx⊙ νy;

(2) µ(x⊙ y) ≤ µx⊙ µy.

Remark 2.7. [14] Let L = (L,∧,∨, ν, µ, 0, u, 1) be a triangle algebra.
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(i) For any x, y ∈ L, if νx = νy and µx = µy, then x = y.

(ii) For all x ∈ L, ννx = νx and µµx = µx.

(iii) The operators ν and µ are increasing.

(iv) ν1 = 1 and µ0 = 0.

Lemma 2.8. [5] Let L = (L,∧,∨, ν, µ, 0, u, 1) be a triangle algebra and
x, y ∈ L. If νx ∨ y = 1, then x⊙ y = x ∧ y.

Let L = (L,∨,∧) be a lattice. A map f : L −→ L is a closure operator
on L, if it satisfies the following properties for all x, y ∈ L [1]:

(i) f(f(x)) = f(x);

(ii) if x ≤ y, then f(x) ≤ f(y);

(iii) x ≤ f(x).

For any lattice L and a map C: L −→ L, an element x of L is said to
be closed if C(x) = x. The poset of all the closed elements of L will be
denoted by LC .

Proposition 2.9. [1] Let C: L −→ L be a closure operator on a lattice
(L,∧,∨). Then, (LC ,∧,∨′) is a complete lattice in which x ∨′ y = c(x ∨ y),
for all x, y ∈ LC .

Given two triangle algebras L1 = (L1,∧1,∨1,⊙1,→1, ν1, µ1, 0, u, 1) and
L2 = (L2,∧2,∨2,⊙2,→2, ν2, µ2, 0, u, 1), a map f : L1 −→ L2 is a morphism
of triangle algebras, if for any x, y ∈ L1 (see [23]),

1. f(0) = 0 and f(1) = 1;

2. f(x ∧1 y) = f(x) ∧2 f(y) and f(x ∨1 y) = f(x) ∨2 f(y);

3. f(x⊙1 y) = f(x)⊙2 f(y) and f(x →1 y) = f(x) →2 f(y);

4. f(ν1x) = ν2(f(x)) and f(µ1x) = µ2(f(x)).

In the rest of this paper, unless otherwise indicated, a triangle algebra
(L,∧,∨,⊙,→, ν, µ, 0, u, 1) will be simply denoted by L.

Definition 2.10. [16, 20, 21] Let L be a triangle algebra. A filter of L is
a nonempty subset F of L which satisfies (F1), (F2), and (F3) given by: if
x ∈ F, then νx ∈ F , for every x, y ∈ L.
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We shall notice from [16] that any filter F of L has the property (F ′3)
given by: for all x ∈ L, x ∈ F if and only if νx ∈ F .

For any triangle algebra L, an element x ∈ L is said to be exact if
νx = x. The set of exact elements of L is denoted by E(L), and ε(L) =
(E(L),∧,∨,⊙,→, 0, 1) is a subalgebra of L. A nonempty subset F of L is
called IVRL-extended filter if the property (F ′3) holds and F ∩ E(L) is a
filter of the residuated lattice ε(L) [16]. Moreover, F is a filter of L if and
only if F is an IVRL-extended filter.

F(L) will stand for the set of filters of a triangle algebra L.
A filter F of L is said to be proper if F ̸= L.

Definition 2.11. [16, 23] Let L be a triangle algebra. A proper filter F of
L is called prime if ν(x∨ y) ∈ F implies νx ∈ F or νy ∈ F , for all x, y ∈ L.

Proposition 2.12. [16, 21] Let L be a triangle algebra and F a filter of L.
Then, the following assertions are equivalent:

(1) F is a prime filter;

(2) If F1 and F2 are filters of L such that F = F1 ∩ F2, then F = F1 or
F = F2;

(3) If F1 and F2 are filters of L such that F1 ∩ F2 ⊆ F , then F1 ⊆ F or
F2 ⊆ F .

The set of prime filters of a triangle algebra L is called the spectrum
of L and will be denoted Spec(L). Obviously, for a morphism of triangle
algebras f : L1 −→ L2, if P ∈ Spec(L2), then f−1(P ) ∈ Spec(L1).

Recall from [21, 23] that a proper filter F of L is said to be maximal if
for any filter G of L, F ⊆ G implies G = F or G = L.

We will denote by Max(L) the set of all maximal filters of L. Note that
Max(L) ⊆ Spec(L).

A triangle algebra L is said to be local if it has exactly one maximal
filter.

Proposition 2.13. [23] A triangle algebra L is local if and only if ord(νx) <
∞ or ord(¬νx) < ∞, for all x ∈ L.

Definition 2.14. Let L be a triangle algebra. A prime filter P of L is said
to be minimal if for any prime filter Q of L, Q ⊆ P implies P = Q .
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Throughout this paper, we denote by Min(L) the set of minimal prime
filters of L.

For any subset X of a triangle algebra L, the set ⟨X⟩ will stand for the
smallest filter of L containing X, called the filter generated by X.

Proposition 2.15. [11] Let X be a subset of a triangle algebra L. Then,
⟨X⟩ := {x ∈ L | ∃(n, xi) ∈ N∗ × X,x ≥ νx1 ⊙ νx2 ⊙ · · · ⊙ νxn, ∀i ∈
{1, 2, · · · , n}}. In particular, ⟨a⟩ = {x ∈ L | x ≥ (νa)n, n ∈ N∗}, for every
a ∈ L.

From [11], for all X,Y ⊆ L, we have:

(i) if X ⊆ Y , then ⟨X⟩ ⊆ ⟨Y ⟩;
(ii) ⟨X ∪ Y ⟩ = {z ∈ L | z ≥ νx⊙ νy, x ∈ X and y ∈ Y }.

Remark 2.16. Let L be a triangle algebra and x, y ∈ L. Then, x ≤ y
implies ⟨y⟩ ⊆ ⟨x⟩.

Definition 2.17. [22] Let L be a triangle algebra and X a nonempty
subset of L. The set X⊤ := {a ∈ L | νa ∨ x = 1,∀x ∈ X} is called the
co-annihilator of X. We will denote {x}⊤ by x⊤.

Below are some properties of co-annihilators in triangle algebras.

Proposition 2.18. [22] Let L be a triangle algebra. Then, for all nonempty
subsets X and Y of L:

(1) X⊤ is a filter of L,

(2) X ⊆ Y implies Y ⊤ ⊆ X⊤,

(3) X ⊆ X
⊤⊤

,

(4) X⊤ = X
⊤⊤⊤

,

(5) X⊤ = ⟨X⟩⊤,
(6) (

⋃
i∈I

Xi)
⊤ =

⋂
i∈I

X⊤i ⊆ (
⋂
i∈I

Xi)
⊤, for all Xi ⊂ L,

(7) X⊤ =
⋂

x∈X
x⊤,

(8) ⟨X⟩ ∩X⊤ = {1}.
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Corollary 2.19. [22] Let L be a triangle algebra. For any x, y ∈ L, we
have:

(1) x ≤ y implies x⊤ ⊆ y⊤,

(2) x⊤ ∩ y⊤ = (x⊙ y)⊤,

(3) x⊤ = L if and only if x = 1,

(4) x⊤ = (νx)⊤.

3 The lattice of filters of a triangle algebra

In this section, we investigate the lattice structure of all filters of a triangle
algebra. Moreover, we state and prove the prime filter theorem in a triangle
algebra.

Proposition 3.1. Let L be a triangle algebra. Then, (F(L),∩,⊔, {1}, L) is
a complete distributive lattice, where the operator

⊔
is defined by F

⊔
G =

⟨F ∪G⟩, for any F,G ∈ F(L).

Proof. (1) Consider the application β : F 7→ ⟨F ⟩, for any F ∈ P(L), the
power set of L. We show that β is a closure operator on P(L): let F ∈ P(L),
then we have β(β(F )) = ⟨⟨F ⟩⟩ = ⟨F ⟩ = β(F ). Also, F ⊆ ⟨F ⟩ = β(F ). In
addition, for any G ∈ P(L) such that F ⊆ G, we have ⟨F ⟩ ⊆ ⟨G⟩, that
is, β(F ) ⊆ β(G). Therefore, β is a closure operator on P(L). Moreover,
F(L) is the set of closed elements of β, since β(F ) = F , for any F ∈
F(L). Hence, applying Proposition 2.9, F(L) is a complete lattice in which
F
⊔
G = ⟨F ∪G⟩, for any F,G ∈ F(L).

(2) Let F,G,H ∈ F(L). Since G ∩H ⊆ G,H, it follows that F
⊔
(G ∩

H) ⊆ (F
⊔
G) ∩ (F

⊔
H).

To show the converse, let a ∈ (F
⊔
G) ∩ (F

⊔
H). Then, a ∈ ⟨F ∪ G⟩

and a ∈ ⟨F ∪ H⟩, that is, there are x, t ∈ F , y ∈ G and z ∈ H such that
a ≥ νx⊙νy and a ≥ νt⊙νz, that is, a∨a ≥ (νx⊙νy)∨(νt⊙νz) ≥ (νx⊙νt⊙
νy)∨(νx⊙νt⊙νz)

RL8
= (νx⊙νt)⊙(νy∨νz) = ν(x⊙t)⊙ν(y∨z). But x⊙t ∈ F

and y ∨ z ∈ G ∩H, which implies that ν(x⊙ t) ∈ F and ν(y ∨ z) ∈ G ∩H.
Thus, a ∈ ⟨F ∪ (G∩H)⟩, and therefore, (F

⊔
G)∩ (F

⊔
H) ⊆ F

⊔
(G∩H).

Hence, (F(L),∩,⊔, {1}, L) is a complete distributive lattice.
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We recall that given a lattice (L,∧,∨) (with 0 as the smallest element),
the pseudocomplement of an element a ∈ L is the greatest element a∗ of L
such that a ∧ a∗ = 0. A lattice is said to be pseudocomplemented if all its
elements have a pseudocomplement (see [1]).

Proposition 3.2. Let L be a triangle algebra. Then, the lattice (F(L),∩,⊔, {1}, L)
is pseudocomplemented, and for all F ∈ F(L), the pseudocomplement of F
is F⊤.

Proof. From Proposition 2.18(8), we have F ∩F⊤ = {1}. Now let G ∈ F(L)
such that F ∩G = {1}. We know that for any a ∈ G, νa ∈ G. Let x ∈ F ,
then x ≤ νa ∨ x and νa ≤ νa ∨ x. This implies that νa ∨ x ∈ F ∩G. Thus,
νa∨ x = 1 (since F ∩G = {1}). Therefore, a ∈ F⊤ and hence G ⊆ F⊤.

Lemma 3.3. Let L be a triangle algebra, x, y ∈ L. Then, we have:

(1) ⟨x⟩⊔⟨y⟩ = ⟨x⊙ y⟩.
(2) ⟨x⟩ ∩ ⟨y⟩ = ⟨x ∨ y⟩.

Proof. Let x, y ∈ L. (1)

Since x⊙ y ≤ x, y, we deduce from Remark 2.16 that, ⟨x⟩, ⟨y⟩ ⊆ ⟨x⊙ y⟩.
Thus, ⟨x⊙ y⟩ is a filter of L containing ⟨x⟩ ∪ ⟨y⟩.

Now let F ∈ F(L) such that ⟨x⟩, ⟨y⟩ ⊆ F . Then, x, y ∈ F , which
implies that νx, νy ∈ F . For any t ∈ ⟨x ⊙ y⟩, we have t ≥ [ν(x ⊙ y)]n =
(νx)n ⊙ (νy)n ∈ F , n ∈ N∗.Thus, t ∈ F and it follows that ⟨x⊙ y⟩ ⊆ F . we
have just shown that ⟨x⊙ y⟩ is the smallest filter of L containing ⟨x⟩ ∪ ⟨y⟩.
Hence, ⟨x⟩⊔⟨y⟩ = ⟨x⊙ y⟩.

(2) By applying Remark 2.16 on x, y ≤ x∨y, we obtain ⟨x∨y⟩ ⊆ ⟨x⟩, ⟨y⟩,
implying that, ⟨x ∨ y⟩ ⊆ ⟨x⟩ ∩ ⟨y⟩.

Conversely, let t ∈ ⟨x⟩ ∩ ⟨y⟩. Then, there are m,n ∈ N∗ such that t ≥
(νx)n and t ≥ (νy)m, which implies that t ≥ (νx)n∨(νy)m

(RL8)

≥ [ν(x∨y)]mn.
Thus, t ∈ ⟨x ∨ y⟩, that is, ⟨x⟩ ∩ ⟨y⟩ ⊆ ⟨x ∨ y⟩. Hence, ⟨x⟩ ∩ ⟨y⟩ = ⟨x ∨ y⟩.

Proposition 3.4. Let L be a triangle algebra and F,G ∈ F(L). Then, the
set {x ∈ L | ⟨νx⟩ ∩ F ⊆ G} is a filter of L.
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Proof. Let F,G ∈ F(L), and let M = {x ∈ L | ⟨νx⟩ ∩ F ⊆ G}. Clearly, M
is not empty, since 1 ∈ M .

• Let x, y ∈ L such that x ≤ y and x ∈ M . Then, νx ≤ νy which implies
from Remark 2.16 that ⟨νy⟩ ⊆ ⟨νx⟩. Thus, ⟨νy⟩ ∩ F ⊆ ⟨νx⟩ ∩ F ⊆ G, as
x ∈M. Therefore, y ∈ M .

• If x, y ∈ M , then ⟨νx⟩ ∩ F ⊆ G and ⟨νy⟩ ∩ F ⊆ G. Using Lemma
3.3, we have ⟨ν(x⊙ y)⟩ ∩ F = ⟨νx⊙ νy⟩ ∩ F = (⟨νx⟩⊔⟨νy⟩) ∩ F = (⟨νx⟩ ∩
F )
⊔
(⟨νy⟩ ∩ F ) ⊆ G

⊔
G = G. Thus, x⊙ y ∈ M .

• Let x ∈ L such that x ∈ M . Then ⟨ννx⟩ ∩ F = ⟨νx⟩ ∩ F ⊆ G, that is,
νx ∈ M .

Hence, M is a filter of L.

We recall from [8] that a Heyting algebra is a lattice (L,∧,∨) with 0
such that for every a, b ∈ L, there exists an element a → b ∈ L (called
the pseudocomplement of a with respect to b) such that for every x ∈ L,
a∧x ≤ b if and only if x ≤ a → b (that is, a → b = sup{x ∈ L : a∧x ≤ b}).
Theorem 3.5. Let L be a triangle algebra.

Then, (F(L),∩,⊔,→, {1}, L) is a complete Heyting algebra in which
F → G := {x ∈ L | ⟨νx⟩ ∩ F ⊆ G}, for all F,G ∈ F(L).

Proof. It follows from Proposition 3.1 that (F(L),∩,⊔,→, {1}, L) is a com-
plete distributive lattice.

Now let F,G,H ∈ F(L). According to Proposition 3.4, the set {x ∈ L |
⟨νx⟩ ∩ F ⊆ G} is a filter, that is, F → G ∈ F(L). In addition assume that
H ∩ F ⊆ G. Then, for any x ∈ H, we have ⟨νx⟩ ⊆ H, thus ⟨νx⟩ ∩ F ⊆
H ∩ F ⊆ G, that is, x ∈ F → G. Therefore, H ⊆ F → G.

Conversely, assume that H ⊆ F → G and let t ∈ H ∩ F . Then, t ∈ H
and t ∈ F , which implies that t ∈ F → G, that is, ⟨ν(t)⟩ ∩ F ⊆ G. Since
t ∈ ⟨t⟩ ⊆ ⟨ν(t)⟩ and t ∈ F , we obtain t ∈ ⟨ν(t)⟩ ∩ F ⊆ G, thus, H ∩ F ⊆ G.

Hence, (F(L),∩,⊔,→, {1}, L) is a complete Heyting algebra.

It is worth noticing that F⊤ = F → {1}, for all F ∈ F(L).
For any triangle algebra L, we define CoAnn(L) := {X⊤ ∈ F(L) | X ⊆

L}.
Theorem 3.6. Let L be a triangle algebra.

Then, (CoAnn(L),∩,⊔,⊤ , {1}, L) is a complete Boolean algebra, with
F ⊔G = (F⊤ ∩G⊤)⊤, for any F,G ∈ F(L).
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Proof. (1) Consider the map γ : P(L) −→ P(L) defined by γ(X) = X
⊤⊤

,
for any X ⊆ L.

By Proposition 2.18(4), we have γ(γ(X)) = γ(X). Also, by Proposition

2.18(3), we have X ⊆ X
⊤⊤

= γ(X). In addition, for any X,Y ∈ P(L) such

that X ⊆ Y , it follows from Proposition 2.18(2) that X
⊤⊤ ⊆ Y

⊤⊤
, that is,

γ(X) ⊆ γ(Y ). Hence, γ is a closure operator on P(L).

Moreover, for any F ∈ CoAnn(L), there is X ⊆ L such that F = X⊤.
From Proposition 2.18(4), CoAnn(L) is the set of closed elements of γ.
Therefore, applying Proposition 2.9 yields that CoAnn(L) is a complete
lattice.

(2) Since CoAnn(L) ⊆ F(L) which is a distributive lattice, so is CoAnn(L).
(3) Let F ∈ CoAnn(L), then by Proposition 3.2, F ∩ F⊤ = {1}. More-

over, applying Proposition 2.18 (8), we have F ⊔ F⊤ = (F⊤ ∩ F
⊤⊤

)⊤ =
1⊤ = L.

Hence, (CoAnn(L),∩,⊔,⊤ , {1}, L) is a complete Boolean algebra.

Theorem 3.7. (Prime filter theorem) Let F be a filter of a triangle algebra
L and I a ∨-closed set such that F ∩ I = ∅. Then, there is a prime filter P
of L such that F ⊆ P and P ∩ I = ∅.

Proof. Let F be a filter and I a ∨-closed set of a triangle algebra L such
that F ∩ I = ∅. Let

∏
= {G ∈ F(L) | F ⊆ G and G ∩ I = ∅}. Obviously,∏ ̸= ∅ as F ∈∏. Since
∏

satisfies Zorn’s lemma criteria, it has a maximal
element P . It remains to show that P is prime.

Let x, y ∈ L such that ν(x ∨ y) ∈ P . Suppose by contrary that νx /∈ P
and νy /∈ P . Then, P ⊊ P

⊔⟨νx⟩ and P ⊊ P
⊔⟨νy⟩. It follows that P ⊔⟨νx⟩

and P
⊔⟨νy⟩ are filters of L containing F (since F ⊆ P ⊊ P

⊔⟨νx⟩ and F ⊆
P ⊊ P

⊔⟨νy⟩), and by maximality of P , we obtain (P
⊔⟨νx⟩) ∩ I ̸= ∅ and

(P
⊔⟨νy⟩)∩ I ̸= ∅. Thus, for any a ∈ (P

⊔⟨νx⟩)∩ I and b ∈ (P
⊔⟨νy⟩)∩ I,

we have a ∨ b ∈ I. Since a, b ≤ a ∨ b, we deduce that a ∨ b ∈ P
⊔⟨νx⟩

and a∨ b ∈ P
⊔⟨νy⟩ (from the fact that P

⊔⟨νx⟩ and P
⊔⟨νy⟩ are filters of

L). Thus, a ∨ b ∈ (P
⊔⟨νx⟩) ∩ (P

⊔⟨νy⟩) = P
⊔
(⟨νx⟩ ∩ ⟨νy⟩) = P

⊔
(⟨νx ∨

νy⟩) = P
⊔
(⟨ν(x∨y)⟩). But by hypothesis, ν(x∨y) ∈ P , which implies that

a ∨ b ∈ P
⊔
P = P . Thus, a ∨ b ∈ P ∩ I which contradicts the fact that

P ∩ I = ∅. Therefore, P is prime.

Corollary 3.8. Let L be a triangle algebra.
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(1) Let F be a filter of L and x ∈ L such that x /∈ F. Then, there exists a
prime filter P of L such that F ⊆ P and x /∈ P .

(2) For any x ∈ L such that x ̸= 1, there is a prime filter P of L satisfying
x /∈ P ;

(3)
⋂{P ∈ F(L) | P ∈ Spec(L)} = {1}.

(4) For any proper filter F of L, there exists a prime filter P of L con-
taining F .

Corollary 3.9. Let F be a proper filter and I a ∨-closed set of a triangle
algebra L such that F ∩ I = ∅. Then, there exists a minimal prime filter P
such that F ⊆ P and P ∩ I = ∅.

Corollary 3.10. Let L be a triangle algebra and F a filter of L. Then, for
all x ∈ L \ F with x ̸= 1, there exists a minimal prime filter P such that
F ⊆ P and x /∈ P .

In the following section, we introduce the notion of pure filter, which
will be used to describe the stable sets of the stable topology on triangle
algebras.

4 Pure filters of triangle algebras

For any filter F of a triangle algebra L, consider the set

σ(F ) := {x ∈ L | ∃(y, z) ∈ x⊤ × F such that νy ⊙ z = 0}.

Lemma 4.1. Let L be a triangle algebra and F,G ∈ F(L). Then,

(1) σ(F ) is a filter of L and σ(F ) ⊆ F ;

(2) F ⊆ G implies σ(F ) ⊆ σ(G);

(3) σ(F ∩G) = σ(F ) ∩ σ(F );

(4) σ(F )
⊔
σ(F ) ⊆ σ(F

⊔
G).

Proof. Let F,G ∈ F(L).
(1) We have σ(F ) ̸= ∅, since 1 ∈ σ(F ). Let x1, x2 ∈ L such that

x1 ∈ σ(F ) and x1 ≤ x2. Then, there is (y, z) ∈ x⊤1 ×F such that νy⊙z = 0.
But, x1 ≤ x2 implies x⊤1 ⊆ x⊤2 . Thus, y ∈ x⊤2 , and therefore x2 ∈ σ(F ).
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Now, if x1, x2 ∈ σ(F ), then there are y1 ∈ x⊤1 , y2 ∈ x⊤2 and z1, z2 ∈ F such
that νy1 ⊙ z1 = 0 = νy2 ⊙ z2.

We set z = z1 ⊙ z2 and y = y1 ∨ y2. Then, z ∈ F , as F is a filter.

Moreover, νy∨(x1⊙x2)
RL8
≥ (νy∨x1)⊙(νy∨x2) ≥ (νy1∨x1)⊙(νy2∨x2) =

1⊙ 1 = 1. Thus y ∈ (x1 ⊙ x2)
⊤.

In addition, νy ⊙ z = (νy1 ∨ νy2) ⊙ z
RL8
= (νy1 ⊙ z) ∨ (νy2 ⊙ z) =

(νy1⊙ z1⊙ z2)∨ (νy2⊙ z2⊙ z1) = (0⊙ z2)∨ (0⊙ z1) = 0∨ 0 = 0. Therefore,
x1 ⊙ x2 ∈ σ(F ).

Let x ∈ L such that x ∈ σ(F ). Then, there is (y, z) ∈ x⊤ × F such that
νy ⊙ z = 0. By Remark 2.7(ii) and Proposition 2.6(1), we have νy ⊙ νz =
ννy⊙ νz = ν(νy⊙ z) = ν0 = 0. But, (y, z) ∈ x⊤×F such that νy⊙ νz = 0
implies [y ∈ (νx)⊤ and νz ∈ F such that νy ⊙ νz = 0], that is, νx ∈ σ(F ).
Hence, σ(F ) is a filter of L.

Moreover, for any x ∈ σ(F ), there is (y, z) ∈ x⊤×F such that νy⊙z = 0.

This implies that z = z⊙1 = z⊙(νy∨x) RL8
= (z⊙νy)∨(z⊙x) = 0∨(z⊙x) =

z ⊙ x. Thus, z ≤ x, which implies that x ∈ F , that is, σ(F ) ⊆ F .

(2) Let F ⊆ G and x ∈ σ(F ). Then, ∃(y, z) ∈ x⊤ × F such that
νy ⊙ z = 0. But, z ∈ F ⊆ G, which implies that x ∈ σ(G). Thus,
σ(F ) ⊆ σ(G).

(3) Since F ∩G ⊆ F,G, applying (2), we obtain σ(F ∩G) ⊆ σ(F )∩σ(G).

Conversely, let x ∈ σ(F ) ∩ σ(G). Then, x ∈ σ(F ) and x ∈ σ(G),
which implies that there exist z1 ∈ F , z2 ∈ F and y1, y2 ∈ x⊤ such that
νy1 ⊙ z1 = 0 = νy2 ⊙ z2. Setting z = z1 ∨ z2 and y = y1 ⊙ y2, we have
(y, z) ∈ x⊤×F ∩G. It follows that νy⊙z = νy⊙(z1∨z2) = (νy⊙z1)∨(νy⊙
z2) = (νy2⊙ νy1⊙ z1)∨ (νy1⊙ νy2⊙ z2) = (νy2⊙ 0)∨ (νy1⊙ 0) = 0∨ 0 = 0.
Thus, x ∈ σ(F ∩G), that is, σ(F ) ∩ σ(G) ⊆ σ(F ∩G).

(4) From F,G ⊆ F
⊔
G, we have σ(F ), σ(G) ⊆ σ(F

⊔
G). Thus,

σ(F )
⊔
σ(G) ⊆ σ(F

⊔
G).

Definition 4.2. Let L be a triangle algebra. A filter F of L is called pure
filter of L if σ(F ) = F (that is, F ⊆ σ(F )).

Example 4.3. Let L = {[0, 0] , [0, a] , [0, b] , [a, a] , [b, b] , [0, 1] , [a, 1] , [b, 1] , [1, 1]}.
Consider the Hasse diagram pictured in Figure 1 and the operators ⊙, ⇒
displayed in Table 1:
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[1, 1]

[b, 1] [a, 1]

[b, b] [0, 1] [a, a]

[0, b] [0, a]

[0, 0]

Figure 1: Hasse diagram of L in Example 4.3

Table 1: Operators ⊙ and ⇒ from Example 4.3

⊙ 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

⇒ 0 a b 1

1 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Defining the operators ν, µ, ⋆ and → by:

ν([x1, x2]) = [x1, x1]

µ([x1, x2]) = [x2, x2]

[x1, x2] ⋆ [y1, y2] = [x1 ⊙ y1, x2 ⊙ y2]

[x1, x2] → [y1, y2] = [(x1 ⇒ y1) ∧ (x2 ⇒ y2), x2 ⇒ y2] ,

and (L,∧,∨, ⋆,→, ν, µ, [0, 0] , [0, 1] , [1, 1]) is a triangle algebra [22].
One can easily verify that the filter F1 = {[b, b] , [b, 1] , [1, 1]} is a pure

filter.

Note that pure filters are not always prime nor maximal, as illustrated by
the pure filter F = {[1, 1]} in Example 4.3, since ν([b, 1]∨ [a, 1]) = [1, 1] ∈ F ,
but ν[b, 1] = [b, b] /∈ F and ν[a, 1] = [a, a] /∈ F .
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Remark 4.4. For any triangle algebra L, {1} and L are trivial pure filters
of L.

We present an example of filter of a triangle algebra that is not pure.

Example 4.5. Consider the Hasse diagram depicted in Figure 2, and the
operators ⊙, ⇒ given in Table 2. Then, (L,∧,∨,⊙,→, 0, 1) is a residuated
lattice [3].

1

c d

b

a

n

0

Figure 2: Hasse diagram of L in Example 4.5

Defining the operators ν, µ, ⋆ and → by:

ν([x1, x2]) = [x1, x1], µ([x1, x2]) = [x2, x2],

[x1, x2] ⋆ [y1, y2] = [x1 ⊙ y1, x2 ⊙ y2],

[x1, x2] → [y1, y2] = [(x1 ⇒ y1) ∧ (x2 ⇒ y2), x2 ⇒ y2],

Then (L,∧,∨, ⋆,→, ν, µ, [0, 0] , [0, 1] , [1, 1]) is a triangle algebra [11, 14].
The filter F = {[c, c], [c, 1], [1, 1]} is not a pure filter of L, since σ(F ) =

{[1, 1]} ≠ F .

We should observe that maximal filters (and hence prime filters) are not
always pure filters, as is the case for the filter

F = {[a, a] , [a, b] , [a, d] , [a, c] , [a, 1] , [b, b] , [b, c] , [b, d] , [b, 1] , [c, c] ,

[c, 1] , [1, 1] , [d, d] , [d, 1] , [1, 1]}
from Example 4.5 that is maximal, but σ(F ) = {[1, 1]}, that is, F is not
pure.
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Table 2: Operators ⊙ and ⇒ from Example 4.5

⇒ 0 n a b c d 1

0 1 1 1 1 1 1 1
n d 1 1 1 1 1 1
a n n 1 1 1 1 1
b n n a 1 1 1 1
c 0 n a d 1 d 1
d n n a c c 1 1
1 0 n a b c d 1

⊙ 0 n a b c d 1

0 0 0 0 0 0 0 0
n 0 0 0 0 n 0 n
a 0 0 a a a a a
b 0 0 a b b b b
c 0 n a b c b c
d 0 0 a b b d d
1 0 n a b c d 1

Proposition 4.6. Let L be a triangle algebra and F,G ∈ F(L). If F and
G are pure filters of L, so are F ∩G and F

⊔
G.

Proof. By using (3) of Lemma 4.1, we have σ(F∩G) = σ(F )∩σ(G) = F∩G,
that is, F ∩G is a pure filter of L. Also, using (4) of Lemma 4.1, we have
σ(F )

⊔
σ(G) ⊆ σ(F

⊔
G), that is, F

⊔
G ⊆ σ(F

⊔
G). Thus σ(F

⊔
G) =

F
⊔

G.

Lemma 4.7. Let F be a filter of a triangle algebra L such that σ(F ) ̸= {1}.
Then, there exists z ∈ F such that ord(¬νz) = ∞.

Proof. Let x ∈ σ(F ) such that x ̸= 1. Then ∃(y, z) ∈ x⊤ × F such that
νy ⊙ z = 0. This implies that, νy ⊙ νz = ννy ⊙ νz = ν(νy ⊙ z) = ν0 = 0.
Thus, νz → ¬νy = ¬(νy ⊙ νz) = ¬0 = 1, that is, νz ≤ ¬νy, which implies
that ¬(¬νy) ≤ ¬νz, and (¬¬νy)n ≤ (¬νz)n, for all n ≥ 1. It suffices to
show that ord(¬¬νy) = ∞.
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Since y ∈ x⊤, we have νy ∨ x = 1, which implies that ¬¬νy ∨ x = 1
(as νy ≤ ¬¬νy). This implies from (RL8) that (¬¬νy)n ∨ xn = 1, for all
n ≥ 1. Suppose by contrary that there exists n ∈ N∗ such that (¬¬νy)n = 0.
This will imply that xn = 1, that is, x = 1 (as xn ≤ x), which contradicts
the assumption x ̸= 1. Therefore ord(¬¬νy) = ∞, and hence ord(¬νz) =
∞.

Corollary 4.8. Let L be a triangle algebra. If L is local, then σ(F ) = {1},
for any proper filter F of L.

Proof. Assume that L is local, and suppose by contrary that there is a
proper filter F such that σ(F ) ̸= {1}. According to Lemma 4.7, there
exists z ∈ F such that ord(¬νz) = ∞. Since L is local, we deduce from
Proposition 2.13 that , ord(νz) < ∞, that is, ∃n ∈ N∗ such that νzn = 0.
This implies that 0 ∈ F (as z ∈ F ), that is, F = L, which contradicts the
fact that F is proper.

The subsequent section presents some results on the spectral topology
τL for a triangle algebra L.

5 The spectral topology for a triangle algebra

Throughout what follows, for a triangle algebra L = (L,∧,∨, ν, µ, 0, u, 1),
we set r(X) := {P ∈ Spec (L) | X ⊈ P}, for all X ⊆ L.

Proposition 5.1. Let L be a triangle algebra.

(1) For all X,Y ∈ P(L), X ⊆ Y if and only if r(X) ⊆ r(Y );

(2) r({1}) = ∅ and r(L) = r(0) = Spec(L);

(3) For all X,Y ∈ P(L), r(X) ∩ r(Y ) = r(X ∩ Y );

(4) If {Xi}i∈I ⊆ P(L), then
⋃
i∈I

r(Xi) = r(
⋃

i∈I Xi),

(5) For all X ⊆ L, r(⟨X⟩) = r(X).

Proof. (1) Let X and Y be two subsets of L such that X ⊆ Y . For any
P ∈ r(X), we have X ⊈ P . This implies that Y ⊈ P , that is, P ∈ r(Y ).

Conversely, if Y = L, then clearly X ⊆ Y . Now assume that Y ̸= L and
suppose by contrary that X ⊈ Y . Then, there exists x ∈ X \ Y . According
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to Corollary 3.8(1), there is a prime filter P such that Y ⊆ P (that is,
P /∈ r(Y )) and x /∈ P , that is, x ∈ X \ P , which means that X ⊈ P .
It follows that P /∈ r(Y ) and P ∈ r(X), which contradicts the hypothesis
r(X) ⊆ r(Y ). (2) Suppose by contrary that r({1}) ̸= ∅ and let F ∈ r({1}).
Then, F ∈ Spec (L) and {1} ⊈ F , that is, 1 /∈ F , which is not possible since
F is a filter. By definition of r(0), it is clear that r(0) ⊆ Spec (L).

Conversely, for any F ∈ Spec (L), F is a proper filter of L, that is,
0 /∈ F , and therefore {0} ⊈ F . Thus F ∈ r(0) and hence, r(0) =Spec (L).
Similarly, it follows that r(L) = Spec(L).

(3) Let X,Y ∈ P(L). Since X∩Y ⊆ X,Y , then r(X∩Y ) ⊆ r(X)∩r(Y ),
from (1).

Conversely, if P ∈ r(X) ∩ r(Y ), then P is a prime filter of L such that
X ⊈ P and Y ⊈ P . Thus, from Proposition 2.12(3), X ∩ Y ⊈ P , that is,
P ∈ r(X ∩ Y ). Therefore, r(X) ∩ r(Y ) ⊆ r(X ∩ Y ).

(4) Let {Xi}i∈I ⊆ L. Then, for all P ∈ Spec (L), we have P ∈ r(
⋃
i∈I

Xi)

if and only if
⋃

i∈I Xi ⊈ P if and only if ∃i ∈ I such that Xi ⊈ P if and
only if ∃i ∈ I such that P ∈ r(Xi) if and only if P ⊆⋃

i∈I
r(Xi). Thus,

⋃
i∈I r(Xi) = r(

⋃
i∈I Xi).

(5) Let X ⊆ L and P ∈ Spec (L). Clearly, X ⊆ P if and only if
⟨X⟩ ⊆ P . Thus, X ⊈ P if and only if ⟨X⟩ ⊈ P , that is, P ∈ r(X) if and
only if P ∈ r(⟨X⟩). Therefore, r(X) = r(⟨X⟩).

If we consider τL := {r(X) | X ∈ P(L)}, then we deduce from Propo-
sition 5.1 (2), (3) and (4) that τL is a topology on Spec (L), called Zariski
topology (or spectral topology).

For illustration, we provide the following example.

Example 5.2. Consider the triangle algebra L from Example 4.3. Then,
Spec(L) = {F1, F2}, with F1 = {[b, b] , [b, 1] , [1, 1]} and F2 = {[a, a] , [a, 1] , [1, 1]}.
The collections τ1,L = {∅, {F1},Spec(L)}, τ2,L = {∅, {F2}, Spec(L)}, and
τ3,L = {∅, Spec(L)} are topologies on Spec(L). But the set {∅, {F1}, {F2},Spec(L)}
is not a spectral topology, since F1∪F2 = {[b, b] , [b, 1] , {[a, a] , [a, 1] , [1, 1]} /∈
Spec(L).

For all a ∈ L, we set r(a) := {P ∈ Spec(L) | a /∈ P}.

Proposition 5.3. Let L be a triangle algebra, a, b ∈ L and X ⊆ L. Then,
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(1) a ≤ b implies r(b) ⊆ r(a);

(2) r(a) = r(⟨a⟩);
(3) r(a) = ∅ if and only if a = 1;

(4) r(a) =Spec(L) if and only if ⟨a⟩ = L (particularly, r(0) =Spec(L));

(5) r(a) ∩ r(b) = r(ν(a ∨ b));

(6) r(a) ∪ r(b) = r(ν(a ∧ b)) = r(ν(a⊙ b));

(7) r(X) =
⋃

x∈X
{r(x)};

(8) r(a) = r(b) if and only if ⟨a⟩ = ⟨b⟩.

Proof. Let a, b ∈ L and X ∈ P(L).

(1) Assume that a ≤ b and P ∈ r(b). Then, b /∈ P , implying that a /∈ P .
Thus, P ∈ r(a) and therefore, r(b) ⊆ r(a);

(2) Let P ∈ Spec(L). Since a ∈ P if and only if ⟨a⟩ ⊆ P , we have a /∈ P
if and only if ⟨a⟩ ⊈ P . Thus, P ∈ r(a) if and only if P ∈ r(⟨a⟩). Hence,
r(a) = r(⟨a⟩).

(3) Suppose that a = 1. Then, by Proposition 5.1(2), r(a) = ∅.
Conversely, assume that r(a) = ∅ and suppose by contrary that a ̸= 1.

Then, according to Corollary 3.8(2), there exists a prime filter P such that
a /∈ P , that is, P ∈ r(a), contradicting the fact that r(a) = ∅. Hence a = 1.

(4) Consider r(a) = Spec(L). Assume by contrary that ⟨a⟩ ̸= L. Then,
according to Corollary 3.8(4), there exists a prime filter P such that ⟨a⟩ ⊆ P ,
that is, a ∈ P . This implies that P /∈ r(a), which is a contradiction to r(a) =
Spec(L). Therefore, ⟨a⟩ = L.

Conversely, if ⟨a⟩ = L, then by Proposition 5.1 (2) and (5), we have
r(a) = r(⟨a⟩) = r(L) =Spec(L).

(5) Let P ∈ r(a) ∩ r(b). Then, a /∈ P and b /∈ P , which implies that
νa /∈ P and νb /∈ P . Then, ν(a ∨ b) /∈ P , since P is prime. Therefore,
P ∈ r(ν(a ∨ b)), that is, r(a) ∩ r(b) ⊆ r(ν(a ∨ b)).

Conversely, if P ∈ r(ν(a ∨ b)), then ν(a ∨ b) /∈ P . Suppose by contrary
that a ∈ P or b ∈ P . Then, νa ∈ P or νb ∈ P . Since νa ≤ νa ∨ νb and
νb ≤ νa ∨ νb, then ν(a ∨ b) = νa ∨ νb ∈ P , which is absurd. Thus, a /∈ P
and b /∈ P , that is, P ∈ r(a) and P ∈ r(b), and therefore P ∈ r(a) ∩ r(b).

Hence r(ν(a ∨ b)) = r(a) ∩ r(b).
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(6) If P ∈ r(a)∪r(b), then P ∈ r(a) or P ∈ r(b), that is, a /∈ P or b /∈ P .
Suppose by contrary that ν(a ∧ b) ∈ P . From ν(a ∧ b) = νa ∧ νb ≤ νa, νb,
we deduce that νa, νb ∈ P , and therefore a, b ∈ P , which is a contradiction.
Thus, ν(a ∧ b) /∈ P , that is, P ∈ r(ν(a ∧ b)).

For the converse, let P ∈ r(ν(a ∧ b)). Then, ν(a ∧ b) /∈ P . Suppose by
contrary that a ∈ P and b ∈ P . This implies that νa ∈ P and νb ∈ P , and
therefore ν(a ⊙ b) = νa ⊙ νb ∈ P , implying that ν(a ∧ b) = νa ∧ νb ∈ P ,
which is absurd. Thus, a /∈ P or b /∈ P , that is, P ∈ r(a) or P ∈ r(b).

Hence, r(a)∪r(b) = r(ν(a∧b)). Analogously, we show that r(a)∪r(b) =
r(ν(a⊙ b)).

(7) Let P ∈ Spec(L). Then, we have P ∈ r(X) if and only if X ⊈ P if
and only if ∃x ∈ X such that x /∈ P if and only if ∃x ∈ F such that P ∈ r(x)
if and only if P ∈ ⋃

x∈X
{r(x)}. Thus, r(X) =

⋃
x∈X

{r(x)}.

(8) Using (2) from this Proposition 5.3 and Proposition 5.1(1), we have
r(a) = r(b) if and only if r(⟨a⟩) = r(⟨b⟩) if and only if ⟨a⟩ = ⟨b⟩.

Let (L,∧,∨) be a complete lattice. An element x ∈ L is said to be
compact if for all X ⊆ L, x ≤ ∨X implies that there exists a finite subset
Y of X such that x ≤ ∨Y (see [8]).

Proposition 5.4. Let L be a triangle algebra.

(1) The family {r(a) | a ∈ L} is a basis for the topology τL on Spec(L);

(2) The compact open subsets of Spec(L) are exactly the sets of the form
r(a), with a ∈ L.

Proof. (1) For all X ⊆ L, let r(X) be an open subset of Spec(L). Then,
r(X) =

⋃
a∈X

{r(a)}, from Proposition 5.3(7).

(2) We first show that for all a ∈ L, r(a) is a compact element in
Spec(L). Let {r(ai)}i∈I be a non empty family of open subsets of Spec(L)
such that r(a) ⊆ ⋃

i∈I
r(ai). Then, from Proposition 5.3 (6), we have r(a) ⊆

r(⊙
i∈I

ν(ai)). According to Proposition 5.3(2) and Proposition 5.1(1), we have

⟨a⟩ ⊆ ⟨ ⊙
i∈I

ν(ai)⟩, that is, there are n ≥ 1 and i1, i2, · · · , in ∈ I such that

ν(a) ≥ νai1 ⊙ νai2 ⊙· · ·⊙ νain . We deduce from Proposition 5.3 (1) and (6)
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that r(a) ⊆ r(ν(a)) ⊆ r(νai1 ⊙ νai2 ⊙ · · · ⊙ νain) = r(ai1) ∪ r(ai2) ∪ · · · ∪
r(ain)) =

⋃
1≤j≤n

r(aj). Thus, r(a) ⊆
⋃

1≤j≤n
r(aj). Hence r(a) is compact.

Let r(X) be a compact open subset of Spec(L). Then, according to
Proposition 5.3 (7), we have r(X) =

⋃
a∈X

{r(a)}. But r(X) is compact, that

is, there are n ≥ 1 and a1, a2, · · · , an ∈ X such that r(X) =
⋃

1≤i≤n
r(ai) =

r( ∧
1≤i≤n

ν(ai)). Hence the result.

Theorem 5.5. Let L be a triangle algebra. Then,

(1) Spec(L) is compact;

(2) Spec(L) is a T0-space.

Proof. (1) According to Proposition 5.1(2), r(0) =Spec(L). But r(0) is
compact. Hence, Spec(L) is compact, by Proposition 5.4(2).

(2) Let P,Q ∈ Spec(L) such that P ̸= Q. Then, we have P ⊈ Q or
Q ⊈ P . Without loss of generality, suppose that P ⊈ Q. Then, there exists
a ∈ P such that a /∈ Q, that is, P /∈ r(a) and Q ∈ r(a). Since r(a) is an
open set for the topology τL, we conclude that Spec(L) is a T0-space.

A topological space (X, τ) is said to be connected if for all disjoint open
subsets U and V of X, X = U ∪ V implies U = ∅ or V = ∅. We will denote
by B(L) the set of all complemented elements in L.

Theorem 5.6. Let L be a triangle algebra. Then the following assertions
are equivalent:

(1) (Spec(L), τL) is connected;

(2) B(L) = {0, 1}.

Proof. (1)⇒(2) Suppose that (Spec(L), τL) is connected. Clearly 0, 1 ∈
B(L), that is, {0, 1} ⊆ B(L).

Conversely, for any a ∈ B(L), there exists b ∈ L such that a ∧ b = 0
and a ∨ b = 1. But r(a) ∪ r(b) = r(ν(a ∧ b)) = r(ν0) = r(0) =Spec(L) and
r(a) ∩ r(b) = r(ν(a ∨ b)) = r(ν1) = r(1) = ∅. Thus, r(a) = ∅ or r(b) = ∅,
since (Spec(L), τL) is connected). We obtain from Proposition 5.3(3) that,
a = 1 or b = 1. Since, b = 1 if and only if a = 0, it follows that a = 1 or
a = 0. Hence, B(L) = {0, 1}.
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(2)⇒(1) Suppose that B(L) = {0, 1}. Assume by contrary that
(Spec(L), τL) is not connected, that is, there are open nonempty disjoint
subsets P and Q of Spec(L), such that Spec(L) = P ∪Q. Since the family
{r(a) | a ∈ L} is a basis for the topology τL on Spec(L), then there are
X,Y ⊆ L such that P =

⋃
x∈X

r(x) and Q =
⋃
y∈Y

r(y). But according to The-

orem 5.5(1), Spec(L) is compact, that is, there exist x1, x2, · · · , xn ∈ X and
y1, y2, · · · , ym ∈ Y such that P =

⋃
1≤i≤n

r(xi) = r(ν(x1 ⊙ x2 ⊙ · · · ⊙ xn)) and

Q =
⋃

1≤i≤m
r(yi) = r(ν(y1⊙y2⊙· · ·⊙ym)). Setting x = ν(x1⊙x2⊙· · ·⊙xn)

and y = ν(y1 ⊙ y2 ⊙ · · · ⊙ ym), we obtain Spec(L) = r(x) ∪ r(y) and
r(x) ∩ r(y) = ∅. But, r(0) =Spec(L) = r(x) ∪ r(y) = r(ν(x ∧ y)) and
r(1) = ∅ = r(x) ∩ r(y) = r(ν(x ∨ y)). Thus, from Proposition 5.3(8),
⟨ν(x∨y)⟩ = ⟨1⟩ and ⟨ν(x∧y)⟩ = ⟨0⟩, that is, ν(x∨y) = 1 and ⟨ν(x∧y)⟩ = L.
Therefore, νx ∨ νy = 1 and ⟨νx ∧ νy⟩ = L, which implies that there exists

n ≥ 1 such that (νx∧ νy)n = 0 and also 1 = (νx∨ νy)n
RL8
≤ νxn ∨ νyn, that

is, 1 = νxn∨νyn. Applying Lemma 2.8, we have ννxn∧νyn = νxn⊙νyn =
(νx⊙ νy)n = (νx ∧ νy)n = 0. Which means that νxn, νyn ∈ B(L) = {0, 1}
and νxn is a complement of νyn. If νxn = 1, then νx = 1 and therefore
x = 1, that is, P = r(1) = ∅. Which is absurd as P is nonempty. Similarly,
if νxn = 0, then νyn = 1, that is, y = 1 and thus Q = r(1) = ∅. Which is
also absurd as Q is nonempty. Hence, (Spec(L), τL) is connected.

In the upcoming section, we will describe the stable open sets with
respect to the stable topology, using pure filters.

6 The stable topology for a triangle algebra

Given a triangle algebra L, for any filter F of L, the set r(F ) = {P ∈
Spec(L) | F ⊈ P} is an open set of Spec(L), while its complement v(F ) :=
Spec(L) \ r(F ) = {P ∈ Spec(L) | F ⊆ P} is a closed set of Spec(L).

Recall that a subset A of a set X is said to be stable under ascent
(respectively descent) in X, if for all x, y ∈ X, x ≤ y and x ∈ A implies
y ∈ A (respectively x ≤ y and y ∈ A imples x ∈ A). Therefore, A is said to
be stable in X if A is simultaneously stable under ascent and descent in X.

It follows that r(F ) and v(F ) are respectively stable under descent and
stable under ascent in Spec(L). Obviously, the clopen sets of Spec(L) are
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stable in Spec(L). In this section, we describe the stable sets relative to the
stable topology.

Definition 6.1. Let L be a triangle algebra. We call stable topology on L,
denoted SL, the collection of open subsets stable under ascent of Spec(L),
that is, SL = {r(F ) ∈ τL | F ∈ F(L) and r(F ) is stable under ascent in
Spec(L)}.

Example 6.2. Let Spec(L) = {F1, F2} be the set of prime filters of the
triangle algebra L from Example 5.2. Then, S1,L = {∅, {F1}, Spec(L)},
S2,L = {∅, {F2}, Spec(L)}, and S3,L = {∅, Spec(L)} are stable topologies on
Spec(L).

The example below highlights the fact that the stable and spectral
topologies are not identical.

Example 6.3. Consider the triangle algebra L from Example 4.5. Then,
Spec(L) = {F1, F2, F3, F4}, where

F1 = {[c, c] , [c, 1] , [1, 1]}, F2 = {[d, d] , [d, 1] , [1, 1]},

F3 = {[b, b] , [b, c] , [b, d] , [b, 1] , [c, c] , [c, 1] , [d, d] , [d, 1] , [1, 1]},
F4 = {[a, a] , [a, b] , [a, d] , [a, c] , [a, 1] , [b, b] , [b, c] , [b, d] , [b, 1] , [c, c] ,

[c, 1] , [d, d] , [d, 1] , [1, 1]}.
The collection τL = {∅, {F1}, {F3}, {F4},Spec(L)}, is a spectral topology

on Spec(L) but not a stable topology, since {F1} is not stable under ascent,
as F1 ⊆ F3 but F3 /∈ {F1}. However, the collection SL = {∅,Spec(L)} is a
stable topology on Spec(L).

Theorem 6.4. Let L be a triangle algebra and F a filter of L. Then, r(F )
is stable under ascent in Spec(L) if and only if F is a pure filter of L.

Proof. (⇐) Suppose that F is a pure filter of L, that is, σ(F ) = F , and let
P,Q ∈ Spec(L) such that P ⊆ Q and P ∈ r(F ). Then, F ⊈ P , that is, there
exists x ∈ F (and thus, ν(x) ∈ F ) such that x /∈ P (that is, νx /∈ P ). Since
σ(F ) = F , then x ∈ σ(F ) and therefore there exists (y, z) ∈ x⊤×F such that
νy⊙ z = 0. This implies that ν(y⊙ z) = νy⊙ νz = ννy⊙ νz = ν(νy⊙ z) =
ν0 = 0. Since y ∈ x⊤, then νy ∨ x = 1, implying that ν(y ∨ x) ∈ P , as
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ν(y ∨ x) = νy ∨ νx = ννy ∨ νx = ν(νy ∨ x) = ν1 = 1 ∈ P. But νx /∈ P
and P is a prime filter, thus νy ∈ P . Assume by contrary that Q /∈ r(F ),
then F ⊆ Q and therefore z ∈ Q. Since y, z ∈ Q, then y ⊙ z ∈ Q meaning
that 0 = ν(y ⊙ z) ∈ Q, that is, Q = L, which contradicts the fact that Q is
proper. Thus, r(F ) is stable under ascent in Spec(L).

(⇒) Suppose that r(F ) is stable under ascent in Spec(L) and assume by
contrary that F is not a pure filter of L. Then, F ⊈ σ(F ), which implies
that there exists x ∈ F such that x /∈ σ(F ), that is, x ̸= 1. We deduce
from Corollary 3.10 that there exists a minimal prime filter P such that
σ(F ) ⊆ P and x /∈ P . But F ⊈ P , as P is minimal, that is, P ∈ r(F ).
Since x /∈ σ(F ), then for all (y, z) ∈ x⊤ × F , we have νy ⊙ z ̸= 0, that
is, y ⊙ z ̸= 0. This implies that 0 /∈ x⊤

⊔
F , that is, x⊤

⊔
F is a proper

filter of L. Then, according to Corollary 3.8(4), there exists a prime filter
Q such that x⊤

⊔
F ⊆ Q. By minimality of P , we have P ⊆ Q. Given that

F ⊆ x⊤
⊔
F , it yields that F ⊆ Q, that is, Q /∈ r(F ). We finally obtain

P,Q ∈ Spec(L) such that P ⊆ Q and P ∈ r(F ) but Q /∈ r(F ), which is
absurd since r(F ) is stable under ascent in Spec(L). Hence, σ(F ) = F , that
is, F is a pure filter of L.

By duality, we have the following result:

Theorem 6.5. Let L be a triangle algebra and F a filter of L. Then, v(F )
is closed stable under descent in Spec(L) if and only if F is a pure filter of
L.
Corollary 6.6. Let L be a triangle algebra. The map F 7−→ r(F ) is a
bijection between the set of pure filters of L and SL, as well as F 7−→ v(F ).

Theorem 6.7. Let L be a triangle algebra and F a pure filter of L such
that F ̸= L. Then, there exists a minimal prime filter P such that F ⊆ P .

Proof. Let F be a pure filter of L such that F ̸= L. Suppose by contrary
that for any minimal prime filter P , F ⊈ P . Then, F ∈ r(F ) and since
F is a pure filter, r(F ) is stable under ascent in Spec(L), from Theorem
6.4. Let Q ∈ Spec(L), then by Corollary 3.10, there exists a minimal prime
filter Q such that P ⊆ Q. Since r(F ) is stable under ascent in Spec(L)
and P ∈ r(F ), then Q ∈ r(F ), that is, Spec(L) ⊆ r(F ). Therefore, r(F ) =
Spec(L). It follows from Proposition 5.3 (4) that F = L, which is absurd
since F ̸= L by assumption.
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Theorem 6.8. Let L be a triangle algebra and F a pure filter of L. Let
P1, P2 ∈ Min(L) and P ∈ Spec(L) such that P1 ⊆ P and P2 ⊆ P . Then,
F ⊆ P1 if and only if F ⊆ P2.

Proof. Let F be a pure filter of a triangle algebra L. Let P1, P2 ∈ Min(L)
and P ∈ Spec(L) such that P1 ⊆ P and P2 ⊆ P . Suppose that F ⊆ P1

and assume by contrary that F ⊈ P2. Then, P2 ∈ r(F ). But F is a pure
filter of L, which implies from Theorem 6.4 that r(F ) is stable under ascent
in Spec(L). Since P2 ⊆ P , then P ∈ r(F ), that is, F ⊈ P . In addition,
F ⊆ P1 and P1 ⊆ P (by minimality of P1), therefore F ⊆ P which is absurd
(as F ⊈ P ). Thus, F ⊆ P2.

For any maximal filter M of a triangle algebra L, let M̂ := {P ∈
Spec(L) | P ⊆ M}.

Corollary 6.9. Let L be a triangle algebra, F a pure filter of L and M a
maximal filter of L. Then, [F ⊆ P , ∀P ∈ M̂ ] or [F ⊈ P , ∀P ∈ M̂ ].

Consequently, for any local triangle algebra L, the topology SL is trivial.

7 Conclusion

This study aimed to examine the lattice of filters of a triangle algebra and es-
tablish the spectral and stable topology on its spectrum. We demonstrated
that the set of filters of a triangle algebra forms a complete pseudocomple-
mented distributive lattice, also known as a Heyting algebra. Additionally,
we obtained that the set of co-annihilators of a triangle algebra is a Boolean
algebra. Furthermore, we naturally defined the Zariski topology on the set
of prime filters of a triangle algebra, showing that it is a compact T0-space.
Moreover, introducing the notion of pure filter, we described the open stable
sets of the stable topology on triangle algebras.

In our future work, we will explore the concept of α-filter of triangle
algebras, a concept derived from co-annihilators, by examining the set of
α-filters of a triangle algebra, as it has been done for residuated lattices and
subclasses of residuated lattices [6, 10]. We plan to determine the relations
among pure filters, α-filters, and other existing types of filters in triangle
algebras. We will also investigate various topological properties of the space
of prime α-filters.
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